RESUMEN
Medulloblastoma (MB) comprises a group of heterogeneous paediatric embryonal neoplasms of the hindbrain with strong links to early development of the hindbrain1-4. Mutations that activate Sonic hedgehog signalling lead to Sonic hedgehog MB in the upper rhombic lip (RL) granule cell lineage5-8. By contrast, mutations that activate WNT signalling lead to WNT MB in the lower RL9,10. However, little is known about the more commonly occurring group 4 (G4) MB, which is thought to arise in the unipolar brush cell lineage3,4. Here we demonstrate that somatic mutations that cause G4 MB converge on the core binding factor alpha (CBFA) complex and mutually exclusive alterations that affect CBFA2T2, CBFA2T3, PRDM6, UTX and OTX2. CBFA2T2 is expressed early in the progenitor cells of the cerebellar RL subventricular zone in Homo sapiens, and G4 MB transcriptionally resembles these progenitors but are stalled in developmental time. Knockdown of OTX2 in model systems relieves this differentiation blockade, which allows MB cells to spontaneously proceed along normal developmental differentiation trajectories. The specific nature of the split human RL, which is destined to generate most of the neurons in the human brain, and its high level of susceptible EOMES+KI67+ unipolar brush cell progenitor cells probably predisposes our species to the development of G4 MB.
Asunto(s)
Diferenciación Celular , Neoplasias Cerebelosas , Meduloblastoma , Metencéfalo , Diferenciación Celular/genética , Linaje de la Célula , Neoplasias Cerebelosas/clasificación , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Cerebelo/embriología , Cerebelo/patología , Subunidades alfa del Factor de Unión al Sitio Principal/genética , Proteínas Hedgehog/metabolismo , Histona Demetilasas , Humanos , Antígeno Ki-67/metabolismo , Meduloblastoma/clasificación , Meduloblastoma/genética , Meduloblastoma/patología , Metencéfalo/embriología , Metencéfalo/patología , Proteínas Musculares , Mutación , Factores de Transcripción Otx/deficiencia , Factores de Transcripción Otx/genética , Proteínas Represoras , Proteínas de Dominio T Box/metabolismo , Factores de TranscripciónRESUMEN
OTX2 is a transcription factor and known driver in medulloblastoma (MB), where it is amplified in a subset of tumours and overexpressed in most cases of group 3 and group 4 MB. Here we demonstrate a noncanonical role for OTX2 in group 3 MB alternative splicing. OTX2 associates with the large assembly of splicing regulators complex through protein-protein interactions and regulates a stem cell splicing program. OTX2 can directly or indirectly bind RNA and this may be partially independent of its DNA regulatory functions. OTX2 controls a pro-tumorigenic splicing program that is mirrored in human cerebellar rhombic lip origins. Among the OTX2-regulated differentially spliced genes, PPHLN1 is expressed in the most primitive rhombic lip stem cells, and targeting PPHLN1 splicing reduces tumour growth and enhances survival in vivo. These findings identify OTX2-mediated alternative splicing as a major determinant of cell fate decisions that drive group 3 MB progression.
Asunto(s)
Empalme Alternativo , Neoplasias Cerebelosas , Meduloblastoma , Células Madre Neoplásicas , Factores de Transcripción Otx , Factores de Transcripción Otx/metabolismo , Factores de Transcripción Otx/genética , Meduloblastoma/genética , Meduloblastoma/patología , Meduloblastoma/metabolismo , Empalme Alternativo/genética , Humanos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Neoplasias Cerebelosas/metabolismo , Animales , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Ratones , Proliferación CelularRESUMEN
Sonic Hedgehog (SHH) medulloblastomas (MBs) exhibit an intermediate prognosis and extensive intertumoral heterogeneity. While SHH pathway antagonists are effective in post-pubertal patients, younger patients exhibit significant side effects, and tumors that harbor mutations in downstream SHH pathway genes will be drug resistant. Thus, novel targeted therapies are needed. Here, we performed preclinical testing of the potent MEK inhibitor (MEKi) trametinib on tumor properties across 2 human and 3 mouse SHH MB models in vitro and in 3 orthotopic MB xenograft models in vivo. Trametinib significantly reduces tumorsphere size, stem/progenitor cell proliferation, viability, and migration. RNA-sequencing on human and mouse trametinib treated cells corroborated these findings with decreased expression of cell cycle, stem cell pathways and SHH-pathway related genes concomitant with increases in genes associated with cell death and ciliopathies. Importantly, trametinib also decreases tumor growth and increases survival in vivo. Cell cycle related E2F target gene sets are significantly enriched for genes that are commonly downregulated in both trametinib treated tumorspheres and primary xenografts. However, IL6/JAK STAT3 and TNFα/NFκB signaling gene sets are specifically upregulated following trametinib treatment in vivo indicative of compensatory molecular changes following long-term MEK inhibition. Our study reveals a novel role for trametinib in effectively attenuating SHH MB tumor progression and warrants further investigation of this potent MEK1/2 inhibitor either alone or in combination with other targeted therapies for the treatment of SHH MB exhibiting elevated MAPK pathway activity.
RESUMEN
Medulloblastoma (MB) is the most common primary malignant pediatric brain cancer. We recently identified novel roles for the MEK/MAPK pathway in regulating human Sonic Hedgehog (SHH) MB tumorigenesis. The MEK inhibitor, selumetinib, decreased SHH MB growth while extending survival in mouse models. However, the treated mice ultimately succumbed to disease progression. Here, we perform RNA sequencing on selumetinib-treated orthotopic xenografts to identify molecular pathways that compensate for MEK inhibition specifically in vivo. Notably, the JAK/STAT3 pathway exhibits increased activation in selumetinib-treated tumors. The combination of selumetinib and the JAK/STAT3 pathway inhibitor, pacritinib, further reduces growth in two xenograft models and also enhances survival. Multiplex spatial profiling of proteins in drug-treated xenografts reveals shifted molecular dependencies and compensatory changes following combination drug treatment. Our study warrants further investigation into MEK and JAK/STAT3 inhibition as a novel combinatory therapeutic strategy for SHH MB.
Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Animales , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/genética , Niño , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/genética , Meduloblastoma/metabolismo , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismoRESUMEN
The extensive heterogeneity both between and within the medulloblastoma subgroups underscores a critical need for variant-specific biomarkers and therapeutic strategies. We previously identified a role for the CD271/p75 neurotrophin receptor (p75NTR) in regulating stem/progenitor cells in the SHH medulloblastoma subgroup. Here, we demonstrate the utility of CD271 as a novel diagnostic and prognostic marker for SHH medulloblastoma using IHC analysis and transcriptome data across 763 primary tumors. RNA sequencing of CD271+ and CD271- cells revealed molecularly distinct, coexisting cellular subsets, both in vitro and in vivo MAPK/ERK signaling was upregulated in the CD271+ population, and inhibiting this pathway reduced endogenous CD271 levels, stem/progenitor cell proliferation, and cell survival as well as cell migration in vitro Treatment with the MEK inhibitor selumetinib extended survival and reduced CD271 levels in vivo, whereas, treatment with vismodegib, a well-known smoothened (SMO) inhibitor currently in clinical trials for the treatment of recurrent SHH medulloblastoma, had no significant effect in our models. Our study demonstrates the clinical utility of CD271 as both a diagnostic and prognostic tool for SHH medulloblastoma tumors and reveals a novel role for MEK inhibitors in targeting CD271+ SHH medulloblastoma cells.Significance: This study identifies CD271 as a specific and novel biomarker of SHH-type medulloblastoma and that targeting CD271+ cells through MEK inhibition represents a novel therapeutic strategy for the treatment of SHH medulloblastoma. Cancer Res; 78(16); 4745-59. ©2018 AACR.