Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
EMBO J ; 41(12): e108306, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35506364

RESUMEN

Influenza virus infection causes considerable morbidity and mortality, but current therapies have limited efficacy. We hypothesized that investigating the metabolic signaling during infection may help to design innovative antiviral approaches. Using bronchoalveolar lavages of infected mice, we here demonstrate that influenza virus induces a major reprogramming of lung metabolism. We focused on mitochondria-derived succinate that accumulated both in the respiratory fluids of virus-challenged mice and of patients with influenza pneumonia. Notably, succinate displays a potent antiviral activity in vitro as it inhibits the multiplication of influenza A/H1N1 and A/H3N2 strains and strongly decreases virus-triggered metabolic perturbations and inflammatory responses. Moreover, mice receiving succinate intranasally showed reduced viral loads in lungs and increased survival compared to control animals. The antiviral mechanism involves a succinate-dependent posttranslational modification, that is, succinylation, of the viral nucleoprotein at the highly conserved K87 residue. Succinylation of viral nucleoprotein altered its electrostatic interactions with viral RNA and further impaired the trafficking of viral ribonucleoprotein complexes. The finding that succinate efficiently disrupts the influenza replication cycle opens up new avenues for improved treatment of influenza pneumonia.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Neumonía , Animales , Antivirales/farmacología , Humanos , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Ratones , Proteínas de la Nucleocápside , Nucleoproteínas/metabolismo , Ácido Succínico/metabolismo , Ácido Succínico/farmacología , Ácido Succínico/uso terapéutico , Replicación Viral
2.
PLoS Pathog ; 20(6): e1011642, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38875296

RESUMEN

Influenza viruses transcribe and replicate their genome in the nucleus of the infected cells, two functions that are supported by the viral RNA-dependent RNA-polymerase (FluPol). FluPol displays structural flexibility related to distinct functional states, from an inactive form to conformations competent for replication and transcription. FluPol machinery is constituted by a structurally-invariant core comprising the PB1 subunit stabilized with PA and PB2 domains, whereas the PA endonuclease and PB2 C-domains can pack in different configurations around the core. To get insights into the functioning of FluPol, we selected single-domain nanobodies (VHHs) specific of the influenza A FluPol core. When expressed intracellularly, some of them exhibited inhibitory activity on type A FluPol, but not on the type B one. The most potent VHH (VHH16) binds PA and the PA-PB1 dimer with an affinity below the nanomolar range. Ectopic intracellular expression of VHH16 in virus permissive cells blocks multiplication of different influenza A subtypes, even when induced at late times post-infection. VHH16 was found to interfere with the transport of the PA-PB1 dimer to the nucleus, without affecting its handling by the importin ß RanBP5 and subsequent steps in FluPol assembly. Using FluPol mutants selected after passaging in VHH16-expressing cells, we identified the VHH16 binding site at the interface formed by PA residues with the N-terminus of PB1, overlapping or close to binding sites of two host proteins, ANP32A and RNA-polymerase II RPB1 subunit which are critical for virus replication and transcription, respectively. These data suggest that the VHH16 neutralization is likely due to several activities, altering the import of the PA-PB1 dimer into the nucleus as well as inhibiting specifically virus transcription and replication. Thus, the VHH16 binding site represents a new Achilles' heel for FluPol and as such, a potential target for antiviral development.


Asunto(s)
Antivirales , Virus de la Influenza A , ARN Polimerasa Dependiente del ARN , Anticuerpos de Dominio Único , Replicación Viral , Anticuerpos de Dominio Único/inmunología , Humanos , Antivirales/farmacología , Virus de la Influenza A/inmunología , Animales , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/metabolismo , Gripe Humana/inmunología , Gripe Humana/virología , Células HEK293 , Perros , Células de Riñón Canino Madin Darby
3.
J Am Chem Soc ; 145(38): 20985-21001, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37707433

RESUMEN

Adaptation of avian influenza RNA polymerase (FluPol) to human cells requires mutations on the 627-NLS domains of the PB2 subunit. The E627K adaptive mutation compensates a 33-amino-acid deletion in the acidic intrinsically disordered domain of the host transcription regulator ANP32A, a deletion that restricts FluPol activity in mammalian cells. The function of ANP32A in the replication transcription complex and in particular its role in host restriction remains poorly understood. Here we characterize ternary complexes formed between ANP32A, FluPol, and the viral nucleoprotein, NP, supporting the putative role of ANP32A in shuttling NP to the replicase complex. We demonstrate that while FluPol and NP can simultaneously bind distinct linear motifs on avian ANP32A, the deletion in the shorter human ANP32A blocks this mode of colocalization. NMR reveals that NP and human-adapted FluPol, containing the E627 K mutation, simultaneously bind the identical extended linear motif on human ANP32A in an electrostatically driven, highly dynamic and multivalent ternary complex. This study reveals a probable molecular mechanism underlying host adaptation, whereby E627K, which enhances the basic surface of the 627 domain, is selected to confer the necessary multivalent properties to allow ANP32A to colocalize NP and FluPol in human cells.


Asunto(s)
Gripe Aviar , Animales , Humanos , Nucleotidiltransferasas , Aminoácidos , Mutación , Probabilidad , Mamíferos , Proteínas Nucleares , Proteínas de Unión al ARN/genética
4.
PLoS Pathog ; 17(12): e1010106, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34969061

RESUMEN

The development of safe and effective vaccines in a record time after the emergence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a remarkable achievement, partly based on the experience gained from multiple viral outbreaks in the past decades. However, the Coronavirus Disease 2019 (COVID-19) crisis also revealed weaknesses in the global pandemic response and large gaps that remain in our knowledge of the biology of coronaviruses (CoVs) and influenza viruses, the 2 major respiratory viruses with pandemic potential. Here, we review current knowns and unknowns of influenza viruses and CoVs, and we highlight common research challenges they pose in 3 areas: the mechanisms of viral emergence and adaptation to humans, the physiological and molecular determinants of disease severity, and the development of control strategies. We outline multidisciplinary approaches and technological innovations that need to be harnessed in order to improve preparedeness to the next pandemic.


Asunto(s)
COVID-19/virología , Gripe Humana/virología , Orthomyxoviridae/fisiología , SARS-CoV-2/fisiología , Animales , Antivirales , COVID-19/terapia , COVID-19/transmisión , Desarrollo de Medicamentos , Evolución Molecular , Humanos , Gripe Humana/terapia , Gripe Humana/transmisión , Orthomyxoviridae/inmunología , SARS-CoV-2/inmunología , Selección Genética , Carga Viral , Vacunas Virales
5.
Proc Natl Acad Sci U S A ; 116(22): 10968-10977, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31076555

RESUMEN

New therapeutic strategies targeting influenza are actively sought due to limitations in current drugs available. Host-directed therapy is an emerging concept to target host functions involved in pathogen life cycles and/or pathogenesis, rather than pathogen components themselves. From this perspective, we focused on an essential host partner of influenza viruses, the RED-SMU1 splicing complex. Here, we identified two synthetic molecules targeting an α-helix/groove interface essential for RED-SMU1 complex assembly. We solved the structure of the SMU1 N-terminal domain in complex with RED or bound to one of the molecules identified to disrupt this complex. We show that these compounds inhibiting RED-SMU1 interaction also decrease endogenous RED-SMU1 levels and inhibit viral mRNA splicing and viral multiplication, while preserving cell viability. Overall, our data demonstrate the potential of RED-SMU1 destabilizing molecules as an antiviral therapy that could be active against a wide range of influenza viruses and be less prone to drug resistance.


Asunto(s)
Antivirales/farmacología , Proteínas Cromosómicas no Histona/metabolismo , Citocinas/metabolismo , Orthomyxoviridae/efectos de los fármacos , Factores de Empalme de ARN/metabolismo , Células A549 , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Citocinas/química , Citocinas/genética , Células HEK293 , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Simulación del Acoplamiento Molecular , Orthomyxoviridae/patogenicidad , Unión Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Empalme del ARN , Factores de Empalme de ARN/química , Factores de Empalme de ARN/genética , Empalmosomas/efectos de los fármacos
6.
Nature ; 516(7531): 361-6, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25409151

RESUMEN

Influenza virus polymerase uses a capped primer, derived by 'cap-snatching' from host pre-messenger RNA, to transcribe its RNA genome into mRNA and a stuttering mechanism to generate the poly(A) tail. By contrast, genome replication is unprimed and generates exact full-length copies of the template. Here we use crystal structures of bat influenza A and human influenza B polymerases (FluA and FluB), bound to the viral RNA promoter, to give mechanistic insight into these distinct processes. In the FluA structure, a loop analogous to the priming loop of flavivirus polymerases suggests that influenza could initiate unprimed template replication by a similar mechanism. Comparing the FluA and FluB structures suggests that cap-snatching involves in situ rotation of the PB2 cap-binding domain to direct the capped primer first towards the endonuclease and then into the polymerase active site. The polymerase probably undergoes considerable conformational changes to convert the observed pre-initiation state into the active initiation and elongation states.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Virus de la Influenza A/enzimología , Virus de la Influenza B/enzimología , Modelos Moleculares , Caperuzas de ARN , ARN Viral/biosíntesis , ARN Viral/química , Dominio Catalítico , Cristalización , ARN Polimerasas Dirigidas por ADN/química , Regulación Viral de la Expresión Génica , Virus de la Influenza A/química , Virus de la Influenza B/química , Regiones Promotoras Genéticas , Unión Proteica , Estructura Terciaria de Proteína , Caperuzas de ARN/química , Caperuzas de ARN/metabolismo , Replicación Viral
7.
Nucleic Acids Res ; 42(20): 12939-48, 2014 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-25326326

RESUMEN

Eukaryotic elongation factor eEF1A transits between the GTP- and GDP-bound conformations during the ribosomal polypeptide chain elongation. eEF1A*GTP establishes a complex with the aminoacyl-tRNA in the A site of the 80S ribosome. Correct codon-anticodon recognition triggers GTP hydrolysis, with subsequent dissociation of eEF1A*GDP from the ribosome. The structures of both the 'GTP'- and 'GDP'-bound conformations of eEF1A are unknown. Thus, the eEF1A-related ribosomal mechanisms were anticipated only by analogy with the bacterial homolog EF-Tu. Here, we report the first crystal structure of the mammalian eEF1A2*GDP complex which indicates major differences in the organization of the nucleotide-binding domain and intramolecular movements of eEF1A compared to EF-Tu. Our results explain the nucleotide exchange mechanism in the mammalian eEF1A and suggest that the first step of eEF1A*GDP dissociation from the 80S ribosome is the rotation of the nucleotide-binding domain observed after GTP hydrolysis.


Asunto(s)
Guanosina Difosfato/química , Guanosina Trifosfato/química , Factor 1 de Elongación Peptídica/química , Animales , Cristalografía por Rayos X , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Magnesio/química , Modelos Moleculares , Factor 1 de Elongación Peptídica/metabolismo , Unión Proteica , Conformación Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Conejos
8.
PLoS Pathog ; 9(3): e1003275, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23555270

RESUMEN

Isolated influenza A virus nucleoprotein exists in an equilibrium between monomers and trimers. Samples containing only monomers or only trimers can be stabilized by respectively low and high salt. The trimers bind RNA with high affinity but remain trimmers, whereas the monomers polymerise onto RNA forming nucleoprotein-RNA complexes. When wild type (wt) nucleoprotein is crystallized, it forms trimers, whether one starts with monomers or trimers. We therefore crystallized the obligate monomeric R416A mutant nucleoprotein and observed how the domain exchange loop that leads over to a neighbouring protomer in the trimer structure interacts with equivalent sites on the mutant monomer surface, avoiding polymerisation. The C-terminus of the monomer is bound to the side of the RNA binding surface, lowering its positive charge. Biophysical characterization of the mutant and wild type monomeric proteins gives the same results, suggesting that the exchange domain is folded in the same way for the wild type protein. In a search for how monomeric wt nucleoprotein may be stabilized in the infected cell we determined the phosphorylation sites on nucleoprotein isolated from virus particles. We found that serine 165 was phosphorylated and conserved in all influenza A and B viruses. The S165D mutant that mimics phosphorylation is monomeric and displays a lowered affinity for RNA compared with wt monomeric NP. This suggests that phosphorylation may regulate the polymerisation state and RNA binding of nucleoprotein in the infected cell. The monomer structure could be used for finding new anti influenza drugs because compounds that stabilize the monomer may slow down viral infection.


Asunto(s)
Virus de la Influenza A/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Virales/metabolismo , Sitios de Unión , Dicroismo Circular , Cristalización , Virus de la Influenza A/química , Virus de la Influenza A/ultraestructura , Mutación , Tamaño de la Partícula , Fosforilación , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , ARN Viral/química , Ribonucleoproteínas/química , Proteínas Virales/química
9.
Nature ; 458(7240): 914-8, 2009 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-19194459

RESUMEN

The influenza virus polymerase, a heterotrimer composed of three subunits, PA, PB1 and PB2, is responsible for replication and transcription of the eight separate segments of the viral RNA genome in the nuclei of infected cells. The polymerase synthesizes viral messenger RNAs using short capped primers derived from cellular transcripts by a unique 'cap-snatching' mechanism. The PB2 subunit binds the 5' cap of host pre-mRNAs, which are subsequently cleaved after 10-13 nucleotides by the viral endonuclease, hitherto thought to reside in the PB2 (ref. 5) or PB1 (ref. 2) subunits. Here we describe biochemical and structural studies showing that the amino-terminal 209 residues of the PA subunit contain the endonuclease active site. We show that this domain has intrinsic RNA and DNA endonuclease activity that is strongly activated by manganese ions, matching observations reported for the endonuclease activity of the intact trimeric polymerase. Furthermore, this activity is inhibited by 2,4-dioxo-4-phenylbutanoic acid, a known inhibitor of the influenza endonuclease. The crystal structure of the domain reveals a structural core closely resembling resolvases and type II restriction endonucleases. The active site comprises a histidine and a cluster of three acidic residues, conserved in all influenza viruses, which bind two manganese ions in a configuration similar to other two-metal-dependent endonucleases. Two active site residues have previously been shown to specifically eliminate the polymerase endonuclease activity when mutated. These results will facilitate the optimisation of endonuclease inhibitors as potential new anti-influenza drugs.


Asunto(s)
Endonucleasas/metabolismo , Subtipo H3N2 del Virus de la Influenza A/enzimología , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Caperuzas de ARN/metabolismo , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Endonucleasas/química , Estabilidad de Enzimas , Histidina/metabolismo , Humanos , Subtipo H5N1 del Virus de la Influenza A/enzimología , Gammainfluenzavirus/enzimología , Manganeso/metabolismo , Manganeso/farmacología , Modelos Moleculares , Datos de Secuencia Molecular
10.
J Virol ; 87(12): 7166-9, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23576502

RESUMEN

The atomic structure of the stable tetramerization domain of the measles virus phosphoprotein shows a tight four-stranded coiled coil. Although at first sight similar to the tetramerization domain of the Sendai virus phosphoprotein, which has a hydrophilic interface, the measles virus domain has kinked helices that have a strongly hydrophobic interface and it lacks the additional N-terminal three helical bundles linking the long helices.


Asunto(s)
Virus del Sarampión/química , Fosfoproteínas/química , Proteínas Virales/química , Espectroscopía de Resonancia Magnética , Virus del Sarampión/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Multimerización de Proteína , Estructura Secundaria de Proteína
11.
Viruses ; 16(3)2024 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-38543786

RESUMEN

Influenza A viruses (IAVs) possess a segmented genome consisting of eight viral RNAs (vRNAs) associated with multiple copies of viral nucleoprotein (NP) and a viral polymerase complex. Despite the crucial role of RNA structure in IAV replication, the impact of NP binding on vRNA structure is not well understood. In this study, we employed SHAPE chemical probing to compare the structure of NS and M vRNAs of WSN IAV in various states: before the addition of NP, in complex with NP, and after the removal of NP. Comparison of the RNA structures before the addition of NP and after its removal reveals that NP, while introducing limited changes, remodels local structures in both vRNAs and long-range interactions in the NS vRNA, suggesting a potentially biologically relevant RNA chaperone activity. In contrast, NP significantly alters the structure of vRNAs in vRNA/NP complexes, though incorporating experimental data into RNA secondary structure prediction proved challenging. Finally, our results suggest that NP not only binds single-stranded RNA but also helices with interruptions, such as bulges or small internal loops, with a preference for G-poor and C/U-rich regions.


Asunto(s)
Virus de la Influenza A , Proteínas de la Nucleocápside , Virus de la Influenza A/genética , Virus de la Influenza A/metabolismo , Nucleoproteínas/metabolismo , ARN Viral/metabolismo , Genómica
12.
Antimicrob Agents Chemother ; 57(3): 1394-403, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23295920

RESUMEN

Gram-negative bacteria cause approximately 70% of the infections in intensive care units. A growing number of bacterial isolates responsible for these infections are resistant to currently available antibiotics and to many in development. Most agents under development are modifications of existing drug classes, which only partially overcome existing resistance mechanisms. Therefore, new classes of Gram-negative antibacterials with truly novel modes of action are needed to circumvent these existing resistance mechanisms. We have previously identified a new a way to inhibit an aminoacyl-tRNA synthetase, leucyl-tRNA synthetase (LeuRS), in fungi via the oxaborole tRNA trapping (OBORT) mechanism. Herein, we show how we have modified the OBORT mechanism using a structure-guided approach to develop a new boron-based antibiotic class, the aminomethylbenzoxaboroles, which inhibit bacterial leucyl-tRNA synthetase and have activity against Gram-negative bacteria by largely evading the main efflux mechanisms in Escherichia coli and Pseudomonas aeruginosa. The lead analogue, AN3365, is active against Gram-negative bacteria, including Enterobacteriaceae bearing NDM-1 and KPC carbapenemases, as well as P. aeruginosa. This novel boron-based antibacterial, AN3365, has good mouse pharmacokinetics and was efficacious against E. coli and P. aeruginosa in murine thigh infection models, which suggest that this novel class of antibacterials has the potential to address this unmet medical need.


Asunto(s)
Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Antibacterianos/farmacología , Compuestos de Boro/farmacología , Escherichia coli/efectos de los fármacos , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos , Aminoacil-ARNt Sintetasas/metabolismo , Animales , Antibacterianos/síntesis química , Antibacterianos/farmacocinética , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Compuestos de Boro/síntesis química , Compuestos de Boro/farmacocinética , Cristalografía por Rayos X , Descubrimiento de Drogas , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Escherichia coli/enzimología , Femenino , Infecciones por Bacterias Gramnegativas/microbiología , Humanos , Leucina/metabolismo , Ratones , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Pseudomonas aeruginosa/enzimología , Relación Estructura-Actividad , Muslo/microbiología , Inhibidores de beta-Lactamasas , beta-Lactamasas/metabolismo
13.
Virologie (Montrouge) ; 17(1): 6-16, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31910551

RESUMEN

Transcription and replication by influenza virus are carried out by protein-RNA complexes named RNPs. There are eight of these complexes, each containing one of the eight segments of viral RNA, multiple copies of the viral nucleoprotein and each complex carries a copy of the viral RNA-dependent RNA polymerase. The polymerase itself is a complex of three subunits: PB1, PB2 and PA. Through an effort by laboratories from all over the world, atomic structures have been determined of nucleoproteins of several viral strains and of protein domains of PA and PB2. For PB1, only the structures of the small interfaces with PA and PB2 have been determined. Even though a full understanding of the fundamental processes in the viral life cycle is still lacking, the structures have revealed how nucleoprotein can oligomerize and binds to RNA, how PB1 binds to PA and how the polymerase binds to capped cellular pre-messenger RNA (mRNA) and cleaves this RNA in order to make a capped primer for its own mRNAs (cap-snatching mechanism). The structures also stimulated structure-aided drug design efforts and first generation inhibitors against nucleoprotein oligomerization, binding of PB1 to PA and the cap-snatching activity have been published. Such inhibitors may be developed into new anti-influenza drugs.

14.
Viruses ; 15(6)2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37376615

RESUMEN

In recent years, cryo-electron microscopy (cryo-EM) has emerged as an important standalone technique within structural biology [...].


Asunto(s)
Biología Molecular , Microscopía por Crioelectrón/métodos
15.
Sci Adv ; 9(50): eadj9974, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38100595

RESUMEN

Influenza virus genome encapsidation is essential for the formation of a helical viral ribonucleoprotein (vRNP) complex composed of nucleoproteins (NP), the trimeric polymerase, and the viral genome. Although low-resolution vRNP structures are available, it remains unclear how the viral RNA is encapsidated and how NPs assemble into the helical filament specific of influenza vRNPs. In this study, we established a biological tool, the RNP-like particles assembled from recombinant influenza A virus NP and synthetic RNA, and we present the first subnanometric cryo-electron microscopy structure of the helical NP-RNA complex (8.7 to 5.3 Å). The helical RNP-like structure reveals a parallel double-stranded conformation, allowing the visualization of NP-NP and NP-RNA interactions. The RNA, located at the interface of neighboring NP protomers, interacts with conserved residues previously described as essential for the NP-RNA interaction. The NP undergoes conformational changes to enable RNA binding and helix formation. Together, our findings provide relevant insights for understanding the mechanism for influenza genome encapsidation.


Asunto(s)
Gripe Humana , Nucleoproteínas , Humanos , Nucleoproteínas/química , Microscopía por Crioelectrón , Ribonucleoproteínas/genética , ARN Viral/metabolismo , Nucleocápside/metabolismo
16.
Viruses ; 14(11)2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36366462

RESUMEN

Determining the structural organisation of viral replication complexes and unravelling the impact of infection on cellular homeostasis represent important challenges in virology. This may prove particularly useful when confronted with viruses that pose a significant threat to human health, that appear unique within their family, or for which knowledge is scarce. Among Mononegavirales, bornaviruses (family Bornaviridae) stand out due to their compact genomes and their nuclear localisation for replication. The recent recognition of the zoonotic potential of several orthobornaviruses has sparked a surge of interest in improving our knowledge on this viral family. In this work, we provide a complete analysis of the structural organisation of Borna disease virus 1 (BoDV-1) phosphoprotein (P), an important cofactor for polymerase activity. Using X-ray diffusion and diffraction experiments, we revealed that BoDV-1 P adopts a long coiled-coil α-helical structure split into two parts by an original ß-strand twist motif, which is highly conserved across the members of whole Orthobornavirus genus and may regulate viral replication. In parallel, we used BioID to determine the proximal interactome of P in living cells. We confirmed previously known interactors and identified novel proteins linked to several biological processes such as DNA repair or mRNA metabolism. Altogether, our study provides important structure/function cues, which may improve our understanding of BoDV-1 pathogenesis.


Asunto(s)
Virus de la Enfermedad de Borna , Bornaviridae , Animales , Humanos , Virus de la Enfermedad de Borna/genética , Fosfoproteínas/genética , Bornaviridae/genética , Reparación del ADN , ADN , ARN Mensajero/genética
17.
J Virol ; 84(7): 3707-10, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20089657

RESUMEN

The crystal structure of the dimerization domain of rabies virus phosphoprotein was determined. The monomer consists of two alpha-helices that make a helical hairpin held together mainly by hydrophobic interactions. The monomer has a hydrophilic and a hydrophobic face, and in the dimer two monomers pack together through their hydrophobic surfaces. This structure is very different from the dimerization domain of the vesicular stomatitis virus phosphoprotein and also from the tetramerization domain of the Sendai virus phosphoprotein, suggesting that oligomerization is conserved but not structure.


Asunto(s)
Fosfoproteínas/química , Multimerización de Proteína , Virus de la Rabia/química , Proteínas Virales/química , Dimerización , Estructura Secundaria de Proteína , Virus Sendai/química , Virus de la Estomatitis Vesicular Indiana/química
18.
J Virol ; 84(18): 9096-104, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20592097

RESUMEN

Influenza virus polymerase initiates the biosynthesis of its own mRNAs with capped 10- to 13-nucleotide fragments cleaved from cellular (pre-)mRNAs. Two activities are required for this cap-snatching activity: specific binding of the cap structure and an endonuclease activity. Recent work has shown that the cap-binding site is situated in the central part of the PB2 subunit and that the endonuclease activity is situated in the N-terminal domain of the PA subunit (PA-Nter). The influenza endonuclease is a member of the PD-(D/E)XK family of nucleases that use divalent metal ions for nucleic acid cleavage. Here we analyze the metal binding and endonuclease activities of eight PA-Nter single-point mutants. We show by calorimetry that the wild-type active site binds two Mn(2+) ions and has a 500-fold higher affinity for manganese than for magnesium ions. The endonuclease activity of the isolated mutant domains are compared with the cap-dependent transcription activities of identical mutations in trimeric recombinant polymerases previously described by other groups. Mutations that inactivate the endonuclease activity in the isolated PA-Nter knock out the transcription but not replication activity in the recombinant polymerase. We confirm the importance of a number of active-site residues and identify some residues that may be involved in the positioning of the RNA substrate in the active site. Our results validate the use of the isolated endonuclease domain in a drug-design process for new anti-influenza virus compounds.


Asunto(s)
Cationes Bivalentes/metabolismo , Manganeso/metabolismo , Orthomyxoviridae/enzimología , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Calorimetría , Dominio Catalítico , Endonucleasas/genética , Endonucleasas/metabolismo , Cinética , Magnesio/metabolismo , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Orthomyxoviridae/genética , Mutación Puntual , Unión Proteica , Estructura Terciaria de Proteína
19.
Viruses ; 13(12)2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34960735

RESUMEN

Vesicular stomatitis virus (VSV), the founding member of the mononegavirus order (Mononegavirales), was found to be a negative strand RNA virus in the 1960s, and since then the number of such viruses has continually increased with no end in sight. Sendai virus (SeV) was noted soon afterwards due to an outbreak of newborn pneumonitis in Japan whose putative agent was passed in mice, and nowadays this mouse virus is mainly the bane of animal houses and immunologists. However, SeV was important in the study of this class of viruses because, like flu, it grows to high titers in embryonated chicken eggs, facilitating the biochemical characterization of its infection and that of its nucleocapsid, which is very close to that of measles virus (MeV). This review and opinion piece follow SeV as more is known about how various mononegaviruses express their genetic information and carry out their RNA synthesis, and proposes a unified model based on what all MNV have in common.


Asunto(s)
Infecciones por Mononegavirales/virología , Mononegavirales/genética , ARN Viral/genética , Virus Sendai/genética , Animales , Genoma Viral , Humanos , Mononegavirales/metabolismo , ARN Viral/metabolismo , Infecciones por Respirovirus/virología , Virus Sendai/metabolismo
20.
PLoS Pathog ; 4(8): e1000136, 2008 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-18769709

RESUMEN

Understanding how avian influenza viruses adapt to human hosts is critical for the monitoring and prevention of future pandemics. Host specificity is determined by multiple sites in different viral proteins, and mutation of only a limited number of these sites can lead to inter-species transmission. Several of these sites have been identified in the viral polymerase, the best characterised being position 627 in the PB2 subunit. Efficient viral replication at the relatively low temperature of the human respiratory tract requires lysine 627 rather than the glutamic acid variant found systematically in avian viruses. However, the molecular mechanism by which any of these host specific sites determine host range are unknown, although adaptation to host factors is frequently evoked. We used ESPRIT, a library screening method, to identify a new PB2 domain that contains a high density of putative host specific sites, including residue 627. The X-ray structure of this domain (denoted the 627-domain) exhibits a novel fold with the side-chain of Lys627 solvent exposed. The structure of the K627E mutated domain shows no structural differences but the charge reversal disrupts a striking basic patch on the domain surface. Five other recently proposed host determining sites of PB2 are also located on the 627-domain surface. The structure of the complete C-terminal region of PB2 comprising the 627-domain and the previously identified NLS-domain, which binds the host nuclear import factor importin alpha, was also determined. The two domains are found to pack together with a largely hydrophilic interface. These data enable a three-dimensional mapping of approximately half of PB2 sites implicated in cross-species transfer onto a single structural unit. Their surface location is consistent with roles in interactions with other viral proteins or host factors. The identification and structural characterization of these well-defined PB2 domains will help design experiments to elucidate the effects of mutations on polymerase-host factor interactions.


Asunto(s)
Adaptación Fisiológica , Sustitución de Aminoácidos , Subtipo H3N2 del Virus de la Influenza A/enzimología , Mutación Missense , ARN Polimerasa Dependiente del ARN/química , Proteínas Virales/química , Cristalografía por Rayos X , Interacciones Huésped-Patógeno , Humanos , Subtipo H3N2 del Virus de la Influenza A/genética , Gripe Humana/enzimología , Gripe Humana/genética , Gripe Humana/metabolismo , Estructura Terciaria de Proteína/genética , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , alfa Carioferinas/química , alfa Carioferinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA