Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36675082

RESUMEN

A number of stressors and inflammatory mediators (cytokines, proteases, oxidative stress mediators) released during inflammation or ischemia stimulate and activate cells in blood, the vessel wall or tissues. The most well-known functional and phenotypic responses of activated cells are (1) the immediate expression and/or release of stored or newly synthesized bioactive molecules, and (2) membrane blebbing followed by release of microvesicles. An ultimate response, namely the formation of extracellular traps by neutrophils (NETs), is outside the scope of this work. The main objective of this article is to provide an overview on the mechanism of plasminogen reception and activation at the surface of cell-derived microvesicles, new actors in fibrinolysis and proteolysis. The role of microvesicle-bound plasmin in pathological settings involving inflammation, atherosclerosis, angiogenesis, and tumour growth, remains to be investigated. Further studies are necessary to determine if profibrinolytic microvesicles are involved in a finely regulated equilibrium with pro-coagulant microvesicles, which ensures a balanced haemostasis, leading to the maintenance of vascular patency.


Asunto(s)
Micropartículas Derivadas de Células , Fibrinólisis , Plasminógeno , Proteolisis , Humanos , Vasos Sanguíneos/metabolismo , Fibrinolisina/metabolismo , Fibrinólisis/fisiología , Inflamación/metabolismo , Plasminógeno/metabolismo , Micropartículas Derivadas de Células/metabolismo
2.
Rheumatology (Oxford) ; 61(5): 1936-1947, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-34297066

RESUMEN

OBJECTIVE: To assess the superiority of adipose tissue-derived stromal vascular fraction (AD-SVF) injection into the fingers vs placebo in reducing hand disability in systemic sclerosis (SSc) patients. METHODS: We performed a double-blind, multicentre, phase II trial from October 2015 to January 2018 in France. SSc patients with a Cochin Hand Function Scale (CHFS) ≥20/90 were randomized 1:1 to receive injection of AD-SVF or placebo. AD-SVF was obtained using the automated processing Celution 800/CRS system. The placebo was lactated Ringer's solution. The primary efficacy end point was the change of the CHFS score from baseline to 3 months. Secondary efficacy endpoints included the CHFS score at 6 months, hand function, vasculopathy, hand pain, skin fibrosis, sensitivity of the finger pulps, Scleroderma Health Assessment Questionnaire, patients and physician satisfaction, and safety. RESULTS: Forty patients were randomized. The AD-SVF and placebo groups were comparable for age, sex ratio, disease duration, skin fibrosis of the hands and main cause of hand disability. After 3 months' follow-up, hand function significantly improved in both groups with no between-group difference of CHFS (mean change of -9.2 [12.2] in the AD-SVF group vs -7.6 [13.2] in the placebo group). At 6 months, hand function improved in both groups. CONCLUSION: This study showed an improvement of hand function in both groups over time, with no superiority of the AD-SVF. Considering the limits of this trial, studies on a larger population of patients with homogeneous phenotype and hand handicap should be encouraged to accurately assess the benefit of AD-SVF therapy. TRIAL REGISTRATION: ClinicalTrials.gov, https://clinicaltrials.gov, NCT02558543. Registered on September 24, 2015.


Asunto(s)
Esclerodermia Sistémica , Fracción Vascular Estromal , Tejido Adiposo , Fibrosis , Mano , Humanos , Esclerodermia Sistémica/complicaciones
3.
Arterioscler Thromb Vasc Biol ; 41(1): 415-429, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33147990

RESUMEN

OBJECTIVE: The study's aim was to analyze the capacity of human valve interstitial cells (VICs) to participate in aortic valve angiogenesis. Approach and Results: VICs were isolated from human aortic valves obtained after surgery for calcific aortic valve disease and from normal aortic valves unsuitable for grafting (control VICs). We examined VIC in vitro and in vivo potential to differentiate in endothelial and perivascular lineages. VIC paracrine effect was also examined on human endothelial colony-forming cells. A pathological VIC (VICp) mesenchymal-like phenotype was confirmed by CD90+/CD73+/CD44+ expression and multipotent-like differentiation ability. When VICp were cocultured with endothelial colony-forming cells, they formed microvessels by differentiating into perivascular cells both in vivo and in vitro. VICp and control VIC conditioned media were compared using serial ELISA regarding quantification of endothelial and angiogenic factors. Higher expression of VEGF (vascular endothelial growth factor)-A was observed at the protein level in VICp-conditioned media and confirmed at the mRNA level in VICp compared with control VIC. Conditioned media from VICp induced in vitro a significant increase in endothelial colony-forming cell proliferation, migration, and sprouting compared with conditioned media from control VIC. These effects were inhibited by blocking VEGF-A with blocking antibody or siRNA approach, confirming VICp involvement in angiogenesis by a VEGF-A dependent mechanism. CONCLUSIONS: We provide here the first proof of an angiogenic potential of human VICs isolated from patients with calcific aortic valve disease. These results point to a novel function of VICp in valve vascularization during calcific aortic valve disease, with a perivascular differentiation ability and a VEGF-A paracrine effect. Targeting perivascular differentiation and VEGF-A to slow calcific aortic valve disease progression warrants further investigation.


Asunto(s)
Estenosis de la Válvula Aórtica/metabolismo , Válvula Aórtica/metabolismo , Válvula Aórtica/patología , Calcinosis/metabolismo , Diferenciación Celular , Linaje de la Célula , Células Progenitoras Endoteliales/metabolismo , Neovascularización Patológica , Factor A de Crecimiento Endotelial Vascular/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Estenosis de la Válvula Aórtica/patología , Calcinosis/patología , Estudios de Casos y Controles , Células Cultivadas , Técnicas de Cocultivo , Células Progenitoras Endoteliales/patología , Células Progenitoras Endoteliales/trasplante , Femenino , Humanos , Masculino , Ratones Desnudos , Persona de Mediana Edad , Osteogénesis , Comunicación Paracrina , Fenotipo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/genética
4.
Crit Care ; 26(1): 48, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-35189925

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-induced acute respiratory distress syndrome (ARDS) causes high mortality. Umbilical cord-derived mesenchymal stromal cells (UC-MSCs) have potentially relevant immune-modulatory properties, whose place in ARDS treatment is not established. This phase 2b trial was undertaken to assess the efficacy of UC-MSCs in patients with SARS-CoV-2-induced ARDS. METHODS: This multicentre, double-blind, randomized, placebo-controlled trial (STROMA-CoV-2) recruited adults (≥ 18 years) with SARS-CoV-2-induced early (< 96 h) mild-to-severe ARDS in 10 French centres. Patients were randomly assigned to receive three intravenous infusions of 106 UC-MSCs/kg or placebo (0.9% NaCl) over 5 days after recruitment. For the modified intention-to-treat population, the primary endpoint was the partial pressure of oxygen to fractional inspired oxygen (PaO2/FiO2)-ratio change between baseline (day (D) 0) and D7. RESULTS: Among the 107 patients screened for eligibility from April 6, 2020, to October 29, 2020, 45 were enrolled, randomized and analyzed. PaO2/FiO2 changes between D0 and D7 did not differ significantly between the UC-MSCs and placebo groups (medians [IQR] 54.3 [- 15.5 to 93.3] vs 25.3 [- 33.3 to 104.6], respectively; ANCOVA estimated treatment effect 7.4, 95% CI - 44.7 to 59.7; P = 0.77). Six (28.6%) of the 21 UC-MSCs recipients and six of 24 (25%) placebo-group patients experienced serious adverse events, none of which were related to UC-MSCs treatment. CONCLUSIONS: D0-to-D7 PaO2/FiO2 changes for intravenous UC-MSCs-versus placebo-treated adults with SARS-CoV-2-induced ARDS did not differ significantly. Repeated UC-MSCs infusions were not associated with any serious adverse events during treatment or thereafter (until D28). Larger trials enrolling patients earlier during the course of their ARDS are needed to further assess UC-MSCs efficacy in this context. TRIAL REGISTRATION: NCT04333368. Registered 01 April 2020, https://clinicaltrials.gov/ct2/history/NCT04333368 .


Asunto(s)
COVID-19 , Células Madre Mesenquimatosas , Síndrome de Dificultad Respiratoria , Método Doble Ciego , Humanos , Síndrome de Dificultad Respiratoria/terapia , SARS-CoV-2 , Resultado del Tratamiento
5.
Int J Mol Sci ; 23(13)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35806227

RESUMEN

Systemic Sclerosis (SSc) is a chronic autoimmune disease with high morbidity and mortality. Autologous Hematopoietic Stem Cell Transplantation (AHSCT) is the best therapeutic option for rapidly progressive SSc, allowing increased survival with regression of skin and lung fibrosis. The immune determinants of the clinical response after AHSCT have yet to be well characterized. In particular, the pivotal role of the Human Leukocyte Antigen (HLA) system is not well understood, including the role of non-classical immuno-modulatory HLA-E and HLA-G molecules in developing tolerance and the role of Natural Killer cells (NK) in the immunomodulation processes. We retrospectively tested whether the genetic and/or circulating expression of the non-classical HLA-E and HLA-G loci, as well as the imputed classical HLA determinants of HLA-E expression, influence the observed clinical response to AHSCT at 12- and 24-month follow-up. In a phenotypically well-defined sample of 46 SSc patients classified as clinical responders or non-responders, we performed HLA genotyping using next-generation sequencing and circulating levels of HLA-G and quantified HLA-E soluble isoforms by ELISA. The -21HLA-B leader peptide dimorphism and the differential expression level of HLA-A and HLA-C alleles were imputed. We observed a strong trend towards better clinical response in HLA-E*01:03 or HLA-G 14bp Del allele carriers, which are known to be associated with high expression of the corresponding molecules. At 12-month post-AHSCT follow-up, higher circulating levels of soluble HLA-E were associated with higher values of modified Rodnan Skin Score (mRSS) (p = 0.0275), a proxy of disease severity. In the non-responder group, the majority of patients carried a double dose of the HLA-B Threonine leader peptide, suggesting a non-efficient inhibitory effect of the HLA-E molecules. We did not find any correlation between the soluble HLA-G levels and the observed clinical response after AHSCT. High imputed expression levels of HLA-C alleles, reflecting more efficient NK cell inhibition, correlated with low values of the mRSS 3 months after AHSCT (p = 0.0087). This first pilot analysis of HLA-E and HLA-G immuno-modulatory molecules suggests that efficient inhibition of NK cells contributes to clinical response after AHSCT for SSc. Further studies are warranted in larger patient cohorts to confirm our results.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Esclerodermia Sistémica , Antígenos HLA-C , Antígenos HLA-G , Trasplante de Células Madre Hematopoyéticas/métodos , Antígenos de Histocompatibilidad Clase II , Humanos , Señales de Clasificación de Proteína , Estudios Retrospectivos , Esclerodermia Sistémica/genética , Esclerodermia Sistémica/terapia , Trasplante Autólogo
6.
Angiogenesis ; 22(2): 325-339, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30607696

RESUMEN

INTRODUCTION: Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by obliteration of alveolar architecture, resulting in declining lung function and ultimately death. Pathogenic mechanisms involve a concomitant accumulation of scar tissue together with myofibroblasts activation and a strong abnormal vascular remodeling. Endothelial progenitor cells (ECFC subtype) have been investigated in several human lung diseases as a potential actor in IPF. We previously demonstrated that ECFCs are down-regulated in IPF in contrast to healthy controls. We postulated here that ECFCs might behave as a liquid biopsy in IPF patients and that they exert modified vasculogenic properties. METHODS AND RESULTS: ECFCs isolated from controls and IPF patients expressed markers of the endothelial lineage and did not differ concerning adhesion, migration, and differentiation in vitro and in vivo. However, senescent and apoptotic states were increased in ECFCs from IPF patients as shown by galactosidase staining, p16 expression, and annexin-V staining. Furthermore, conditioned medium of IPF-ECFCs had increased level of interleukin-8 that induced migration of neutrophils in vitro and in vivo. In addition, an infiltration by neutrophils was shown in IPF lung biopsies and we found in a prospective clinical study that a high level of neutrophils in peripheral blood of IPF patients was associated to a poor prognosis. CONCLUSION: To conclude, our study shows that IPF patients have a senescent ECFC phenotype associated with an increased IL-8 secretion potential that might contribute to lung neutrophils invasion during IPF.


Asunto(s)
Células Endoteliales/metabolismo , Células Endoteliales/patología , Fibrosis Pulmonar Idiopática/etiología , Fibrosis Pulmonar Idiopática/patología , Interleucina-8/metabolismo , Células Madre/metabolismo , Células Madre/patología , Adulto , Células Cultivadas , Estudios de Cohortes , Células Endoteliales/fisiología , Estudios de Seguimiento , Francia , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Fenotipo , Cultivo Primario de Células , Células Madre/fisiología
7.
Transfusion ; 58(2): 520-531, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29277910

RESUMEN

After 30 years of hematopoietic stem cell use for various indications, umbilical cord blood is considered as an established source of cells with marrow and postmobilization peripheral blood. The limited number of cells still remains a problematic element restricting their use, especially in adults who require to be grafted with a higher cell number. Improving the quality of harvested cord blood, at least in terms of volume and amount of cells, is essential to decrease the number of discarded units. In this review, we examine several variables related to parturient, pregnancy, labor, delivery, collection, the newborn, umbilical cord, and placenta. We aim to understand the biologic mechanisms that can impact cord blood quality. This knowledge will ultimately allow targeting donors, which could provide a rich graft and improve the efficiency of the collection.


Asunto(s)
Conservación de la Sangre , Trasplante de Células Madre de Sangre del Cordón Umbilical , Sangre Fetal , Aloinjertos , Humanos
8.
Haematologica ; 102(6): 976-983, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28302713

RESUMEN

Efforts to implement family cord blood banking have been developed in the past decades for siblings requiring stem cell transplantation for conditions such as sickle cell disease. However, public banks are faced with challenging decisions about the units to be stored, discarded, or used for other endeavors. We report here 20 years of experience in family cord blood banking for sickle cell disease in two dedicated public banks. Participants were pregnant women who had a previous child diagnosed with homozygous sickle cell disease. Participation was voluntary and free of charge. All mothers underwent mandatory serological screening. Cord blood units were collected in different hospitals, but processed and stored in two public banks. A total of 338 units were stored for 302 families. Median recipient age was six years (11 months-15 years). Median collected volume and total nucleated cell count were 91 mL (range 23-230) and 8.6×108 (range 0.7-75×108), respectively. Microbial contamination was observed in 3.5% (n=12), positive hepatitis B serology in 25% (n=84), and homozygous sickle cell disease in 11% (n=37) of the collections. Forty-four units were HLA-identical to the intended recipient, and 28 units were released for transplantation either alone (n=23) or in combination with the bone marrow from the same donor (n=5), reflecting a utilization rate of 8%. Engraftment rate was 96% with 100% survival. Family cord blood banking yields good quality units for sibling transplantation. More comprehensive banking based on close collaboration among banks, clinical and transplant teams is recommended to optimize the use of these units.


Asunto(s)
Anemia de Células Falciformes/terapia , Almacenamiento de Sangre/métodos , Trasplante de Células Madre de Sangre del Cordón Umbilical/normas , Familia , Sangre Fetal/citología , Adolescente , Adulto , Bancos de Sangre/normas , Niño , Preescolar , Femenino , Supervivencia de Injerto , Histocompatibilidad , Humanos , Lactante , Masculino , Embarazo , Hermanos , Tasa de Supervivencia , Donantes de Tejidos , Adulto Joven
9.
Stem Cell Rev Rep ; 20(5): 1353-1356, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38492134

RESUMEN

Addressing the challenges in managing ischemic tissue repair and remodelling remains a prominent clinical concern. Current research is heavily concentrated on identifying innovative cell-based therapies with the potential to enhance revascularization in patients affected by these diseases. We have previously developed and validated a manufacturing process for human umbilical cord mesenchymal stromal cells (UC-MSCs)-based cell therapy medicinal product, according to Good Manufacturing Practices. In this study, we demonstrate that these UC-MSCs enhance the proliferation and migration of endothelial cells and the formation of capillary structures. Moreover, UC-MSCs and endothelial cells interact, allowing UC-MSCs to acquire a perivascular cell phenotype and consequently provide direct support to the newly formed vascular network. This characterization of the proangiogenic properties of this UC-MSCs based-cell therapy medicinal product is an essential step for its therapeutic assessment in the clinical context of vascular regeneration.


Asunto(s)
Proliferación Celular , Células Madre Mesenquimatosas , Neovascularización Fisiológica , Cordón Umbilical , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Cordón Umbilical/citología , Movimiento Celular , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Cultivadas , Diferenciación Celular , Células Endoteliales/citología , Células Endoteliales/metabolismo
10.
Stem Cell Res Ther ; 15(1): 109, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38637891

RESUMEN

BACKGROUND: The STROMA-CoV-2 study was a French phase 2b, multicenter, double-blind, randomized, placebo-controlled clinical trial that did not identify a significant efficacy of umbilical cord-derived mesenchymal stromal cells in patients with SARS-CoV-2-induced acute respiratory distress syndrome. Safety on day 28 was found to be good. The aim of our extended study was to assess the 6- and 12-month safety of UC-MSCs administration in the STROMA-CoV-2 cohort. METHODS: A detailed multi-domain assessment was conducted at 6 and 12 months following hospital discharge focusing on adverse events, lung computed tomography-scan, pulmonary and muscular functional status, and quality of life in the STROMA-CoV-2 cohort including SARS-CoV-2-related early (< 96 h) mild-to-severe acute respiratory distress syndrome. RESULTS: Between April 2020 and October 2020, 47 patients were enrolled, of whom 19 completed a 1-year follow-up. There were no significant differences in any endpoints or adverse effects between the UC-MSCs and placebo groups at the 6- and 12-month assessments. Ground-glass opacities persisted at 1 year in 5 patients (26.3%). Furthermore, diffusing capacity for carbon monoxide remained altered over 1 year, although no patient required oxygen or non-invasive ventilatory support. Quality of life revealed declines in mental, emotional and physical health throughout the follow-up period, and the six-minute walking distance remained slightly impaired at the 1-year patient assessment. CONCLUSIONS: This study suggests a favorable safety profile for the use of intravenous UC-MSCs in the context of the first French wave of SARS-CoV-2-related moderate-to-severe acute respiratory distress syndrome, with no adverse effects observed at 1 year.


Asunto(s)
COVID-19 , Células Madre Mesenquimatosas , Síndrome de Dificultad Respiratoria , Humanos , COVID-19/terapia , Método Doble Ciego , Calidad de Vida , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , SARS-CoV-2 , Resultado del Tratamiento , Cordón Umbilical
11.
Angiogenesis ; 16(4): 821-36, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23748743

RESUMEN

Circulating endothelial progenitor cells (cEPC) are capable of homing to neovascularisation sites, in which they proliferate and differentiate into endothelial cells. Transplantation of cEPC-derived cells, in particular those isolated from umbilical cord blood (UCB), has emerged as a promising approach in the treatment of cardio-vascular diseases. After in vivo transplantation, these cells may be exposed to local or systemic inflammation or pathogens, of which they are a common target. Because Toll-like receptors (TLR) are critical in detecting pathogens and in initiating inflammatory responses, we hypothesized that TLR may govern UCB cEPC-derived cells function. While these cells expressed almost all TLR, we found that only TLR3 dramatically impaired cell properties. TLR3 activation inhibited cell proliferation, modified cell cycle entry, impaired the in vitro angiogenic properties and induced pro-inflammatory cytokines production. The anti-angiogenic effect of TLR3 activation was confirmed in vivo in a hind-limb ischemic mice model. Moreover, TLR3 activation consistently leads to an upregulation of miR-29b, -146a and -155 and to a deregulation of cytoskeleton and cell cycle regulator. Hence, TLR3 activation is likely to be a key regulator of cEPC-derived cells properties.


Asunto(s)
Células Endoteliales/metabolismo , Células Madre Mesenquimatosas/fisiología , Neovascularización Fisiológica/fisiología , Receptor Toll-Like 3/fisiología , Animales , Ciclo Celular , División Celular , Movimiento Celular , Células Cultivadas , Citocinas/biosíntesis , Citocinas/genética , Células Endoteliales/citología , Endotelio Vascular/fisiología , Femenino , Sangre Fetal/citología , Regulación de la Expresión Génica/fisiología , Miembro Posterior/irrigación sanguínea , Humanos , Recién Nacido , Isquemia/cirugía , Ligandos , Lipoproteínas LDL/metabolismo , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Ratones , Ratones Endogámicos NOD , Ratones SCID , MicroARNs/antagonistas & inhibidores , MicroARNs/biosíntesis , MicroARNs/genética , Oligonucleótidos/farmacología , Poli I-C/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor Toll-Like 3/agonistas , Receptor Toll-Like 3/biosíntesis , Receptores Toll-Like/agonistas , Receptores Toll-Like/biosíntesis , Receptores Toll-Like/genética , Factor de Necrosis Tumoral alfa/farmacología , Cicatrización de Heridas
12.
Stem Cell Rev Rep ; 19(7): 2541-2550, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37452965

RESUMEN

Nestin, an intermediate filament protein expressed by progenitor cells, is associated with tissue regeneration. Although nestin expression has been reported in poorly differentiated and newly formed blood vessels, its role in endothelial cells remains unclear. In this study, we investigated the involvement of nestin in the angiogenic properties of endothelial colony-forming cells (ECFCs) derived from human umbilical cord blood. Our results demonstrate that ECFCs express high levels of nestin, and that its inhibition by small interfering RNAs decreased ECFC proliferation, migration in response to SDF-1 and VEGF-A, tubulogenesis, and adhesion on collagen. These effects are associated with modulation of focal adhesion kinase phosphorylation. Furthermore, nestin silencing resulted in reduced revascularization in a mouse hindlimb ischemia model. In conclusion, these findings provide evidence that nestin more than being a structural protein, is an active player in ECFC angiogenic properties.

13.
J Thromb Haemost ; 21(12): 3640-3648, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37678550

RESUMEN

BACKGROUND: The involvement of thrombin receptor PAR1 in blood vessel development has been largely demonstrated in knockout mice; however, its implication in adult mouse angiogenesis seems very moderate. OBJECTIVES: We aimed to explore the potential relationships between PAR1, stemness, and angiogenic properties of human endothelial colony-forming cells (ECFCs). METHODS AND RESULTS: PAR1 activation on ECFCs using the selective PAR1-activating peptide induced a significant decrease in CD133 expression (RTQ-PCR analysis). In line, silencing of PAR1 gene expression with siRNA increased CD133 mRNA as well as intracellular CD133 protein expression. To confirm the link between CD133 and PAR1, we explored the association between PAR1 and CD133 levels in fast and slow fibroblasts prone to reprogramming. An imbalance between PAR1 and CD133 levels was evidenced, with a decreased expression of PAR1 in fast reprogramming fibroblasts expressing a high CD133 level. Regarding in vitro ECFC angiogenic properties, PAR1 silencing with specific siRNA induced cell proliferation evidenced by the overexpression of Ki67. However, it did not impact migration properties nor ECFC adhesion on smooth muscle cells or human arterial endothelial cells. In a mouse model of hind-limb ischemia, PAR1 silencing in ECFCs significantly increased postischemic revascularization compared to siCtrl-ECFCs along with a significant increase in cutaneous blood flows (P < .0001), microvessel density (P = .02), myofiber regeneration (P < .0001), and human endothelial cell incorporation in muscle (P < .0001). CONCLUSION: In conclusion, our work describes for the first time a link between PAR1, stemness, and vasculogenesis in human ECFCs.


Asunto(s)
Células Endoteliales , Receptor PAR-1 , Humanos , Células Cultivadas , Células Endoteliales/metabolismo , Neovascularización Fisiológica , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Receptores de Trombina/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
14.
Stem Cell Rev Rep ; 19(6): 1726-1754, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37261667

RESUMEN

Autologous fat transplantation -i.e., lipofilling- has become a promising and popular technique in aesthetic and reconstructive surgery with several application such as breast reconstruction, facial and hand rejuvenation. However, the use of this technology is still limited due to an unpredictable and low graft survival rate (which ranges from 25%-80%). A systematic literature review was performed by thoroughly searching 12 terms using the PubMed database. The objective of this study is to present the current evidence for the efficacy of adjuvant regenerative strategies and cellular factors, which have been tested to improve fat graft retention. We present the main results (fat retention rate, histological analysis for pre-clinical studies and satisfaction/ complication for clinical studies) obtained from the studies of the three main fat grafting enrichment techniques: platelet-rich plasma (PRP), the stromal vascular fraction (SVF) and adipose-derived stem cells (ADSCs) and discuss the promising role of recent angiogenic cell enrichment that could induce early vascularization of fat graft. All in all, adding stem or progenitor cells to autologous fat transplantation might become a new concept in lipofilling. New preclinical models should be used to find mechanisms able to increase fat retention, assure safety and transfer these technologies to a good manufacturing practice (GMP) compliant facility, to manufacture an advanced therapy medicinal product (ATMP).


Asunto(s)
Tejido Adiposo , Procedimientos de Cirugía Plástica , Tejido Adiposo/trasplante , Adipocitos/trasplante , Trasplante Autólogo , Células Madre
15.
Stem Cells Transl Med ; 12(4): 194-206, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-36928395

RESUMEN

Mesenchymal stromal cells (MSCs) have recently emerged as an interesting therapeutic approach for patients with progressive systemic sclerosis (SSc), a rare and life-threatening orphan autoimmune disease. Whereas MSC immunomodulatory potential is considered as a central mechanism for their clinical benefit, very few data are available on the impact of MSCs on immune cell subsets in vivo. In the current extended study of a phase I/II clinical trial exploring the injection of a single dose of allogeneic bone marrow-MSCs (alloBM-MSCs) in patients with severe SSc (NCT02213705), we performed a longitudinal in-depth characterization of circulating immune cells in 19 MSC-treated patients, including 14 responders and 5 non-responders. By a combination of flow cytometry and transcriptomic analyses, we highlighted an increase in circulating CD24hiCD27posCD38lo/neg memory B cells, the main IL-10-producing regulatory B cell (Breg) subset, and an upregulation of IL10 expression in ex-vivo purified B cells, specifically in responder patients, early after the alloBM-MSC infusion. In addition, a deeper alteration of the B-cell compartment before alloBM-MSC treatment, including a higher expression of profibrotic cytokines IL6 and TGFß by sorted B cells was associated with a non-responder clinical status. Finally, BM-MSCs were able to directly upregulate IL-10 production in activated B cells in vitro. These data suggest that cytokine-producing B cells, in particular Breg, are pivotal effectors of BM-MSC therapeutic activity in SSc. Their quantification as activity biomarkers in MSC potency assays and patient selection criteria may be considered to reach optimal clinical benefit when designing MSC-based clinical trials.


Asunto(s)
Linfocitos B Reguladores , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Esclerodermia Sistémica , Humanos , Interleucina-10/metabolismo , Médula Ósea , Citocinas/metabolismo , Esclerodermia Sistémica/terapia , Esclerodermia Sistémica/metabolismo
16.
J Inorg Biochem ; 239: 112065, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36403435

RESUMEN

Microvesicles (MVs) are key markers in human body fluids that reflect cellular activation related to diseases as thrombosis. These MVs display phosphatidylserine at the outer leaflet of their plasma membrane as specific recognition moieties. The work reported in this manuscript focuses on the development of an original method where MVs are captured by bimetallic zinc complexes. A set of ligands have been synthetized based on a phenol spacer bearing in para position an amine group appended to a short or a longer alkyl chain (for grafting on surface) and bis(dipicolylamine) arms in ortho position (for zinc coordination). The corresponding dibridged zinc phenoxido and hydroxido complexes have been prepared in acetronitrile in presence of triethylamine and characterized by several spectroscopic techniques. The pH-driven interconversion studies for both complexes in H2O:DMSO (70:30) evidence that at physiologic pH the main species are mono-bridged by the phenoxido spacer. An X-Ray structure obtained from complex 2 (based on the ligand with the amine group on the short chain) in aqueous medium confirms the presence of a mono-bridged complex. Then, the complexes have been used for interaction studies with short-chain phospholipids. Both have established the selective recognition of the anionic phosphatidylserine model versus zwitterionic phospholipids (in solution by 31P NMR and after immobilization on solid support by surface plasmon resonance (SPR)). Moreover, both complexes have also demonstrated their ability to capture MVs isolated from human plasma. These complexes are thus promising candidates for MVs probing by a new approach based on coordination chemistry.


Asunto(s)
Fosfatidilserinas , Zinc , Humanos , Zinc/química , Fenoles , Aminas , Espectroscopía de Resonancia Magnética
17.
Stem Cell Rev Rep ; 19(2): 573-577, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36271311

RESUMEN

BACKGROUND: Ischemic heart disease, often caused by an acute myocardial infarction (AMI) is one of the leading causes of morbidity and mortality worldwide. Despite significant advances in medical and procedural therapies, millions of AMI patients progress to develop heart failure every year. METHODS: Here, we examine the combination therapy of human mesenchymal stromal cells (MSCs) and endothelial colony-forming cells (ECFCs) to reduce the early ischemic damage (MSCs) and enhance angiogenesis (ECFCs) in a pre-clinical model of acute myocardial infarction. NOD/SCID mice were subjected to AMI followed by transplantation of MSCs and ECFCs either alone or in combination. Cardiomyocyte apoptosis and cardiac functional recovery were assessed in short- and long-term follow-up studies. RESULTS: At 1 day after AMI, MSC- and ECFC-treated animals demonstrated significantly lower cardiomyocyte apoptosis compared to vehicle-treated animals. This phenomenon was associated with a significant reduction in infarct size, cardiac fibrosis, and improvement in functional cardiac recovery 4 weeks after AMI. CONCLUSIONS: The use of ECFCs, MSCs, and the combination of both cell types reduce cardiomyocyte apoptosis, scar size, and adverse cardiac remodeling, compared to vehicle, in a pre-clinical model of AMI. These results support the use of this combined cell therapy approach in future human studies during the acute phase of ischemic cardiac injury.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Infarto del Miocardio , Ratones , Animales , Humanos , Miocitos Cardíacos/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Ratones Endogámicos NOD , Ratones SCID , Células Madre Mesenquimatosas/metabolismo , Apoptosis , Isquemia/metabolismo
18.
Curr Res Transl Med ; 70(1): 103314, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34731725

RESUMEN

PURPOSE OF THE STUDY: The purpose of our study was to investigate the effects of ovine umbilical cord-derived mesenchymal stromal cells (UC-MSCs) seeded in a fibrin patch as an adjuvant therapy for fetal myelomeningocele repair in the ovine model. MATERIALS AND METHODS: MMC defects were surgically created at 75 days of gestation and repaired 15 days later with UC-MSCs patch or an acellular patch. At birth, motor function, tail movements, and voiding abilities were recorded. Histological and immunohistochemical analysis included study of MMC defect's healing, spinal cord, UC-MSCs survival, and screening for tumors. RESULTS: Six lambs were born alive in each group. There was no difference between the two groups on the median sheep locomotor rating score but all lambs in the control group had a score between lower than 3 compared to 50% in UC-MSCs group. There were more lambs with tail movements and voiding ability in UC-MSCs group (83% vs 0% and 50% vs 0%, respectively). gray matter area and large neurons density were higher in UC-MSCs group (2.5 vs 0.8 mm2 and 19.3 vs 1.6 neurons/mm2 of gray matter, respectively). Fibrosis thickness at the myelomeningocele scar level was reduced in UC-MSCs group (1269 µm vs 2624 µm). No tumors were observed. CONCLUSION: Fetal repair of myelomeningocele using allogenic UC-MSCs patch provides a moderate improvement in neurological functions, gray matter and neuronal preservation and prevented from fibrosis development at the myelomeningocele scar level.


Asunto(s)
Meningomielocele , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Feto , Meningomielocele/terapia , Ovinos , Cordón Umbilical
19.
Biomaterials ; 291: 121877, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36347132

RESUMEN

Extracellular vesicles (EV) are increasingly recognized as a therapeutic option in heart failure. They are usually administered by direct intramyocardial injections with the caveat of a rapid wash-out from the myocardium which might weaken their therapeutic efficacy. To improve their delivery in the failing myocardium, we designed a system consisting of loading EV into a clinical-grade hyaluronic acid (HA) biomaterial. EV were isolated from umbilical cord-derived mesenchymal stromal cells. The suitability of HA as a delivery platform was then assessed in vitro. Rheology studies demonstrated the viscoelastic and shear thinning behaviors of the selected HA allowing its easy injection. Moreover, the release of HA-embedded EV was sustained over more than 10 days, and EV bioactivity was not altered by the biomaterial. In a rat model of myocardial ischemia reperfusion, we showed that HA-embedded EV preserved cardiac function (echocardiography), improved angiogenesis and decreased both apoptosis and fibrosis (histology and transcriptomics) when compared to intramyocardial administration of EV alone. These data thus strengthen the concept that inclusion of EV into a clinically useable biomaterial might optimize their beneficial effects on post-ischemic cardiac repair.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Infarto del Miocardio , Animales , Ratas , Materiales Biocompatibles , Infarto del Miocardio/patología , Miocardio/patología , Células Madre Mesenquimatosas/patología , Ácido Hialurónico
20.
Lancet Rheumatol ; 4(2): e91-e104, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38288741

RESUMEN

BACKGROUND: Systemic sclerosis remains an orphan life-threatening autoimmune disease. The unique immunomodulatory, proangiogenic, and antifibrotic properties of mesenchymal stromal cells provide a strong rationale for mesenchymal stromal cell-based therapy for systemic sclerosis, and treatment with mesenchymal stromal cells has shown benefits in preclinical models of this disease. The safety of allogeneic bone marrow-derived mesenchymal stromal cell administration in patients with severe systemic sclerosis has not yet been established. We aimed to test the safety and feasibility of a single intravenous injection of intrafamilial allogeneic bone marrow-derived mesenchymal stromal cells to treat severe diffuse systemic sclerosis. METHODS: We did an open-label, dose-escalation, proof-of-concept, phase 1/2 study at Saint-Louis-Hospital, Paris, France. Eligible patients were aged 18-70 years with severe diffuse systemic sclerosis, who fulfilled the 2013 American College of Rheumatology and European League Against Rheumatism systemic sclerosis criteria, had a minimum modified Rodnan skin score of 15 (range 0-51), had severe lung, heart, or kidney involvement, and had inadequate response or contraindications to conventional immunosuppressive therapy or autologous haematopoietic stem cell transplantation. Patients with severe comorbidities were excluded. The first ten recipients were to receive a single intravenous infusion of 1 × 106 bone marrow-derived mesenchymal stromal cells per kg bodyweight, and the subsequent ten recipients were to be infused with a single dose of 3 × 106 bone marrow-derived mesenchymal stromal cells per kg bodyweight. The primary endpoint was immediate tolerance during infusion and within the first 10 days after infusion, measured as the occurrence of serious adverse events (grade 3 or higher) in all infused patients. Safety was assessed in all participants during the 24-month follow-up period. This study is registered with ClinicalTrials.gov, NCT02213705. FINDINGS: Between March 24, 2014, and Jan 6, 2020, 20 cisgender individuals (13 women and seven men) with severe diffuse systemic sclerosis were enrolled. All 20 patients were included in the primary outcome analysis. No infusion-related severe adverse events and three infusion-related adverse events occurred in the first 10 days after treatment; one patient had grade 1 flushing and another patient had grade 1 nausea and grade 2 asthenia. After ten days and up to a median follow-up of 24·1 months (IQR 20·8-24·5), 36 non-treatment-related severe adverse events in 14 (70%) patients and no treatment-related adverse event were reported. INTERPRETATION: A single infusion of allogeneic bone marrow-derived mesenchymal stromal cells was safe in patients with severe diffuse systemic sclerosis. Future placebo-controlled trials will help to definitively ascertain the efficacy of mesenchymal stromal cell-based cell therapy from various tissue sources in larger number of patients with systemic sclerosis. FUNDING: French Ministry of Health, Capucine Association, Fonds de Dotation de l'AFER pour la Recherche Médicale, and Agence Nationale de la Recherche (Infrastructure Program Ecell), France.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA