Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 111(7): 2459-63, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24469822

RESUMEN

Black carbon (BC) is increasingly recognized as a significant air pollutant with harmful effects on human health, either in its own right or as a carrier of other chemicals. The adverse impact is of particular concern in those developing regions with high emissions and a growing population density. The results of recent studies indicate that BC emissions could be underestimated by a factor of 2-3 and this is particularly true for the hot-spot Asian region. Here we present a unique inventory at 10-km resolution based on a recently published global fuel consumption data product and updated emission factor measurements. The unique inventory is coupled to an Asia-nested (∼50 km) atmospheric model and used to calculate the global population exposure to BC with fully quantified uncertainty. Evaluating the modeled surface BC concentrations against observations reveals great improvement. The bias is reduced from -88% to -35% in Asia when the unique inventory and higher-resolution model replace a previous inventory combined with a coarse-resolution model. The bias can be further reduced to -12% by downscaling to 10 km using emission as a proxy. Our estimated global population-weighted BC exposure concentration constrained by observations is 2.14 µg⋅m(-3); 130% higher than that obtained using less detailed inventories and low-resolution models.


Asunto(s)
Aerosoles/química , Contaminantes Atmosféricos/análisis , Atmósfera , Exposición a Riesgos Ambientales/estadística & datos numéricos , Modelos Teóricos , Hollín/análisis , China , Geografía , Humanos
2.
Environ Sci Technol ; 47(11): 5803-12, 2013 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-23634653

RESUMEN

The earthquake and the subsequent tsunami that occurred offshore of Japan resulted in an important loss of life and a serious accident at the nuclear facility of Fukushima. The "hot spots" of the release are evaluated here applying the model LMDZORINCA for (137)Cs. Moreover, an assessment is attempted for the population and the environment using the dosimetric scheme of the WHO and the interactive tool ERICA, respectively. Cesium-137 was deposited mostly in Pacific and Atlantic Oceans and North Pole (80%), whereas the rest in the continental areas of North America and Eurasia contributed slightly to the natural background (0.5-5.0 kBq m(-2)). The effective dose from (137)Cs and (134)Cs (radiocesium) irradiation during the first 3 months was estimated between 1-5 mSv in Fukushima and the neighboring prefectures. In the rest of Japan, the respective doses were found to be less than 0.5 mSv, whereas in the rest of the world it was less than 0.1 mSv. Such doses are equivalent with the obtained dose from a simple X-ray; for the highly contaminated regions, they are close to the dose limit for exposure due to radon inhalation (10 mSv). The calculated dose rates from radiocesium exposure on reference organisms ranged from 0.03 to 0.18 µGy h(-1), which are 2 orders of magnitude below the screening dose limit (10 µGy h(-1)) that could result in obvious effects on the population. However, these results may underestimate the real situation, since stable soil density was used in the calculations, a zero radiocesium background was assumed, and dose only from two radionuclides was estimated, while more that 40 radionuclides have been deposited in the vicinity of the facility. When monitoring data applied, much higher dose rates were estimated certifying ecological risk for small mammals and reptiles in terms of cytogenetic damage and reproduction.


Asunto(s)
Radioisótopos de Cesio/análisis , Accidente Nuclear de Fukushima , Modelos Teóricos , Asia , Océano Atlántico , Exposición a Riesgos Ambientales/análisis , Europa (Continente) , Humanos , Japón , Océano Pacífico , Salud Pública , Dosis de Radiación , Radiación Ionizante , Radiometría/métodos , Medición de Riesgo/métodos , Contaminantes Radiactivos del Suelo/análisis
3.
J Environ Radioact ; 149: 164-75, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26254209

RESUMEN

In this study we conduct a detailed comparison of the modelling response of the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident with global and local observations. We use five different model versions characterized by different horizontal and vertical resolutions of the same General Circulation Model (GCM). Transport efficiencies of (137)Cs across the world are presented as an indication of the expected radioactive impact. Activity concentrations were well represented showing lower Normalized Mean Biases (NMBs) when the better resolved versions of the GCM were used. About 95% of the results using the zoom configuration over Europe (zEur) remained within a factor of 10 from the observations. Close to Japan, the model reproduced well (137)Cs concentrations using the zoom version over Asia (zAsia) showing high correlations, while more than 64% of the modelling results were found within a factor of two from the observations and more than 92% within a factor of 10. Labile and refractory rare radionuclides calculated indirectly showed larger deviations, with about 60% of the simulated concentrations within a factor of 10 from the observations. We estimate that around 23% of the released (137)Cs remained into Japan, while 76% deposited in the oceans. Around 163 TBq deposited over North America, among which 95 TBq over USA, 40 TBq over Canada and 5 TBq over Greenland). About 14 TBq deposited over Europe (mostly in the European part of Russia, Sweden and Norway) and 47 TBq over Asia (mostly in the Asian part of Russia, Philippines and South Korea), while traces were observed over Africa, Oceania and Antarctica. Since the radioactive plume followed a northward direction before its arrival to USA and then to Europe, a significant amount of about 69 TBq deposited in the Arctic, as well. These patterns of deposition are fully consistent with the most recent reports for the accident.


Asunto(s)
Movimientos del Aire , Contaminantes Radiactivos del Aire/análisis , Radioisótopos de Cesio/análisis , Monitoreo de Radiación/métodos , Ceniza Radiactiva/análisis , Accidente Nuclear de Fukushima , Modelos Teóricos
4.
Sci Total Environ ; 500-501: 155-72, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25217754

RESUMEN

The present paper studies how a random event (earthquake) and the subsequent disaster in Japan affect transport and deposition of fallout and the resulting health consequences. Therefore, except for the original accident in March 2011, three additional scenarios are assessed assuming that the same releases took place in winter 2010, summer 2011 and autumn 2011 in order to cover a full range of annual seasonality. This is also the first study where a large number of fission products released from the accident are used to assess health risks with the maximum possible efficiency. Xenon-133 and (137)Cs are directly estimated within the model, whereas 15 other radionuclides are calculated indirectly using reported isotopic ratios. As much as 85% of the released (137)Cs would be deposited in continental regions worldwide if the accident occurred in winter 2010, 22% in spring 2011 (when it actually happened), 55% in summer 2011 and 48% if it occurred during autumn 2011. Solid cancer incidents and mortalities from Fukushima are estimated to be between 160 and 880 and from 110 to 640 close to previous estimations. By adding thyroid cancers, the total number rises from 230 to 850 for incidents and from 120 to 650 for mortalities. Fatalities due to worker exposure and mandatory evacuation have been reported to be around 610 increasing total estimated mortalities to 730-1260. These estimates are 2.8 times higher than previously reported ones for radiocaesium and (131)I and 16% higher than those reported based on radiocaesium only. Total expected fatalities from Fukushima are 32% lower than in the winter scenario, 5% that in the summer scenario and 30% lower than in the autumn scenario. Nevertheless, cancer fatalities are expected to be less than 5% of those from the tsunami (~20,000).


Asunto(s)
Accidente Nuclear de Fukushima , Monitoreo de Radiación , Radioisótopos de Cesio/análisis , Terremotos , Humanos , Japón/epidemiología , Contaminantes Radiactivos/análisis , Medición de Riesgo , Estaciones del Año , Neoplasias de la Tiroides/epidemiología
5.
Environ Int ; 64: 17-27, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24361922

RESUMEN

The accident at the Fukushima Daiichi Nuclear Power Plant (NPP) in Japan resulted in the release of a large number of fission products that were transported worldwide. We study the effects of two of the most dangerous radionuclides emitted, (137)Cs (half-life: 30.2years) and (134)Cs (half-life: 2.06years), which were transported across the world constituting the global fallout (together with iodine isotopes and noble gasses) after nuclear releases. The main purpose is to provide preliminary cancer risk estimates after the Fukushima NPP accident, in terms of excess lifetime incident and death risks, prior to epidemiology, and compare them with those occurred after the Chernobyl accident. Moreover, cancer risks are presented for the local population in the form of high-resolution risk maps for 3 population classes and for both sexes. The atmospheric transport model LMDZORINCA was used to simulate the global dispersion of radiocaesium after the accident. Air and ground activity concentrations have been incorporated with monitoring data as input to the LNT-model (Linear Non-Threshold) frequently used in risk assessments of all solid cancers. Cancer risks were estimated to be small for the global population in regions outside Japan. Women are more sensitive to radiation than men, although the largest risks were recorded for infants; the risk is not depended on the sex at the age-at-exposure. Radiation risks from Fukushima were more enhanced near the plant, while the evacuation measures were crucial for its reduction. According to our estimations, 730-1700 excess cancer incidents are expected of which around 65% may be fatal, which are very close to what has been already published (see references therein). Finally, we applied the same calculations using the DDREF (Dose and Dose Rate Effectiveness Factor), which is recommended by the ICRP, UNSCEAR and EPA as an alternative reduction factor instead of using a threshold value (which is still unknown). Excess lifetime cancer incidents were estimated to be between 360 and 850, whereas 220-520 of them will be fatal. Nevertheless, these numbers are expected to be even smaller, as the response of the Japanese official authorities to the accident was rapid. The projected cancer incidents are much lower than the casualties occurred from the earthquake itself (>20,000) and also smaller than the accident of Chernobyl.


Asunto(s)
Radioisótopos de Cesio , Accidente Nuclear de Chernóbil , Accidente Nuclear de Fukushima , Modelos Teóricos , Neoplasias/epidemiología , Medición de Riesgo , Adulto , Contaminantes Radiactivos del Aire , Femenino , Semivida , Humanos , Lactante , Japón/epidemiología , Masculino , Neoplasias/mortalidad , Monitoreo de Radiación , Factores Sexuales , Estados Unidos
6.
Environ Int ; 73: 346-58, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25222299

RESUMEN

Radioactive contamination in Ukraine, Belarus and Russia after the Chernobyl accident left large rural and forest areas to their own fate. Forest succession in conjunction with lack of forest management started gradually transforming the landscape. During the last 28 years dead wood and litter have dramatically accumulated in these areas, whereas climate change has increased temperature and favored drought. The present situation in these forests suggests an increased risk of wildfires, especially after the pronounced forest fires of 2010, which remobilized Chernobyl-deposited radioactive materials transporting them thousand kilometers far. For the aforementioned reasons, we study the consequences of different forest fires on the redistribution of (137)Cs. Using the time frequency of the fires that occurred in the area during 2010, we study three scenarios assuming that 10%, 50% and 100% of the area are burnt. We aim to sensitize the scientific community and the European authorities for the foreseen risks from radioactivity redistribution over Europe. The global model LMDZORINCA that reads deposition density of radionuclides and burnt area from satellites was used, whereas risks for the human and animal population were calculated using the Linear No-Threshold (LNT) model and the computerized software ERICA Tool, respectively. Depending on the scenario, whereas between 20 and 240 humans may suffer from solid cancers, of which 10-170 may be fatal. ERICA predicts insignificant changes in animal populations from the fires, whereas the already extreme radioactivity background plays a major role in their living quality. The resulting releases of (137)Cs after hypothetical wildfires in Chernobyl's forests are classified as high in the International Nuclear Events Scale (INES). The estimated cancer incidents and fatalities are expected to be comparable to those predicted for Fukushima. This is attributed to the fact that the distribution of radioactive fallout after the wildfires occurred to the intensely populated Western Europe, whereas after Fukushima it occurred towards the Pacific Ocean. The situation will be exacerbated near the forests not only due to the expected redistribution of refractory radionuclides (also trapped there), but also due to the nutritional habits of the local human and animal population.


Asunto(s)
Accidente Nuclear de Chernóbil , Incendios , Ceniza Radiactiva , Animales , Radioisótopos de Cesio/análisis , Bosques , Humanos , Ceniza Radiactiva/análisis , Riesgo , Ucrania
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA