Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS Genet ; 20(6): e1011303, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38848445

RESUMEN

Despite efforts to explore the genome of the malaria vector Anopheles gambiae, the Y chromosome of this species remains enigmatic. The large number of repetitive and heterochromatic DNA sequences makes the Y chromosome exceptionally difficult to fully assemble, hampering the progress of gene editing techniques and functional studies for this chromosome. In this study, we made use of a bioinformatic platform to identify Y-specific repetitive DNA sequences that served as a target site for a CRISPR/Cas9 system. The activity of Cas9 in the reproductive organs of males caused damage to Y-bearing sperm without affecting their fertility, leading to a strong female bias in the progeny. Cytological investigation allowed us to identify meiotic defects and investigate sperm selection in this new synthetic sex ratio distorter system. In addition, alternative promoters enable us to target the Y chromosome in specific tissues and developmental stages of male mosquitoes, enabling studies that shed light on the role of this chromosome in male gametogenesis. This work paves the way for further insight into the poorly characterised Y chromosome of Anopheles gambiae. Moreover, the sex distorter strain we have generated promises to be a valuable tool for the advancement of studies in the field of developmental biology, with the potential to support the progress of genetic strategies aimed at controlling malaria mosquitoes and other pest species.


Asunto(s)
Anopheles , Sistemas CRISPR-Cas , Razón de Masculinidad , Cromosoma Y , Animales , Anopheles/genética , Masculino , Femenino , Cromosoma Y/genética , Mosquitos Vectores/genética , Meiosis/genética , Espermatozoides/metabolismo , Edición Génica/métodos , Malaria/transmisión , Malaria/genética
2.
J Invertebr Pathol ; 174: 107423, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32525026

RESUMEN

One advantage of using the Cry proteins of Bacillus thuringiensis as pesticides is their relatively narrow spectrum of activity, thus reducing the risk of non-target effects. Understanding the molecular basis of specificity has the potential to help us design improved products against emerging pests, or against pests that have developed resistance to other Cry proteins. Many previous studies have associated specificity with the binding of the Cry protein, particularly through the apical regions of domain II, to particular receptors on the midgut epithelial cells of the host insect. We have previously found that the specificity of Cry2A proteins against some insects is associated with domain I, which is traditionally associated with pore-formation but not receptor binding. In this work we identify four amino acids in the N-terminal region that, when mutated, can confer activity towards Aedes aegypti to Cry2Ab, a protein known to lack this toxicity. Intriguingly these amino acids are located in the region (amino acids 1-49) that is believed to be removed during proteolytic activation of the Cry protein. We discuss how the motifs containing these amino acids might be involved in the toxic process.


Asunto(s)
Aedes/microbiología , Toxinas de Bacillus thuringiensis/genética , Bacillus thuringiensis/genética , Proteínas Bacterianas/genética , Agentes de Control Biológico/farmacología , Endotoxinas/genética , Proteínas Hemolisinas/genética , Secuencia de Aminoácidos , Animales , Toxinas de Bacillus thuringiensis/química , Toxinas de Bacillus thuringiensis/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/farmacología , Endotoxinas/química , Endotoxinas/farmacología , Proteínas Hemolisinas/química , Proteínas Hemolisinas/farmacología , Mutación , Alineación de Secuencia
3.
Pathog Glob Health ; 117(3): 273-283, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-35861105

RESUMEN

The availability of the genomic sequence of the malaria mosquito Anopheles gambiae has in recent years sparked the development of transgenic technologies with the potential to be used as novel vector control tools. These technologies rely on genome editing that confer traits able to affect vectorial capacity. This can be achieved by either reducing the mosquito population or by making mosquitoes refractory to the parasite infection. For any genetically modified organism that is regarded for release, molecular characterization of the transgene and flanking sites are essential for their safety assessment and post-release monitoring. Despite great advancements, Whole-Genome Sequencing data are still subject to limitations due to the presence of repetitive and unannotated DNA sequences. Faced with this challenge, we describe a number of techniques that were used to identify the genomic location of a transgene in the male bias mosquito strain Ag(PMB)1 considered for potential field application. While the initial inverse PCR identified the most likely insertion site on Chromosome 3 R 36D, reassessment of the data showed a high repetitiveness in those sequences and multiple genomic locations as potential insertion sites of the transgene. Here we used a combination of DNA sequencing analysis and in-situ hybridization to clearly identify the integration of the transgene in a poorly annotated centromeric region of Chromosome 2 R 19D. This study emphasizes the need for accuracy in sequencing data for the genome of organisms of medical importance such as Anopheles mosquitoes and other tools available that can support genomic locations of transgenes.


Asunto(s)
Anopheles , Malaria , Animales , Masculino , Anopheles/genética , Mosquitos Vectores/genética , Transgenes , Malaria/prevención & control , Malaria/parasitología , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA