Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Blood ; 128(6): 774-82, 2016 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-27121472

RESUMEN

Prognosis of Philadelphia-positive (Ph(+)) acute lymphoblastic leukemia (ALL) in the elderly has improved during the imatinib era. We investigated dasatinib, another potent tyrosine kinase inhibitor, in combination with low-intensity chemotherapy. Patients older than age 55 years were included in the European Working Group on Adult ALL (EWALL) study number 01 for Ph(+) ALL (EWALL-PH-01 international study) and were treated with dasatinib 140 mg/day (100 mg/day over 70 years) with intrathecal chemotherapy, vincristine, and dexamethasone during induction. Patients in complete remission continued consolidation with dasatinib, sequentially with cytarabine, asparaginase, and methotrexate for 6 months. Maintenance therapy was dasatinib and vincristine/dexamethasone reinductions for 18 months followed by dasatinib until relapse or death. Seventy-one patients with a median age of 69 years were enrolled; 77% had a high comorbidity score. Complete remission rate was 96% and 65% of patients achieved a 3-log reduction in BCR-ABL1 transcript levels during consolidation. Only 7 patients underwent allogeneic hematopoietic stem cell transplantation. At 5 years, overall survival was 36% and up to 45% taking into account deaths unrelated to disease or treatment as competitors. Thirty-six patients relapsed, 24 were tested for mutation by Sanger sequencing, and 75% were T315I-positive. BCR-ABL1(T315I) was tested by allele-specific oligonucleotide reverse transcription-quantitative polymerase chain reaction in 43 patients and detection was associated with short-term relapses. Ten patients (23%) were positive before any therapy and 8 relapsed, all with this mutation. In conclusion, dasatinib combined with low-intensity chemotherapy was well-tolerated and gave long-term survival in 36% of elderly patients with Ph(+) ALL. Monitoring of BCR-ABL1(T315I) from diagnosis identified patients with at high risk of early relapse and may help to personalize therapy.


Asunto(s)
Antineoplásicos/uso terapéutico , Dasatinib/uso terapéutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Anciano , Anciano de 80 o más Años , Antineoplásicos/efectos adversos , Dasatinib/efectos adversos , Femenino , Proteínas de Fusión bcr-abl/genética , Humanos , Masculino , Persona de Mediana Edad , Mutación , Cromosoma Filadelfia/efectos de los fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Pronóstico , Estudios Prospectivos , Inhibidores de Proteínas Quinasas/efectos adversos
3.
Biomedicines ; 9(11)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34829934

RESUMEN

BET inhibitors (BETi) including OTX015 (MK-8628) and JQ1 demonstrated antileukemic activity including NPM1c AML cells. Nevertheless, the biological consequences of BETi in NPM1c AML were not fully investigated. Even if of better prognosis AML patients with NPM1c may relapse and treatment remains difficult. Differentiation-based therapy by all trans retinoic acid (ATRA) combined with arsenic trioxide (ATO) demonstrated activity in NPM1c AML. We found that BETi, similar to ATO + ATRA, induced differentiation and apoptosis which was TP53 independent in the NPM1c cell line OCI-AML3 and primary cells. Furthermore, BETi induced proteasome-dependent degradation of NPM1c. BETi degraded NPM1c in the cytosol while BRD4 is degraded in the nucleus which suggests that restoration of the NPM1/BRD4 equilibrium in the nucleus of NPM1c cells is essential for the efficacy of BETi. While ATO + ATRA had significant biological activity in NPM1c IMS-M2 cell line, those cells were resistant to BETi. Gene profiling revealed that IMS-M2 cells probably resist to BETi by upregulation of LSC pathways independently of the downregulation of a core BET-responsive transcriptional program. ATO + ATRA downregulated a NPM1c specific HOX gene signature while anti-leukemic effects of BETi appear HOX gene independent. Our preclinical results encourage clinical testing of BETi in NPM1c AML patients.

5.
Oncotarget ; 6(19): 17698-712, 2015 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-25989842

RESUMEN

The bromodomain (BRD) and extraterminal (BET) proteins including BRD2, BRD3 and BRD4 have been identified as key targets for leukemia maintenance. A novel oral inhibitor of BRD2/3/4, the thienotriazolodiazepine compound OTX015, suitable for human use, is available. Here we report its biological effects in AML and ALL cell lines and leukemic samples. Exposure to OTX015 lead to cell growth inhibition, cell cycle arrest and apoptosis at submicromolar concentrations in acute leukemia cell lines and patient-derived leukemic cells, as described with the canonical JQ1 BET inhibitor. Treatment with JQ1 and OTX15 induces similar gene expression profiles in sensitive cell lines, including a c-MYC decrease and an HEXIM1 increase. OTX015 exposure also induced a strong decrease of BRD2, BRD4 and c-MYC and increase of HEXIM1 proteins, while BRD3 expression was unchanged. c-MYC, BRD2, BRD3, BRD4 and HEXIM1 mRNA levels did not correlate however with viability following exposure to OTX015. Sequential combinations of OTX015 with other epigenetic modifying drugs, panobinostat and azacitidine have a synergic effect on growth of the KASUMI cell line. Our results indicate that OTX015 and JQ1 have similar biological effects in leukemic cells, supporting OTX015 evaluation in a Phase Ib trial in relapsed/refractory leukemia patients.


Asunto(s)
Acetanilidas/farmacología , Antineoplásicos/farmacología , Compuestos Heterocíclicos con 3 Anillos/farmacología , Leucemia/patología , Proteínas Nucleares/biosíntesis , Proteínas Serina-Treonina Quinasas/biosíntesis , Proteínas Proto-Oncogénicas c-myc/biosíntesis , Factores de Transcripción/biosíntesis , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular , Línea Celular Tumoral , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Immunoblotting , Masculino , Proteínas Nucleares/efectos de los fármacos , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Serina-Treonina Quinasas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-myc/efectos de los fármacos , Proteínas de Unión al ARN/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción/efectos de los fármacos , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA