Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 34(8): 10027-10040, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32592197

RESUMEN

Aspirin prevents thrombosis by inhibiting platelet cyclooxygenase (COX)-1 activity and the production of thromboxane (Tx)A2 , a pro-thrombotic eicosanoid. However, the non-platelet actions of aspirin limit its antithrombotic effects. Here, we used platelet-COX-1-ko mice to define the platelet and non-platelet eicosanoids affected by aspirin. Mass-spectrometry analysis demonstrated blood from platelet-COX-1-ko and global-COX-1-ko mice produced similar eicosanoid profiles in vitro: for example, formation of TxA2 , prostaglandin (PG) F2α , 11-hydroxyeicosatraenoic acid (HETE), and 15-HETE was absent in both platelet- and global-COX-1-ko mice. Conversely, in vivo, platelet-COX-1-ko mice had a distinctly different profile from global-COX-1-ko or aspirin-treated control mice, notably significantly higher levels of PGI2 metabolite. Ingenuity Pathway Analysis (IPA) predicted that platelet-COX-1-ko mice would be protected from thrombosis, forming less pro-thrombotic TxA2 and PGE2 . Conversely, aspirin or lack of systemic COX-1 activity decreased the synthesis of anti-aggregatory PGI2 and PGD2 at non-platelet sites leading to predicted thrombosis increase. In vitro and in vivo thrombosis studies proved these predictions. Overall, we have established the eicosanoid profiles linked to inhibition of COX-1 in platelets and in the remainder of the cardiovascular system and linked them to anti- and pro-thrombotic effects of aspirin. These results explain why increasing aspirin dosage or aspirin addition to other drugs may lessen antithrombotic protection.


Asunto(s)
Aspirina/farmacología , Plaquetas/metabolismo , Ciclooxigenasa 1/fisiología , Inhibidores de la Ciclooxigenasa/farmacología , Eicosanoides/metabolismo , Proteínas de la Membrana/fisiología , Trombosis/metabolismo , Animales , Ácido Araquidónico/administración & dosificación , Plaquetas/efectos de los fármacos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Trombosis/tratamiento farmacológico , Trombosis/patología
2.
J Neurosci ; 38(43): 9186-9201, 2018 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-30181139

RESUMEN

The putative cache (Ca2+ channel and chemotaxis receptor) domain containing 1 (CACHD1) protein has predicted structural similarities to members of the α2δ voltage-gated Ca2+ channel auxiliary subunit family. CACHD1 mRNA and protein were highly expressed in the male mammalian CNS, in particular in the thalamus, hippocampus, and cerebellum, with a broadly similar tissue distribution to CaV3 subunits, in particular CaV3.1. In expression studies, CACHD1 increased cell-surface localization of CaV3.1, and these proteins were in close proximity at the cell surface, consistent with the formation of CACHD1-CaV3.1 complexes. In functional electrophysiological studies, coexpression of human CACHD1 with CaV3.1, CaV3.2, and CaV3.3 caused a significant increase in peak current density and corresponding increases in maximal conductance. By contrast, α2δ-1 had no effect on peak current density or maximal conductance in CaV3.1, CaV3.2, or CaV3.3. A comparison of CACHD1-mediated increases in CaV3.1 current density and gating currents revealed an increase in channel open probability. In hippocampal neurons from male and female embryonic day 19 rats, CACHD1 overexpression increased CaV3-mediated action potential firing frequency and neuronal excitability. These data suggest that CACHD1 is structurally an α2δ-like protein that functionally modulates CaV3 voltage-gated calcium channel activity.SIGNIFICANCE STATEMENT This is the first study to characterize the Ca2+ channel and chemotaxis receptor domain containing 1 (CACHD1) protein. CACHD1 is widely expressed in the CNS, in particular in the thalamus, hippocampus, and cerebellum. CACHD1 distribution is similar to that of low voltage-activated (CaV3, T-type) calcium channels, in particular to CaV3.1, a protein that regulates neuronal excitability and is a potential therapeutic target in conditions such as epilepsy and pain. CACHD1 is structurally an α2δ-like protein that functionally increases CaV3 calcium current. CACHD1 increases the presence of CaV3.1 at the cell surface, forms complexes with CaV3.1 at the cell surface, and causes an increase in channel open probability. In hippocampal neurons, CACHD1 causes increases in neuronal firing. Thus, CACHD1 represents a novel protein that modulates CaV3 activity.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo T/biosíntesis , Hipocampo/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Canales de Calcio Tipo L/química , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo T/química , Canales de Calcio Tipo T/genética , Femenino , Células HEK293 , Humanos , Masculino , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratas , Ratas Wistar
3.
Handb Exp Pharmacol ; 255: 37-64, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30151722

RESUMEN

Calcitonin gene-related peptide (CGRP) is a promiscuous peptide, similar to many other members of the calcitonin family of peptides. The potential of CGRP to act on many different receptors with differing affinities and efficacies makes deciphering the signalling from the CGRP receptor a challenging task for researchers.Although it is not a typical G protein-coupled receptor (GPCR), in that it is composed not just of a GPCR, the CGRP receptor activates many of the same signalling pathways common for other GPCRs. This includes the family of G proteins and a variety of protein kinases and transcription factors. It is now also clear that in addition to the initiation of cell-surface signalling, GPCRs, including the CGRP receptor, also activate distinct signalling pathways as the receptor is trafficking along the endocytic conduit.Given CGRP's characteristic of activating multiple GPCRs, we will first consider the complex of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1) as the CGRP receptor. We will discuss the discovery of the CGRP receptor components, the molecular mechanisms controlling its internalization and post-endocytic trafficking (recycling and degradation) and the diverse signalling cascades that are elicited by this receptor in model cell lines. We will then discuss CGRP-mediated signalling pathways in primary cells pertinent to migraine including neurons, glial cells and vascular smooth muscle cells.Investigation of all the CGRP- and CGRP receptor-mediated signalling cascades is vital if we are to fully understand CGRP's role in migraine and will no doubt unearth new targets for the treatment of migraine and other CGRP-driven diseases.


Asunto(s)
Neuronas , Receptores de Péptido Relacionado con el Gen de Calcitonina , Proteína Similar al Receptor de Calcitonina/genética , Proteína Similar al Receptor de Calcitonina/metabolismo , Neuroglía , Receptores de Péptido Relacionado con el Gen de Calcitonina/genética , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo , Transducción de Señal
4.
Biochim Biophys Acta ; 1863(12): 3084-3095, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27669113

RESUMEN

A distinct feature of the Toll-like receptor 4 (TLR4) is its ability to trigger both MyD88-dependent and MyD88-independent signalling, culminating in activation of pro-inflammatory NF-κB and/or the antiviral IRF3. Although TLR4 agonists (lipopolysaccharides; LPSs) derived from different bacterial species have different endotoxic activity, the impact of LPS chemotype on the downstream signalling is not fully understood. Notably, different TLR4 agonists exhibit anti-tumoural activity in animal models of glioma, but the underlying molecular mechanisms are largely unknown. Thus, we investigated the impact of LPS chemotype on the signalling events in the human glioma cell line U251. We found that LPS of Escherichia coli origin (LPSEC) leads to NF-κB-biased downstream signalling compared to Salmonella minnesota-derived LPS (LPSSM). Exposure of U251 cells to LPSEC resulted in faster nuclear translocation of the NF-κB subunit p65, higher NF-κB-activity and expression of its targets genes, and higher amount of secreted IL-6 compared to LPSSM. Using super-resolution microscopy we showed that the biased agonism of TLR4 in glioma cells is neither a result of differential regulation of receptor density nor of formation of higher order oligomers. Consistent with previous reports, LPSEC-mediated NF-κB activation led to significantly increased U251 proliferation, whereas LPSSM-induced IRF3 activity negatively influenced their invasiveness. Finally, treatment with methyl-ß-cyclodextrin (MCD) selectively increased LPSSM-induced nuclear translocation of p65 and NF-κB activity without affecting IRF3. Our data may explain how TLR4 agonists differently affect glioma cell proliferation and migration.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Lipopolisacáridos/farmacología , Neuroglía/efectos de los fármacos , Transducción de Señal/genética , Receptor Toll-Like 4/metabolismo , Factor de Transcripción ReIA/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Escherichia coli/química , Humanos , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolisacáridos/aislamiento & purificación , Microdominios de Membrana/química , Microdominios de Membrana/efectos de los fármacos , Neuroglía/metabolismo , Neuroglía/patología , Salmonella/química , Receptor Toll-Like 4/genética , Factor de Transcripción ReIA/genética , beta-Ciclodextrinas/farmacología
5.
Mediators Inflamm ; 2017: 6209865, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28790798

RESUMEN

Aberrant activation of the transcription factor NF-κB, as well as uncontrolled inflammation, has been linked to autoimmune diseases, development and progression of cancer, and neurological disorders like Alzheimer's disease. Reporter cell lines are a valuable state-of-the art tool for comparative analysis of in vitro drug screening. However, a reporter cell line for the investigation of NF-κB-driven neuroinflammation has not been available. Thus, we developed a stable neural NF-κB-reporter cell line to assess the potency of proinflammatory molecules and peptides, as well as anti-inflammatory pharmaceuticals. We used lentivirus to transduce the glioma cell line U251-MG with a tandem NF-κB reporter construct containing GFP and firefly luciferase allowing an assessment of NF-κB activity via fluorescence microscopy, flow cytometry, and luminometry. We observed a robust activation of NF-κB after exposure of the reporter cell line to tumour necrosis factor alpha (TNFα) and amyloid-ß peptide [1-42] as well as to LPS derived from Salmonella minnesota and Escherichia coli. Finally, we demonstrate that the U251-NF-κB-GFP-Luc reporter cells can be used for assessing the anti-inflammatory potential of pharmaceutical compounds using Bay11-7082 and IMD0354. In summary, our newly generated cell line is a robust and cost-efficient tool to study pro- and anti-inflammatory potential of drugs and biologics in neural cells.


Asunto(s)
Inflamación/metabolismo , FN-kappa B/metabolismo , Benzamidas/farmacología , Línea Celular , Escherichia coli/inmunología , Citometría de Flujo , Regulación de la Expresión Génica , Humanos , Inmunohistoquímica , Inflamación/inmunología , Nitrilos/farmacología , Salmonella/inmunología , Sulfonas/farmacología
6.
J Biol Chem ; 288(32): 22942-60, 2013 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-23818521

RESUMEN

TGR5 is a G protein-coupled receptor that mediates bile acid (BA) effects on energy balance, inflammation, digestion, and sensation. The mechanisms and spatiotemporal control of TGR5 signaling are poorly understood. We investigated TGR5 signaling and trafficking in transfected HEK293 cells and colonocytes (NCM460) that endogenously express TGR5. BAs (deoxycholic acid (DCA), taurolithocholic acid) and the selective agonists oleanolic acid and 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N, 5-dimethylisoxazole-4-carboxamide stimulated cAMP formation but did not induce TGR5 endocytosis or recruitment of ß-arrestins, as assessed by confocal microscopy. DCA, taurolithocholic acid, and oleanolic acid did not stimulate TGR5 association with ß-arrestin 1/2 or G protein-coupled receptor kinase (GRK) 2/5/6, as determined by bioluminescence resonance energy transfer. 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N, 5-dimethylisoxazole-4-carboxamide stimulated a low level of TGR5 interaction with ß-arrestin 2 and GRK2. DCA induced cAMP formation at the plasma membrane and cytosol, as determined using exchange factor directly regulated by cAMP (Epac2)-based reporters, but cAMP signals did not desensitize. AG1478, an inhibitor of epidermal growth factor receptor tyrosine kinase, the metalloprotease inhibitor batimastat, and methyl-ß-cyclodextrin and filipin, which block lipid raft formation, prevented DCA stimulation of ERK1/2. Bioluminescence resonance energy transfer analysis revealed TGR5 and EGFR interactions that were blocked by disruption of lipid rafts. DCA stimulated TGR5 redistribution to plasma membrane microdomains, as localized by immunogold electron microscopy. Thus, TGR5 does not interact with ß-arrestins, desensitize, or traffic to endosomes. TGR5 signals from plasma membrane rafts that facilitate EGFR interaction and transactivation. An understanding of the spatiotemporal control of TGR5 signaling provides insights into the actions of BAs and therapeutic TGR5 agonists/antagonists.


Asunto(s)
Arrestinas/metabolismo , Endocitosis/fisiología , Endosomas/metabolismo , Microdominios de Membrana/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Antineoplásicos/farmacología , Arrestinas/antagonistas & inhibidores , Arrestinas/genética , Colagogos y Coleréticos/farmacología , AMP Cíclico/genética , AMP Cíclico/metabolismo , Ácido Desoxicólico/farmacología , Endocitosis/efectos de los fármacos , Endosomas/genética , Inhibidores Enzimáticos/farmacología , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Quinasa 2 del Receptor Acoplado a Proteína-G/genética , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Quinasa 5 del Receptor Acoplado a Proteína-G/genética , Quinasa 5 del Receptor Acoplado a Proteína-G/metabolismo , Células HEK293 , Humanos , Microdominios de Membrana/genética , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Ácido Oleanólico/farmacología , Fenilalanina/análogos & derivados , Fenilalanina/farmacología , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , Quinazolinas/farmacología , Receptores Acoplados a Proteínas G/genética , Tiofenos/farmacología , Tirfostinos/farmacología , beta-Arrestina 1 , Arrestina beta 2 , beta-Arrestinas , beta-Ciclodextrinas/farmacología
7.
Int J Mol Sci ; 15(1): 1112-42, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24441568

RESUMEN

G protein-coupled receptors (GPCRs) are important cell signaling mediators, involved in essential physiological processes. GPCRs respond to a wide variety of ligands from light to large macromolecules, including hormones and small peptides. Unfortunately, mutations and dysregulation of GPCRs that induce a loss of function or alter expression can lead to disorders that are sometimes lethal. Therefore, the expression, trafficking, signaling and desensitization of GPCRs must be tightly regulated by different cellular systems to prevent disease. Although there is substantial knowledge regarding the mechanisms that regulate the desensitization and down-regulation of GPCRs, less is known about the mechanisms that regulate the trafficking and cell-surface expression of newly synthesized GPCRs. More recently, there is accumulating evidence that suggests certain GPCRs are able to interact with specific proteins that can completely change their fate and function. These interactions add on another level of regulation and flexibility between different tissue/cell-types. Here, we review some of the main interacting proteins of GPCRs. A greater understanding of the mechanisms regulating their interactions may lead to the discovery of new drug targets for therapy.


Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , Animales , Membrana Celular/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Unión Proteica , Transporte de Proteínas , Proteínas de Transporte Vesicular/metabolismo
8.
Stem Cell Res Ther ; 14(1): 111, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37138298

RESUMEN

BACKGROUND: The last decade has seen a significant increase in media attention, industrial growth, and patient interest in stem cell-based interventions. This led to a rise in direct-to-consumer businesses offering stem cell "therapies" for multiple indications with little evidence of safety and efficacy. In parallel, the use of stem cell secretomes as a substitute for stem cell transplantation has become an increasing trend in regenerative medicine with multiple clinical trials currently assessing their efficacy and safety profile. As a result, multiple businesses and private clinics have now started to exploit this situation and are offering secretome-based interventions despite the lack of supporting data. This poses significant risks for the patients and could lead to a credibility crisis in the field. METHODS: Internet searches were used to locate clinics marketing and selling interventions based on stem cell secretomes, exosomes, or extracellular vesicles. Data were extracted from websites with a particular focus on the global distribution of the businesses, the cellular source of the secretome, the indication spectrum, and the pricing of the provided services. Lastly, the types of evidence used on the websites of the businesses to market their services were extracted. RESULTS: Overall, 114 companies market secretome-based therapies in 28 countries. The vast majority of the interventions are based on allogenic stem cells from undisclosed cellular sources and skin care is the most marketed indication. The price range is USD99-20,000 depending on the indication. CONCLUSIONS: The direct-to-consumer industry for secretome-based therapies appears to be primed for growth in the absence of appropriate regulatory frameworks and guidelines. We conclude that such business activity requires tight regulations and monitoring by the respective national regulatory bodies to prevent patients from being conned and more importantly from being put at risk.


Asunto(s)
Exosomas , Vesículas Extracelulares , Humanos , Secretoma , Medicina Regenerativa , Células Madre
9.
Proc Natl Acad Sci U S A ; 106(42): 17615-22, 2009 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-19822761

RESUMEN

Although long regarded as a conduit for the degradation or recycling of cell surface receptors, the endosomal system is also an essential site of signal transduction. Activated receptors accumulate in endosomes, and certain signaling components are exclusively localized to endosomes. Receptors can continue to transmit signals from endosomes that are different from those that arise from the plasma membrane, resulting in distinct physiological responses. Endosomal signaling is widespread in metazoans and plants, where it transmits signals for diverse receptor families that regulate essential processes including growth, differentiation and survival. Receptor signaling at endosomal membranes is tightly regulated by mechanisms that control agonist availability, receptor coupling to signaling machinery, and the subcellular localization of signaling components. Drugs that target mechanisms that initiate and terminate receptor signaling at the plasma membrane are widespread and effective treatments for disease. Selective disruption of receptor signaling in endosomes, which can be accomplished by targeting endosomal-specific signaling pathways or by selective delivery of drugs to the endosomal network, may provide novel therapies for disease.


Asunto(s)
Endosomas/fisiología , Transducción de Señal/fisiología , Animales , Endocitosis/fisiología , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Modelos Biológicos , Péptido Hidrolasas/fisiología , Proteínas Tirosina Quinasas Receptoras/fisiología , Receptores Acoplados a Proteínas G/fisiología , Receptores Toll-Like/fisiología , Ubiquitinación/fisiología
10.
Biophys Chem ; 290: 106891, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36137310

RESUMEN

The COVID-19 pandemic created an unprecedented global healthcare emergency prompting the exploration of new therapeutic avenues, including drug repurposing. A large number of ongoing studies revealed pervasive issues in clinical research, such as the lack of accessible and organised data. Moreover, current shortcomings in clinical studies highlighted the need for a multi-faceted approach to tackle this health crisis. Thus, we set out to explore and develop new strategies for drug repositioning by employing computational pharmacology, data mining, systems biology, and computational chemistry to advance shared efforts in identifying key targets, affected networks, and potential pharmaceutical intervention options. Our study revealed that formulating pharmacological strategies should rely on both therapeutic targets and their networks. We showed how data mining can reveal regulatory patterns, capture novel targets, alert about side-effects, and help identify new therapeutic avenues. We also highlighted the importance of the miRNA regulatory layer and how this information could be used to monitor disease progression or devise treatment strategies. Importantly, our work bridged the interactome with the chemical compound space to better understand the complex landscape of COVID-19 drugs. Machine and deep learning allowed us to showcase limitations in current chemical libraries for COVID-19 suggesting that both in silico and experimental analyses should be combined to retrieve therapeutically valuable compounds. Based on the gathered data, we strongly advocate for taking this opportunity to establish robust practices for treating today's and future infectious diseases by preparing solid analytical frameworks.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , MicroARNs , Humanos , Pandemias , Preparaciones Farmacéuticas , Bibliotecas de Moléculas Pequeñas
11.
Front Physiol ; 13: 1033216, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36589427

RESUMEN

There is strong evidence that the omega-3 polyunsaturated fatty acids (n-3 PUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) have cardioprotective effects. n-3 PUFAs cause vasodilation in hypertensive patients, in part controlled by increased membrane conductance to potassium. As KATP channels play a major role in vascular tone regulation and are involved in hypertension, we aimed to verify whether n-3 PUFA-mediated vasodilation involved the opening of KATP channels. We used a murine model in which the KATP channel pore subunit, Kir6.1, is deleted in vascular smooth muscle. The vasomotor response of preconstricted arteries to physiologically relevant concentrations of DHA and EPA was measured using wire myography, using the channel blocker PNU-37883A. The effect of n-3 PUFAs on potassium currents in wild-type native smooth muscle cells was investigated using whole-cell patch clamping. DHA and EPA induced vasodilation in mouse aorta and mesenteric arteries; relaxations in the aorta were sensitive to KATP blockade with PNU-37883A. Endothelium removal didn't affect relaxation to EPA and caused a small but significant inhibition of relaxation to DHA. In the knock-out model, relaxations to DHA and EPA were unaffected by channel knockdown but were still inhibited by PNU-37883A, indicating that the action of PNU-37883A on relaxation may not reflect inhibition of KATP. In native aortic smooth muscle cells DHA failed to activate KATP currents. We conclude that DHA and EPA cause vasodilation in mouse aorta and mesenteric arteries. Relaxations in blocker-treated arteries from knock-out mice demonstrate that KATP channels are not involved in the n-3 PUFA-induced relaxation.

12.
Am J Physiol Cell Physiol ; 301(4): C780-91, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21795521

RESUMEN

Activated G protein-coupled receptors (GPCRs) are phosphorylated and interact with ß-arrestins, which mediate desensitization and endocytosis. Endothelin-converting enzyme-1 (ECE-1) degrades neuropeptides in endosomes and can promote recycling. Although endocytosis, dephosphorylation, and recycling are accepted mechanisms of receptor resensitization, a large proportion of desensitized receptors can remain at the cell surface. We investigated whether reactivation of noninternalized, desensitized (phosphorylated) receptors mediates resensitization of the substance P (SP) neurokinin 1 receptor (NK(1)R). Herein, we report a novel mechanism of resensitization by which protein phosphatase 2A (PP2A) is recruited to dephosphorylate noninternalized NK(1)R. A desensitizing concentration of SP reduced cell-surface SP binding sites by only 25%, and SP-induced Ca(2+) signals were fully resensitized before cell-surface binding sites started to recover, suggesting resensitization of cell-surface-retained NK(1)R. SP induced association of ß-arrestin1 and PP2A with noninternalized NK(1)R. ß-Arrestin1 small interfering RNA knockdown prevented SP-induced association of cell-surface NK(1)R with PP2A, indicating that ß-arrestin1 mediates this interaction. ECE-1 inhibition, by trapping ß-arrestin1 in endosomes, also impeded SP-induced association of cell-surface NK(1)R with PP2A. Resensitization of NK(1)R signaling required both PP2A and ECE-1 activity. Thus, after stimulation with SP, PP2A interacts with noninternalized NK(1)R and mediates resensitization. PP2A interaction with NK(1)R requires ß-arrestin1. ECE-1 promotes this process by releasing ß-arrestin1 from NK(1)R in endosomes. These findings represent a novel mechanism of PP2A- and ECE-1-dependent resensitization of GPCRs.


Asunto(s)
Membrana Celular/fisiología , Regulación de la Expresión Génica/fisiología , Proteína Fosfatasa 2/metabolismo , Receptores de Neuroquinina-1/metabolismo , Bacteriocinas , Humanos , Indoles/farmacología , Maleimidas/farmacología , Péptidos , Isoformas de Proteínas , Proteína Quinasa C/antagonistas & inhibidores , Proteína Fosfatasa 2/genética , Receptores Acoplados a Proteínas G , Receptores de Neuroquinina-1/genética , Transducción de Señal
13.
J Physiol ; 589(Pt 21): 5213-30, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21878523

RESUMEN

Neuropeptide signalling at the plasma membrane is terminated by neuropeptide degradation by cell-surface peptidases, and by ß-arrestin-dependent receptor desensitization and endocytosis. However, receptors continue to signal from endosomes by ß-arrestin-dependent processes, and endosomal sorting mediates recycling and resensitization of plasma membrane signalling. The mechanisms that control signalling and trafficking of receptors in endosomes are poorly defined. We report a major role for endothelin-converting enzyme-1 (ECE-1) in controlling substance P (SP) and the neurokinin 1 receptor (NK(1)R) in endosomes of myenteric neurones. ECE-1 mRNA and protein were expressed by myenteric neurones of rat and mouse intestine. SP (10 nM, 10 min) induced interaction of NK(1)R and ß-arrestin at the plasma membrane, and the SP-NK(1)R-ß-arrestin signalosome complex trafficked by a dynamin-mediated mechanism to ECE-1-containing early endosomes, where ECE-1 can degrade SP. After 120 min, NK(1)R recycled from endosomes to the plasma membrane. ECE-1 inhibitors (SM-19712, PD-069185) and the vacuolar H(+)ATPase inhibitor bafilomycin A(1), which prevent endosomal SP degradation, suppressed NK(1)R recycling by >50%. Preincubation of neurones with SP (10 nM, 5 min) desensitized Ca(2+) transients to a second SP challenge after 10 min, and SP signals resensitized after 60 min. SM-19712 inhibited NK(1)R resensitization by >90%. ECE-1 inhibitors also caused sustained SP-induced activation of extracellular signal-regulated kinases, consistent with stabilization of the SP-NK(1)R-ß-arrestin signalosome. By degrading SP and destabilizing endosomal signalosomes, ECE-1 has a dual role in controlling endocytic signalling and trafficking of the NK(1)R: promoting resensitization of G protein-mediated plasma membrane signalling, and terminating ß-arrestin-mediated endosomal signalling.


Asunto(s)
Ácido Aspártico Endopeptidasas/metabolismo , Endosomas/metabolismo , Metaloendopeptidasas/metabolismo , Plexo Mientérico/metabolismo , Neuronas/metabolismo , Receptores de Neuroquinina-1/metabolismo , Animales , Arrestinas/metabolismo , Calcio/metabolismo , Membrana Celular/metabolismo , Colon/metabolismo , Enzimas Convertidoras de Endotelina , Femenino , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Humanos , Íleon/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Sustancia P/metabolismo , beta-Arrestinas
14.
Stem Cell Res Ther ; 12(1): 31, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33413646

RESUMEN

As populations age across the world, osteoporosis and osteoporosis-related fractures are becoming the most prevalent degenerative bone diseases. More than 75 million patients suffer from osteoporosis in the USA, the EU and Japan. Furthermore, it is anticipated that the number of patients affected by osteoporosis will increase by a third by 2050. Although conventional therapies including bisphosphonates, calcitonin and oestrogen-like drugs can be used to treat degenerative diseases of the bone, they are often associated with serious side effects including the development of oesophageal cancer, ocular inflammation, severe musculoskeletal pain and osteonecrosis of the jaw.The use of autologous mesenchymal stromal cells/mesenchymal stem cells (MSCs) is a possible alternative therapeutic approach to tackle osteoporosis while overcoming the limitations of traditional treatment options. However, osteoporosis can cause a decrease in the numbers of MSCs, induce their senescence and lower their osteogenic differentiation potential.Three-dimensional (3D) cell culture is an emerging technology that allows a more physiological expansion and differentiation of stem cells compared to cultivation on conventional flat systems.This review will discuss current understanding of the effects of different 3D cell culture systems on proliferation, viability and osteogenic differentiation, as well as on the immunomodulatory and anti-inflammatory potential of MSCs.


Asunto(s)
Células Madre Mesenquimatosas , Regeneración Ósea , Técnicas de Cultivo de Célula , Diferenciación Celular , Células Cultivadas , Humanos , Osteogénesis
15.
Br J Pharmacol ; 178(4): 860-877, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33283269

RESUMEN

Hypertension is often characterised by impaired vasodilation involving dysfunction of multiple vasodilatory mechanisms. ω-3 polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) can reduce blood pressure and vasodilation. In the endothelium, DHA and EPA improve function including increased NO bioavailability. However, animal studies show that DHA- and EPA-mediated vasodilation persists after endothelial removal, indicating a role for vascular smooth muscle cells (VSMCs). The vasodilatory effects of ω-3 PUFAs on VSMCs are mediated via opening of large conductance calcium-activated potassium channels (BKCa ), ATP-sensitive potassium channels (KATP ) and possibly members of the Kv 7 family of voltage-activated potassium channels, resulting in hyperpolarisation and relaxation. ω-3 PUFA actions on BKCa and voltage-gated ion channels involve electrostatic interactions that are dependent on the polyunsaturated acyl tail, cis-geometry of these double bonds and negative charge of the carboxyl headgroup. This suggests structural manipulation of ω-3 PUFA could generate novel, targeted, therapeutic leads.


Asunto(s)
Ácidos Grasos Omega-3 , Hipertensión , Animales , Ácidos Docosahexaenoicos , Ácido Eicosapentaenoico , Vasodilatación
16.
Biophys Rep (N Y) ; 1(2): 100028, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36425454

RESUMEN

Epigenetic research holds great promise to advance our understanding of biomarkers and regulatory processes in health and disease. An increasing number of new approaches, ranging from molecular to biophysical analyses, enable identifying epigenetic changes on the level of a single gene or the whole epigenome. The aim of this review is to highlight how the field is shifting from completely molecular-biology-driven solutions to multidisciplinary strategies including more reliance on biophysical analysis tools. Biophysics not only offers technical advancements in imaging or structure analysis but also helps to explore regulatory interactions. New computational methods are also being developed to meet the demand of growing data volumes and their processing. Therefore, it is important to capture these new directions in epigenetics from a biophysical perspective and discuss current challenges as well as multiple applications of biophysical methods and tools. Specifically, we gradually introduce different biophysical research methods by first considering the DNA-level information and eventually higher-order chromatin structures. Moreover, we aim to highlight that the incorporation of bioinformatics, machine learning, and artificial intelligence into biophysical analysis allows gaining new insights into complex epigenetic processes. The gained understanding has already proven useful in translational and clinical research providing better patient stratification options or new therapeutic insights. Together, this offers a better readiness to transform bench-top experiments into industrial high-throughput applications with a possibility to employ developed methods in clinical practice and diagnostics.

17.
Biomolecules ; 11(10)2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34680033

RESUMEN

Adipose-derived mesenchymal stromal cells (ASCs) are multipotent stem cells which can differentiate into various cell types, including osteocytes and adipocytes. Due to their ease of harvesting, multipotency, and low tumorigenicity, they are a prime candidate for the development of novel interventional approaches in regenerative medicine. ASCs exhibit slow, spontaneous Ca2+ oscillations and the manipulation of Ca2+ signalling via electrical stimulation was proposed as a potential route for promoting their differentiation in vivo. However, the effects of differentiation-inducing treatments on spontaneous Ca2+ oscillations in ASCs are not yet fully characterised. In this study, we used 2-photon live Ca2+ imaging to assess the fraction of cells showing spontaneous oscillations and the frequency of the oscillation (measured as interpeak interval-IPI) in ASCs undergoing osteogenic or adipogenic differentiation, using undifferentiated ASCs as controls. The measurements were carried out at 7, 14, and 21 days in vitro (DIV) to assess the effect of time in culture on Ca2+ dynamics. We observed that both time and differentiation treatment are important factors associated with a reduced fraction of cells showing Ca2+ oscillations, paralleled by increased IPI times, in comparison with untreated ASCs. Both adipogenic and osteogenic differentiation resulted in a reduction in Ca2+ dynamics, such as the fraction of cells showing intracellular Ca2+ oscillations and their frequency. Adipogenic differentiation was associated with a more pronounced reduction of Ca2+ dynamics compared to cells differentiating towards the osteogenic fate. Changes in Ca2+ associated oscillations with a specific treatment had already occurred at 7 DIV. Finally, we observed a reduction in Ca2+ dynamics over time in untreated ASCs. These data suggest that adipogenic and osteogenic differentiation cell fates are associated with specific changes in spontaneous Ca2+ dynamics over time. While this observation is interesting and provides useful information to understand the functional correlates of stem cell differentiation, further studies are required to clarify the molecular and mechanistic correlates of these changes. This will allow us to better understand the causal relationship between Ca2+ dynamics and differentiation, potentially leading to the development of novel, more effective interventions for both bone regeneration and control of adipose growth.


Asunto(s)
Adipogénesis/genética , Diferenciación Celular/genética , Células Madre Mesenquimatosas/citología , Osteogénesis/genética , Adipocitos/citología , Calcio/metabolismo , Señalización del Calcio/genética , Línea Celular , Linaje de la Célula/genética , Humanos , Células Madre Mesenquimatosas/metabolismo , Osteocitos/citología , Medicina Regenerativa
18.
Cell Calcium ; 93: 102326, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33360835

RESUMEN

SUMOylation is an important post-translational modification process involving covalent attachment of SUMO (Small Ubiquitin-like MOdifier) protein to target proteins. Here, we investigated the potential for SUMO-1 protein to modulate the function of the CaV2.2 (N-type) voltage-gated calcium channel (VGCC), a protein vital for presynaptic neurotransmitter release. Co-expression of SUMO-1, but not the conjugation-deficient mutant SUMO-1ΔGG, increased heterologously-expressed CaV2.2 Ca2+ current density, an effect potentiated by the conjugating enzyme Ubc9. Expression of sentrin-specific protease (SENP)-1 or Ubc9 alone, had no effect on recombinant CaV2.2 channels. Co-expression of SUMO-1 and Ubc9 caused an increase in whole-cell maximal conductance (Gmax) and a hyperpolarizing shift in the midpoint of activation (V1/2). Mutation of all five CaV2.2 lysine residues to arginine within the five highest probability (>65 %) SUMOylation consensus motifs (SCMs) (construct CaV2.2-Δ5KR), produced a loss-of-function mutant. Mutagenesis of selected individual lysine residues identified K394, but not K951, as a key residue for SUMO-1-mediated increase in CaV2.2 Ca2+ current density. In synaptically-coupled superior cervical ganglion (SCG) neurons, SUMO-1 protein was distributed throughout the cell body, axons and dendrites and presumptive presynaptic terminals, whilst SUMO-1ΔGG protein was largely confined to the cell body, in particular, the nucleus. SUMO-1 expression caused increases in paired excitatory postsynaptic potential (EPSP) ratio at short (20-120 ms) inter-stimuli intervals in comparison to SUMO-1ΔGG, consistent with an increase in residual presynaptic Ca2+ current and an increase in release probability of synaptic vesicles. Together, these data provide evidence for CaV2.2 VGCCs as novel targets for SUMOylation pathways.


Asunto(s)
Canales de Calcio Tipo N/metabolismo , Transducción de Señal , Sumoilación , Animales , Fenómenos Biofísicos , Potenciales Postsinápticos Excitadores , Femenino , Células HEK293 , Humanos , Mutación con Pérdida de Función/genética , Lisina/genética , Masculino , Proteínas Mutantes/metabolismo , Ratas Wistar , Proteínas Recombinantes/metabolismo , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Ganglio Cervical Superior/citología , Enzimas Ubiquitina-Conjugadoras/metabolismo
19.
J Biol Chem ; 284(41): 28453-28466, 2009 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-19684015

RESUMEN

The E3 ubiquitin ligase c-Cbl ubiquitinates the G protein-coupled receptor protease-activated receptor 2 (PAR(2)), which is required for postendocytic sorting of activated receptors to lysosomes, where degradation terminates signaling. The mechanisms of PAR(2) deubiquitination and its importance in trafficking and signaling of endocytosed PAR(2) are unknown. We report that receptor deubiquitination occurs between early endosomes and lysosomes and involves the endosomal deubiquitinating proteases AMSH and UBPY. Expression of the catalytically inactive mutants, AMSH(D348A) and UBPY(C786S), caused an increase in PAR(2) ubiquitination and trapped the receptor in early endosomes, thereby preventing lysosomal trafficking and degradation. Small interfering RNA knockdown of AMSH or UBPY also impaired deubiquitination, lysosomal trafficking, and degradation of PAR(2). Trapping PAR(2) in endosomes through expression of AMSH(D348A) or UBPY(C786S) did not prolong the association of PAR(2) with beta-arrestin2 or the duration of PAR(2)-induced ERK2 activation. Thus, AMSH and UBPY are essential for trafficking and down-regulation of PAR(2) but not for regulating PAR(2) dissociation from beta-arrestin2 or PAR(2)-mediated ERK2 activation.


Asunto(s)
Regulación hacia Abajo , Endopeptidasas/metabolismo , Endosomas/enzimología , Receptor PAR-2/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación , Animales , Arrestinas/metabolismo , Línea Celular , Endocitosis/fisiología , Endopeptidasas/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte , Activación Enzimática , Humanos , Lisosomas/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Elastasa Pancreática/metabolismo , Transporte de Proteínas/fisiología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptor PAR-2/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Tripsina/metabolismo , Ubiquitina Tiolesterasa/genética , beta-Arrestinas
20.
Anesthesiology ; 112(6): 1452-63, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20463581

RESUMEN

BACKGROUND: Volatile anesthetics such as isoflurane and halothane have been in clinical use for many years and represent the group of drugs most commonly used to maintain general anesthesia. However, despite their widespread use, the molecular mechanisms by which these drugs exert their effects are not completely understood. Recently, a seemingly paradoxical effect of general anesthetics has been identified: the activation of peripheral nociceptors by irritant anesthetics. This mechanism may explain the hyperalgesic actions of inhaled anesthetics and their adverse effects in the airways. METHODS: To test the hypothesis that irritant inhaled anesthetics activate the excitatory ion-channel transient receptor potential (TRP)-A1 and thereby contribute to hyperalgesia and irritant airway effects, we used the measurement of intracellular calcium concentration in isolated cells in culture. For our functional experiments, we used models of isolated guinea pig bronchi to measure bronchoconstriction and withdrawal threshold to mechanical stimulation with von Frey filaments in mice. RESULTS: Irritant inhaled anesthetics activate TRPA1 expressed in human embryonic kidney cells and in nociceptive neurons. Isoflurane induces mechanical hyperalgesia in mice by a TRPA1-dependent mechanism. Isoflurane also induces TRPA1-dependent constriction of isolated bronchi. Nonirritant anesthetics do not activate TRPA1 and fail to produce hyperalgesia and bronchial constriction. CONCLUSIONS: General anesthetics induce a reversible loss of consciousness and render the patient unresponsive to painful stimuli. However, they also produce excitatory effects such as airway irritation and they contribute to postoperative pain. Activation of TRPA1 may contribute to these adverse effects, a hypothesis that remains to be tested in the clinical setting.


Asunto(s)
Anestésicos Generales/farmacología , Broncoconstricción/fisiología , Hiperalgesia/metabolismo , Canales de Potencial de Receptor Transitorio/fisiología , Anestésicos Generales/toxicidad , Animales , Broncoconstricción/efectos de los fármacos , Línea Celular , Cobayas , Humanos , Hiperalgesia/inducido químicamente , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Canal Catiónico TRPA1 , Canales de Potencial de Receptor Transitorio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA