Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 57(1): 39-54, 2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-25498145

RESUMEN

The lysosome is the final destination for degradation of endocytic cargo, plasma membrane constituents, and intracellular components sequestered by macroautophagy. Fusion of endosomes and autophagosomes with the lysosome depends on the GTPase Rab7 and the homotypic fusion and protein sorting (HOPS) complex, but adaptor proteins that link endocytic and autophagy pathways with lysosomes are poorly characterized. Herein, we show that Pleckstrin homology domain containing protein family member 1 (PLEKHM1) directly interacts with HOPS complex and contains a LC3-interacting region (LIR) that mediates its binding to autophagosomal membranes. Depletion of PLEKHM1 blocks lysosomal degradation of endocytic (EGFR) cargo and enhances presentation of MHC class I molecules. Moreover, genetic loss of PLEKHM1 impedes autophagy flux upon mTOR inhibition and PLEKHM1 regulates clearance of protein aggregates in an autophagy- and LIR-dependent manner. PLEKHM1 is thus a multivalent endocytic adaptor involved in the lysosome fusion events controlling selective and nonselective autophagy pathways.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Lisosomas/metabolismo , Fusión de Membrana/genética , Glicoproteínas de Membrana/genética , Proteínas Asociadas a Microtúbulos/genética , Fagosomas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Reguladoras de la Apoptosis , Autofagia , Proteínas Relacionadas con la Autofagia , Endosomas/metabolismo , Regulación de la Expresión Génica , Células HeLa , Humanos , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Alineación de Secuencia , Transducción de Señal , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7
2.
Platelets ; 34(1): 2206921, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37139869

RESUMEN

Statins inhibit the mevalonate pathway by impairing protein prenylation via depletion of lipid geranylgeranyl diphosphate (GGPP). Rab27b and Rap1a are small GTPase proteins involved in dense granule secretion, platelet activation, and regulation. We analyzed the impact of statins on prenylation of Rab27b and Rap1a in platelets and the downstream effects on fibrin clot properties. Whole blood thromboelastography revealed that atorvastatin (ATV) delayed clot formation time (P < .005) and attenuated clot firmness (P < .005). ATV pre-treatment inhibited platelet aggregation and clot retraction. Binding of fibrinogen and P-selectin exposure on stimulated platelets was significantly lower following pre-treatment with ATV (P < .05). Confocal microscopy revealed that ATV significantly altered the structure of platelet-rich plasma clots, consistent with the reduced fibrinogen binding. ATV enhanced lysis of Chandler model thrombi 1.4-fold versus control (P < .05). Western blotting revealed that ATV induced a dose-dependent accumulation of unprenylated Rab27b and Rap1a in the platelet membrane. ATV dose-dependently inhibited ADP release from activated platelets. Exogenous GGPP rescued the prenylation of Rab27b and Rap1a, and partially restored the ADP release defect, suggesting these changes arise from reduced prenylation of Rab27b. These data demonstrate that statins attenuate platelet aggregation, degranulation, and binding of fibrinogen thereby having a significant impact on clot contraction and structure.


What is the context? Statins such as Atorvastatin (ATV) are 3-hydroxy, 3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, which block the cholesterol biosynthetic pathway to lower total serum levels and LDL-cholesterol.The cholesterol pathway also provides a supply of isoprenoids (farnesyl and geranylgeranyl) for the prenylation of signaling molecules, which include the families of Ras and Rho small GTPases.Prenyl groups provide a membrane anchor that is essential for the correct membrane localization and function of these proteins.Statins deplete cells of lipid geranylgeranyl diphosphate (GGPP) thereby inhibiting progression of the mevalonate pathway and prenylation of proteins.Rab27b and Rap1 are small GTPase proteins in platelets that are involved in the secretion of platelet granules and integrin activation.What is new?In this study, we found that ATV impairs prenylation of Rab27b and Rap1a and attenuates platelet function.These effects were partially rescued by GGPP, indicating the involvement of the mevalonate pathway.Platelet aggregation and degranulation was significantly attenuated by ATV.The impact of statins on platelet function altered clot formation, structure and contraction generating a clot that was more susceptible to degradation.What is the impact?This study demonstrates a novel mechanism whereby statins alter platelet responses and ultimately clot structure and stability.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Trombosis , Humanos , Adenosina Difosfato/metabolismo , Atorvastatina/farmacología , Plaquetas/metabolismo , Fibrinógeno/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Prenilación , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rap1/metabolismo , Trombosis/tratamiento farmacológico , Trombosis/metabolismo
3.
Bioconjug Chem ; 27(2): 329-40, 2016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-26646666

RESUMEN

A bone imaging toolkit of 21 fluorescent probes with variable spectroscopic properties, bone mineral binding affinities, and antiprenylation activities has been created, including a novel linking strategy. The linking chemistry allows attachment of a diverse selection of dyes fluorescent in the visible to near-infrared range to any of the three clinically important heterocyclic bisphosphonate bone drugs (risedronate, zoledronate, and minodronate or their analogues). The resultant suite of conjugates offers multiple options to "mix and match" parent drug structure, fluorescence emission wavelength, relative bone affinity, and presence or absence of antiprenylation activity, for bone-related imaging applications.


Asunto(s)
Enfermedades Óseas/diagnóstico , Huesos/patología , Difosfonatos/química , Colorantes Fluorescentes/química , Imagen Óptica/métodos , Animales , Línea Celular , Humanos , Masculino , Ratas Sprague-Dawley
4.
Nat Genet ; 39(8): 960-2, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17632511

RESUMEN

Autosomal recessive osteopetrosis is usually associated with normal or elevated numbers of nonfunctional osteoclasts. Here we report mutations in the gene encoding RANKL (receptor activator of nuclear factor-KB ligand) in six individuals with autosomal recessive osteopetrosis whose bone biopsy specimens lacked osteoclasts. These individuals did not show any obvious defects in immunological parameters and could not be cured by hematopoietic stem cell transplantation; however, exogenous RANKL induced formation of functional osteoclasts from their monocytes, suggesting that they could, theoretically, benefit from exogenous RANKL administration.


Asunto(s)
Osteopetrosis/genética , Ligando RANK/genética , Animales , Consanguinidad , Femenino , Genes Recesivos , Humanos , Masculino , Ratones , Osteoclastos , Linaje
5.
Am J Hum Genet ; 83(1): 64-76, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18606301

RESUMEN

Autosomal-Recessive Osteopetrosis (ARO) comprises a heterogeneous group of bone diseases for which mutations in five genes are known as causative. Most ARO are classified as osteoclast-rich, but recently a subset of osteoclast-poor ARO has been recognized as due to a defect in TNFSF11 (also called RANKL or TRANCE, coding for the RANKL protein), a master gene driving osteoclast differentiation along the RANKL-RANK axis. RANKL and RANK (coded for by the TNFRSF11A gene) also play a role in the immune system, which raises the possibility that defects in this pathway might cause osteopetrosis with immunodeficiency. From a large series of ARO patients we selected a Turkish consanguineous family with two siblings affected by ARO and hypogammaglobulinemia with no defects in known osteopetrosis genes. Sequencing of genes involved in the RANKL downstream pathway identified a homozygous mutation in the TNFRSF11A gene in both siblings. Their monocytes failed to differentiate in vitro into osteoclasts upon exposure to M-CSF and RANKL, in keeping with an osteoclast-intrinsic defect. Immunological analysis showed that their hypogammaglobulinemia was associated with impairment in immunoglobulin-secreting B cells. Investigation of other patients revealed a defect in both TNFRSF11A alleles in six additional, unrelated families. Our results indicate that TNFRSF11A mutations can cause a clinical condition in which severe ARO is associated with an immunoglobulin-production defect.


Asunto(s)
Agammaglobulinemia/sangre , Osteoclastos/patología , Osteopetrosis/genética , Receptor Activador del Factor Nuclear kappa-B/genética , Fosfatasa Ácida/metabolismo , Actinas/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Argentina , Arginina/metabolismo , Biopsia , Estudios de Casos y Controles , Línea Celular Transformada , Proliferación Celular , Transformación Celular Viral , Células Cultivadas , Estudios de Cohortes , Consanguinidad , Cisteína/metabolismo , Análisis Mutacional de ADN , Dendritas/fisiología , Femenino , Genes Recesivos , Herpesvirus Humano 4/fisiología , Heterocigoto , Homocigoto , Humanos , Ilion/cirugía , Isoenzimas/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/patología , Lipopolisacáridos/farmacología , Factor Estimulante de Colonias de Macrófagos/farmacología , Masculino , Modelos Inmunológicos , Datos de Secuencia Molecular , Mutación Missense , Osteoclastos/metabolismo , Osteoclastos/ultraestructura , Osteopetrosis/diagnóstico , Osteopetrosis/diagnóstico por imagen , Osteopetrosis/patología , Osteopetrosis/fisiopatología , Osteoprotegerina/metabolismo , Pakistán , Linaje , Polimorfismo Genético , Estructura Terciaria de Proteína , Ligando RANK/metabolismo , Radiografía Torácica/métodos , Receptor Activador del Factor Nuclear kappa-B/química , Receptor Activador del Factor Nuclear kappa-B/inmunología , Receptores de Vitronectina/metabolismo
6.
J Clin Invest ; 117(4): 919-30, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17404618

RESUMEN

This study illustrates that Plekhm1 is an essential protein for bone resorption, as loss-of-function mutations were found to underlie the osteopetrotic phenotype of the incisors absent rat as well as an intermediate type of human osteopetrosis. Electron and confocal microscopic analysis demonstrated that monocytes from a patient homozygous for the mutation differentiated into osteoclasts normally, but when cultured on dentine discs, the osteoclasts failed to form ruffled borders and showed little evidence of bone resorption. The presence of both RUN and pleckstrin homology domains suggests that Plekhm1 may be linked to small GTPase signaling. We found that Plekhm1 colocalized with Rab7 to late endosomal/lysosomal vesicles in HEK293 and osteoclast-like cells, an effect that was dependent on the prenylation of Rab7. In conclusion, we believe PLEKHM1 to be a novel gene implicated in the development of osteopetrosis, with a putative critical function in vesicular transport in the osteoclast.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Cromosomas Humanos Par 10 , Glicoproteínas de Membrana/genética , Osteopetrosis/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Proteínas Relacionadas con la Autofagia , Mapeo Cromosómico , Femenino , Regulación de la Expresión Génica , Humanos , Riñón/fisiología , Riñón/fisiopatología , Masculino , Glicoproteínas de Membrana/metabolismo , Monocitos/fisiología , Mutación , Especificidad de Órganos , Linaje , Ratas , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7
8.
Bone ; 42(5): 848-60, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18325866

RESUMEN

Bisphosphonates (BPs) target bone due to their high affinity for calcium ions. During osteoclastic resorption, these drugs are released from the acidified bone surface and taken up by osteoclasts, where they act by inhibiting the prenylation of small GTPases essential for osteoclast function. However, it remains unclear exactly how osteoclasts internalise BPs from bone and whether other cells in the bone microenvironment can also take up BPs from the bone surface. We have investigated this using a novel fluorescently-labelled alendronate analogue (FL-ALN), and by examining changes in protein prenylation following treatment of cells with risedronate (RIS). Confocal microscopic analysis showed that FL-ALN was efficiently internalised from solution or from the surface of dentine by resorbing osteoclasts into intracellular vesicles. Accordingly, unprenylated Rap1A accumulated to the same extent whether osteoclasts were cultured on RIS-coated dentine or with RIS in solution. By contrast, J774 macrophages internalised FL-ALN and RIS from solution, but took up comparatively little from dentine, due to their inability to resorb the mineral. Calvarial osteoblasts and MCF-7 tumour cells internalised even less FL-ALN and RIS, both from solution and from the surface of dentine. Accordingly, the viability of J774 and MCF-7 cells was drastically reduced when cultured with RIS in solution, but not when cultured on dentine pre-coated with RIS. However, when J774 macrophages were co-cultured with rabbit osteoclasts, J774 cells that were adjacent to resorbing osteoclasts frequently internalised more FL-ALN than J774 cells more distant from osteoclasts. This was possibly a result of increased availability of BP to these J774 cells due to transcytosis through osteoclasts, since FL-ALN partially co-localised with trancytosed, resorbed matrix protein within osteoclasts. In addition, J774 cells occupying resorption pits internalised more FL-ALN than those on unresorbed surfaces. These data demonstrate that osteoclasts are able to take up large amounts of BP, due to their ability to release the BP from the dentine surface during resorption. By contrast, non-resorbing cells take up only small amounts of BP that becomes available due to natural desorption from the dentine surface. However, BP uptake by non-resorbing cells can be increased when cultured in the presence of resorbing osteoclasts.


Asunto(s)
Dentina/metabolismo , Difosfonatos/metabolismo , Macrófagos/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Alendronato/metabolismo , Animales , Conservadores de la Densidad Ósea/metabolismo , Conservadores de la Densidad Ósea/farmacocinética , Conservadores de la Densidad Ósea/farmacología , Resorción Ósea/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Técnicas de Cocultivo , Difosfonatos/farmacocinética , Difosfonatos/farmacología , Endocitosis/fisiología , Ácido Etidrónico/análogos & derivados , Ácido Etidrónico/metabolismo , Ácido Etidrónico/farmacocinética , Ácido Etidrónico/farmacología , Proteínas de la Matriz Extracelular/metabolismo , Macrófagos/citología , Ratones , Microscopía Fluorescente , Osteoblastos/citología , Osteoclastos/citología , Prenilación de Proteína/efectos de los fármacos , Conejos , Ácido Risedrónico , Cráneo/citología , Proteínas de Unión al GTP rap1/metabolismo
9.
Bioconjug Chem ; 19(12): 2308-10, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19032080

RESUMEN

We report synthesis of the first fluorescently labeled conjugates of risedronate (1), using an epoxide linker strategy enabling conjugation of 1 via its pyridyl nitrogen with the label (carboxyfluorescein). Unlike prior approaches to create fluorescent bisphosphonate probes, the new linking chemistry did not abolish the ability to inhibit protein prenylation in vitro, while significantly retaining hydroxyapatite affinity. The utility of a fluorescent 1 conjugate in visualizing osteoclast resorption in vitro was demonstrated.


Asunto(s)
Ácido Etidrónico/análogos & derivados , Colorantes Fluorescentes/química , Animales , Ácido Etidrónico/síntesis química , Ácido Etidrónico/química , Ácido Etidrónico/metabolismo , Espectroscopía de Resonancia Magnética , Osteoclastos/metabolismo , Conejos , Ácido Risedrónico , Temperatura
10.
Ann N Y Acad Sci ; 1117: 209-57, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18056045

RESUMEN

The bisphosphonates (BPs) are well established as the treatments of choice for disorders of excessive bone resorption, including Paget's disease of bone, myeloma and bone metastases, and osteoporosis. There is considerable new knowledge about how BPs work. Their classical pharmacological effects appear to result from two key properties: their affinity for bone mineral and their inhibitory effects on osteoclasts. Mineral binding affinities differ among the clinically used BPs and may influence their differential distribution within bone, their biological potency, and their duration of action. The inhibitory effects of the nitrogen-containing BPs (including alendronate, risedronate, ibandronate, and zoledronate) on osteoclasts appear to result from their inhibition of farnesyl pyrophosphate synthase (FPPS), a key branch-point enzyme in the mevalonate pathway. FPPS generates isoprenoid lipids used for the posttranslational modification of small GTP-binding proteins essential for osteoclast function. Effects on other cellular pathways, such as preventing apoptosis in osteocytes, are emerging as other potentially important mechanisms of action. As a class, BPs share several common properties. However, as with other classes of drugs, there are obvious chemical, biochemical, and pharmacological differences among the various individual BPs. Each BP has a unique profile that may help to explain potential important clinical differences among the BPs, in terms of speed of onset of fracture reduction, antifracture efficacy at different skeletal sites, and the degree and duration of suppression of bone turnover. As we approach the 40th anniversary of the discovery of their biological effects, there remain further opportunities for using their properties for medical purposes.


Asunto(s)
Difosfonatos/química , Difosfonatos/farmacología , Osteoclastos/metabolismo , Animales , Neoplasias Óseas/secundario , Resorción Ósea , Huesos/metabolismo , Difosfonatos/uso terapéutico , Guanosina Trifosfato/química , Humanos , Modelos Biológicos , Modelos Químicos , Mieloma Múltiple/metabolismo , Metástasis de la Neoplasia , Nitrógeno/química , Osteocitos/metabolismo , Osteoporosis/terapia , Procesamiento Proteico-Postraduccional , Linfocitos T/metabolismo , Resultado del Tratamiento
11.
Curr Opin Pharmacol ; 6(3): 307-12, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16650801

RESUMEN

Bisphosphonates (BPs) are widely used in the treatment of diseases associated with excessive osteoclast-mediated bone resorption, such as osteoporosis. Although several years ago the molecular target of the potent nitrogen-containing BPs (N-BPs) was identified as farnesyl diphosphate synthase, an enzyme in the mevalonate pathway, recent data have shed new light on the precise mechanism of inhibition and demonstrated that the acute-phase reaction, an adverse effect of N-BPs, is also caused by inhibition of this enzyme. In addition, the identification of BP analogues that inhibit different enzymes in the mevalonate pathway could lead to the development of novel inhibitors of bone resorption with potential applications in the treatment of bone disease.


Asunto(s)
Conservadores de la Densidad Ósea/farmacología , Difosfonatos/farmacología , Geraniltranstransferasa/antagonistas & inhibidores , Osteoclastos/efectos de los fármacos , Piridinas/farmacología , Subgrupos de Linfocitos T/efectos de los fármacos , Reacción de Fase Aguda/inducido químicamente , Reacción de Fase Aguda/inmunología , Animales , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Geraniltranstransferasa/metabolismo , Humanos , Activación de Linfocitos , Osteoclastos/enzimología , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Subgrupos de Linfocitos T/inmunología
12.
Sci Rep ; 7(1): 3012, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28592808

RESUMEN

Autosomal recessive osteopetrosis (ARO) is a heterogeneous disorder, characterized by defective osteoclastic resorption of bone that results in increased bone density. We have studied nine individuals with an intermediate form of ARO, from the county of Västerbotten in Northern Sweden. All afflicted individuals had an onset in early infancy with optic atrophy, and in four patients anemia was present at diagnosis. Tonsillar herniation, foramen magnum stenosis, and severe osteomyelitis of the jaw were common clinical features. Whole exome sequencing, verified by Sanger sequencing, identified a splice site mutation c.212 + 1 G > T in the SNX10 gene encoding sorting nexin 10. Sequence analysis of the SNX10 transcript in patients revealed activation of a cryptic splice site in intron 4 resulting in a frame shift and a premature stop (p.S66Nfs * 15). Haplotype analysis showed that all cases originated from a single mutational event, and the age of the mutation was estimated to be approximately 950 years. Functional analysis of osteoclast progenitors isolated from peripheral blood of patients revealed that stimulation with receptor activator of nuclear factor kappa-B ligand (RANKL) resulted in a robust formation of large, multinucleated osteoclasts which generated sealing zones; however these osteoclasts exhibited defective ruffled borders and were unable to resorb bone in vitro.


Asunto(s)
Codón sin Sentido , Mutación del Sistema de Lectura , Osteoclastos/patología , Osteopetrosis/genética , Osteopetrosis/patología , Nexinas de Clasificación/genética , Haplotipos , Humanos , Ligando RANK/metabolismo , Suecia , Secuenciación Completa del Genoma
13.
J Bone Miner Res ; 21(5): 684-94, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16734383

RESUMEN

UNLABELLED: N-BPs, which inhibit bone resorption by preventing prenylation of small GTPases, unexpectedly cause the accumulation of GTP-bound, unprenylated Rho family GTPases in macrophages and osteoclasts. In macrophages, this also leads to sustained, Rac-mediated activation of p38. The antiresorptive activity of N-BPs may therefore be caused at least in part, by the accumulation of unprenylated small GTPases, causing inappropriate activation of downstream signaling pathways. INTRODUCTION: Nitrogen-containing bisphosphonates (N-BPs) are potent inhibitors of bone resorption that act by inhibiting farnesyl diphosphate synthase, thereby indirectly preventing the prenylation of Rho family GTPases that are required for the function and survival of bone-resorbing osteoclasts. However, the effect that these drugs have on the activity of Rho family GTPases has not been determined. MATERIALS AND METHODS: The effect of N-BPs on the activity of Rho family GTPases in J774 macrophages and osteoclasts was measured using a pull-down assay to isolate the GTP-bound forms. The effect of N-BPs, or decreasing Rac expression using siRNA, on downstream p38 activity was evaluated by Western blotting and apoptosis assessed by measurement of caspase 3/7 activity. RESULTS: Rather than inhibiting GTPase function, loss of prenylation after treatment with N-BPs caused an increase in the GTP-bound form of Rac, Cdc42, and Rho in J774 cells and osteoclast-like cells, which paralleled the rate of accumulation of unprenylated small GTPases. Activation of Rac also occurred with other inhibitors of prenylation of Rho-family proteins, such as mevastatin and the geranylgeranyl transferase I inhibitor GGTI-298. The Rac-GTP that increased after N-BP treatment was newly translated, cytoplasmic unprenylated protein, because it was not labeled with [(14)C] mevalonate, and the increase in Rac-GTP was prevented by cycloheximide. Furthermore, this unprenylated Rac-GTP retained at least part of its functional activity in J774 cells, because it mediated N-BP-induced activation of p38. Paradoxically, although risedronate induces apoptosis of J774 macrophages by inhibiting protein prenylation, the p38 inhibitor SB203580 enhanced N-BP-induced apoptosis, suggesting that Rac-induced p38 activation partially suppresses the pro-apoptotic effect of N-BPs in these cells. CONCLUSIONS: N-BP drugs may disrupt the function of osteoclasts in vivo and affect other cell types in vitro by inhibiting protein prenylation, thereby causing inappropriate and sustained activation, rather than inhibition, of some small GTPases and their downstream signaling pathways.


Asunto(s)
Difosfonatos/farmacología , Prenilación de Proteína/efectos de los fármacos , Proteína de Unión al GTP cdc42/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Animales , Western Blotting , Línea Celular , Activación Enzimática , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
14.
Bone ; 37(3): 349-58, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16006204

RESUMEN

Nitrogen-containing bisphosphonate drugs such as risedronate act by inhibiting farnesyl diphosphate synthase, thereby disrupting protein prenylation in osteoclasts. We recently found that an anti-resorptive phosphonocarboxylate analogue of risedronate, 3-PEHPC (previously referred to as NE10790), selectively prevents prenylation of Rab GTPases in vitro by specifically inhibiting Rab geranylgeranyl transferase. In this study, we demonstrate that unprenylated Rab6 could be detected in J774 cells after treatment with 3-PEHPC or risedronate for as little as 4 h, and reached 50% after 24 h. Furthermore, treatment of J774 cells or osteoclasts with either 3-PEHPC or risedronate disrupted membrane association of several Rab family proteins. Like risedronate, the effects of 3-PEHPC are likely to be restricted to osteoclasts in vivo, since both risedronate and 3-PEHPC inhibited Rab prenylation in osteoclasts, but not in general bone marrow cells, when administered to rabbits in vivo. Analysis of two new phosphonocarboxylate analogues of 3-PEHPC (3-PEPC and 2-PEPC) revealed that, first, the geminal hydroxyl group is not essential for inhibition of Rab prenylation by phosphonocarboxylates, but does contribute to their anti-resorptive potency, most likely by enhancing their affinity for bone mineral. Second, the position of the nitrogen in the side chain of phosphonocarboxylates is crucial for their ability to inhibit Rab prenylation and hence to inhibit bone resorption. In addition, there is a good correlation between the ability of the phosphonocarboxylates to inhibit Rab prenylation and to inhibit bone resorption in vitro, indicating that these compounds are a new class of pharmacological agents that inhibit bone resorption by specifically preventing prenylation of Rab proteins. Furthermore, although phosphonocarboxylates are analogues of bisphosphonates, the structure-activity relationships of phosphonocarboxylates for inhibiting Rab geranylgeranyltransferase appear to differ from the structure-activity relationships of bisphosphonates for inhibiting farnesyl diphosphate synthase.


Asunto(s)
Transferasas Alquil y Aril/antagonistas & inhibidores , Membrana Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Compuestos Organofosforados/farmacología , Osteoclastos/efectos de los fármacos , Prenilación de Proteína/efectos de los fármacos , Transferasas Alquil y Aril/metabolismo , Animales , Densidad Ósea , Resorción Ósea/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Citosol/efectos de los fármacos , Citosol/metabolismo , Inhibidores Enzimáticos/química , Hidroxilación , Ratones , Estructura Molecular , Compuestos Organofosforados/química , Osteoclastos/citología , Osteoclastos/enzimología , Osteoclastos/metabolismo , Piridinas/química , Conejos
15.
Cell Host Microbe ; 17(1): 58-71, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25500191

RESUMEN

The host endolysosomal compartment is often manipulated by intracellular bacterial pathogens. Salmonella (Salmonella enterica serovar Typhimurium) secrete numerous effector proteins, including SifA, through a specialized type III secretion system to hijack the host endosomal system and generate the Salmonella-containing vacuole (SCV). To form this replicative niche, Salmonella targets the Rab7 GTPase to recruit host membranes through largely unknown mechanisms. We show that Pleckstrin homology domain-containing protein family member 1 (PLEKHM1), a lysosomal adaptor, is targeted by Salmonella through direct interaction with SifA. By binding the PLEKHM1 PH2 domain, Salmonella utilize a complex containing PLEKHM1, Rab7, and the HOPS tethering complex to mobilize phagolysosomal membranes to the SCV. Depletion of PLEKHM1 causes a profound defect in SCV morphology with multiple bacteria accumulating in enlarged structures and significantly dampens Salmonella proliferation in multiple cell types and mice. Thus, PLEKHM1 provides a critical interface between pathogenic infection and the host endolysosomal system.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Bacterianas/metabolismo , Glicoproteínas/metabolismo , Interacciones Huésped-Patógeno , Glicoproteínas de Membrana/metabolismo , Salmonella typhimurium/crecimiento & desarrollo , Vacuolas/microbiología , Animales , Proteínas Relacionadas con la Autofagia , Proteínas Portadoras/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7
16.
Curr Opin Pharmacol ; 16: 7-14, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24566133

RESUMEN

Vesicular trafficking is critical for the function of bone cells, exemplified by bone diseases such as osteopetrosis, which frequently results from defects in this process. Recent work has further dissected the role of the endolysosomal system in both bone formation by osteoblasts and bone resorption by osteoclasts. This pathway also plays an important role in the communication between these and other cells in bone, through trafficking and degradation of growth factors and their receptors, and microvesicle release. In addition, a crucial role for autophagy in bone remodelling and bone disease is beginning to emerge. These insights into the molecular control of bone remodelling raise the possibility of developing novel therapeutics for bone diseases designed to target specific aspects of this process.


Asunto(s)
Huesos/metabolismo , Vesículas Transportadoras/metabolismo , Animales , Autofagia , Humanos , Osteoblastos/metabolismo , Osteoclastos/metabolismo
17.
Eur J Med Chem ; 84: 77-89, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25016230

RESUMEN

Phosphonocarboxylate (PC) analogs of the anti-osteoporotic drugs, bisphosphonates, represent the first class of selective inhibitors of Rab geranylgeranyl transferase (RabGGTase, RGGT), an enzyme implicated in several diseases including ovarian, breast and skin cancer. Here we present the synthesis and biological characterization of an extended set of this class of compounds, including lipophilic derivatives of the known RGGT inhibitors. From this new panel of PCs, we have identified an inhibitor of RGGT that is of similar potency as the most active published phosphonocarboxylate, but of higher selectivity towards this enzyme compared to prenyl pyrophosphate synthases. New insights into structural requirements are also presented, showing that only PC analogs of the most potent 3rd generation bisphosphonates inhibit RGGT. In addition, the first phosphonocarboxylate-derived GGPPS inhibitor is reported.


Asunto(s)
Transferasas Alquil y Aril/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Organofosfonatos/farmacología , Transferasas Alquil y Aril/metabolismo , Animales , Bovinos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Células HeLa , Humanos , Estructura Molecular , Organofosfonatos/síntesis química , Organofosfonatos/química , Relación Estructura-Actividad
18.
Nat Rev Endocrinol ; 9(9): 522-36, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23877423

RESUMEN

Osteopetrosis is a genetic condition of increased bone mass, which is caused by defects in osteoclast formation and function. Both autosomal recessive and autosomal dominant forms exist, but this Review focuses on autosomal recessive osteopetrosis (ARO), also known as malignant infantile osteopetrosis. The genetic basis of this disease is now largely uncovered: mutations in TCIRG1, CLCN7, OSTM1, SNX10 and PLEKHM1 lead to osteoclast-rich ARO (in which osteoclasts are abundant but have severely impaired resorptive function), whereas mutations in TNFSF11 and TNFRSF11A lead to osteoclast-poor ARO. In osteoclast-rich ARO, impaired endosomal and lysosomal vesicle trafficking results in defective osteoclast ruffled-border formation and, hence, the inability to resorb bone and mineralized cartilage. ARO presents soon after birth and can be fatal if left untreated. However, the disease is heterogeneous in clinical presentation and often misdiagnosed. This article describes the genetics of ARO and discusses the diagnostic role of next-generation sequencing methods. The management of affected patients, including guidelines for the indication of haematopoietic stem cell transplantation (which can provide a cure for many types of ARO), are outlined. Finally, novel treatments, including preclinical data on in utero stem cell treatment, RANKL replacement therapy and denosumab therapy for hypercalcaemia are also discussed.


Asunto(s)
Osteopetrosis/terapia , Animales , Humanos , Osteopetrosis/congénito , Osteopetrosis/diagnóstico , Osteopetrosis/genética , Ligando RANK/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología
19.
Bone ; 57(1): 242-51, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23962725

RESUMEN

Bisphosphonates (BPs) are widely used in the treatment of several bone diseases, such as osteoporosis and cancers that have metastasized to bone, by virtue of their ability to inhibit osteoclastic bone resorption. Previously, it was shown that osteoclasts present at different bone sites have different characteristics. We hypothesized that BPs could have distinct effects on different populations of osteoclasts and their precursors, for example as a result of a different capacity to endocytose the drugs. To investigate this, bone marrow cells were isolated from jaw and long bone from mice and the cells were primed to differentiate into osteoclasts with the cytokines M-CSF and RANKL. Before fusion occurred, cells were incubated with fluorescein-risedronate (FAM-RIS) for 4 or 24h and uptake was determined by flow cytometry. We found that cultures obtained from the jaw internalized 1.7 to 2.5 times more FAM-RIS than long-bone cultures, both after 4 and 24h, and accordingly jaw osteoclasts were more susceptible to inhibition of prenylation of Rap1a after treatment with BPs for 24h. Surprisingly, differences in BP uptake did not differentially affect osteoclastogenesis. This suggests that jaw osteoclast precursors are less sensitive to bisphosphonates after internalization. This was supported by the finding that gene expression of the anti-apoptotic genes Bcl-2 and Bcl-xL was higher in jaw cells than long bone cells, suggesting that the jaw cells might be more resistant to BP-induced apoptosis. Our findings suggest that bisphosphonates have distinct effects on both populations of osteoclast precursors and support previous findings that osteoclasts and precursors are bone-site specific. This study may help to provide more insights into bone-site-specific responses to bisphosphonates.


Asunto(s)
Conservadores de la Densidad Ósea/metabolismo , Células de la Médula Ósea/metabolismo , Maxilares/citología , Animales , Conservadores de la Densidad Ósea/farmacología , Difosfonatos/metabolismo , Difosfonatos/farmacología , Endocitosis , Citometría de Flujo , Masculino , Ratones , Microscopía Confocal , Osteoclastos/metabolismo , Osteonecrosis/metabolismo
20.
Methods Mol Biol ; 816: 401-24, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22130942

RESUMEN

In order to understand osteoclast cell biology, it is necessary to culture these cells on a physiological -substrate that they can resorb in vitro, such as bone or dentine. However, this creates problems for analysis by fluorescence microscopy, due to the depth of the sample under investigation. By virtue of its optical sectioning capabilities, confocal microscopy is ideal for analysis of such samples, enabling precise intracellular localisation of proteins in resorbing osteoclasts to be determined. Moreover, by taking a series of images in the axial dimension, it is possible to create axial section views and to reconstruct 3D images of the osteoclasts, enabling the spatial organisation of the structures of interest to be more easily discerned.


Asunto(s)
Microscopía Confocal/métodos , Osteoclastos/ultraestructura , Alendronato/análisis , Alendronato/síntesis química , Animales , Células Cultivadas , Dentina/química , Diseño de Equipo , Colorantes Fluorescentes/análisis , Colorantes Fluorescentes/síntesis química , Humanos , Microscopía Confocal/instrumentación , Osteoclastos/citología , Coloración y Etiquetado/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA