Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39071420

RESUMEN

While critical for tuning the timing and level of transcription, enhancer communication with distal promoters is not well understood. Here we bypass the need for sequence-specific transcription factors and recruit activators directly using CARGO-VPR, an approach for targeting dCas9-VPR using a multiplexed array of RNA guides. We show that this approach achieves effective activator recruitment to arbitrary genomic sites, even those inaccessible by single dCas9. We utilize CARGO-VPR across the Prdm8-Fgf5 locus in mESCs, where neither gene is expressed. We demonstrate that while activator recruitment to any tested region results in transcriptional induction of at least one gene, the expression level strongly depends on the genomic distance between the promoter and activator recruitment site. However, the expression-distance relationship for each gene scales distinctly in a manner not attributable to differences in 3D contact frequency, promoter DNA sequence or presence of the repressive chromatin marks at the locus.

2.
Curr Protoc ; 2(8): e495, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35926113

RESUMEN

Small RNAs are ubiquitous regulators of gene expression that participate in nearly all aspects of physiology in a wide range of organisms. There are many different classes of eukaryotic small RNAs that play regulatory roles at every level of gene expression, including transcription, RNA stability, and translation. While eukaryotic small RNAs display diverse functions across and within classes, they are generally grouped functionally based on the machinery required for their biogenesis, the effector proteins they associate with, and their molecular characteristics. The development of techniques to clone and sequence small RNAs has been critical for their identification, yet the ligation-dependent addition of RNA adapters and the use of reverse transcriptase to generate cDNA in traditional library preparation protocols can be unsuitable to detect certain small RNA subtypes. In particular, 3' or 5' chemical modifications that are characteristic of specific types of small RNAs can impede the ligation-dependent addition of RNA adapters, while internal RNA modifications can interfere with accurate reverse transcription. The inability to clone certain small RNA subtypes with traditional protocols results in an inaccurate assessment of small RNA abundance and diversity, where some RNAs appear over-represented and others are not detected. This overview aims to guide users on how to design small RNA cloning workflows in eukaryotes to more accurately capture specific small RNAs of interest. Hence, we discuss the molecular biology underlying the identification and quantitation of small RNAs, explore the limitations of commonly used protocols, and detail the alternative approaches that can be used to enrich specific small RNA classes. © 2022 Wiley Periodicals LLC.


Asunto(s)
MicroARNs , Clonación Molecular , Eucariontes/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , MicroARNs/química , Análisis de Secuencia de ARN/métodos
3.
Elife ; 82019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31682226

RESUMEN

The formation and spatial arrangement of chromosome territories (CTs) in interphase has been posited to influence the outcome and frequency of genomic translocations. This is supported by correlations between the frequency of inter-chromosomal contacts and translocation events in myriad systems. However, it remains unclear if CT formation itself influences the translocation potential of cells. We address this question in Drosophila cells by modulating the level of Condensin II, which regulates CT organization. Using whole-chromosome Oligopaints to identify genomic rearrangements, we find that increased contact frequencies between chromosomes due to Condensin II knockdown leads to an increased propensity to form translocations following DNA damage. Moreover, Condensin II over-expression is sufficient to drive spatial separation of CTs and attenuate the translocation potential of cells. Together, these results provide the first causal evidence that proper CT formation can protect the genome from potentially deleterious translocations in the presence of DNA damage.


Asunto(s)
Cromosomas/metabolismo , Interfase , Translocación Genética , Adenosina Trifosfatasas/metabolismo , Animales , Línea Celular , Citogenética , Proteínas de Unión al ADN/metabolismo , Drosophila , Complejos Multiproteicos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA