Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Clin Immunol ; 44(4): 87, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578402

RESUMEN

We present a case study of a young male with a history of 22q11.2 deletion syndrome (22qDS), diagnosed with systemic capillary leak syndrome (SCLS) who presented with acute onset of diffuse anasarca and sub-comatose obtundation. We hypothesized that his co-presentation of neurological sequelae might be due to blood-brain barrier (BBB) susceptibility conferred by the 22q11.2 deletion, a phenotype that we have previously identified in 22qDS. Using pre- and post-intravenous immunoglobulins (IVIG) patient serum, we studied circulating biomarkers of inflammation and assessed the potential susceptibility of the 22qDS BBB. We employed in vitro cultures of differentiated BBB-like endothelial cells derived from a 22qDS patient and a healthy control. We found evidence of peripheral inflammation and increased serum lipopolysaccharide (LPS) alongside endothelial cells in circulation. We report that the patient's serum significantly impairs barrier function of the 22qDS BBB compared to control. Only two other cases of pediatric SCLS with neurologic symptoms have been reported, and genetic risk factors have been suggested in both instances. As the third case to be reported, our findings are consistent with the hypothesis that genetic susceptibility of the BBB conferred by genes such as claudin-5 deleted in the 22q11.2 region promoted neurologic involvement during SCLS in this patient.


Asunto(s)
Síndrome de Fuga Capilar , Síndrome de DiGeorge , Humanos , Masculino , Niño , Síndrome de Fuga Capilar/diagnóstico , Barrera Hematoencefálica , Células Endoteliales , Permeabilidad , Inflamación
2.
Eur J Immunol ; 53(1): e2249840, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36337041

RESUMEN

Mice modeling the hemizygous deletion of chromosome 22q11.2 (22qMc) have been utilized to address various clinical phenotypes associated with the disease, including cardiac malformations, altered neural circuitry, and behavioral deficits. Yet, the status of the T cell compartment, an important clinical concern among 22q11.2 deletion syndrome (22qDS) patients, has not been addressed. While infancy and early childhood in 22qDS are associated with deficient T cell numbers and thymic hypoplasia, which can be severe in a small subset of patients, studies suggest normalization of the T cell counts by adulthood. We found that adult 22qMc do not exhibit thymic hypoplasia or altered thymic T cell development. Our findings that immune cell counts and inflammatory T cell activation are unaffected in 22qMc lend support to the hypothesis that human 22qDS immunodeficiencies are secondary to thymic hypoplasia, rather than intrinsic effects due to the deletion. Furthermore, the 22q11.2 deletion does not impact the differentiation capacity of T cells, nor their activity and response during inflammatory activation. Thus, 22qMc reflects the T cell compartment in adult 22qDS patients, and our findings suggest that 22qMc may serve as a novel model to address experimental and translational aspects of immunity in 22qDS.


Asunto(s)
Síndrome de DiGeorge , Síndromes de Inmunodeficiencia , Humanos , Preescolar , Adulto , Ratones , Animales , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/complicaciones , Deleción Cromosómica , Timo , Síndromes de Inmunodeficiencia/genética , Linfocitos T
3.
Brain ; 144(5): 1351-1360, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-33876226

RESUMEN

Neuroimmune dysregulation is implicated in neuropsychiatric disorders including schizophrenia. As the blood-brain barrier is the immunological interface between the brain and the periphery, we investigated whether this vascular phenotype is intrinsically compromised in the most common genetic risk factor for schizophrenia, the 22q11.2 deletion syndrome (22qDS). Blood-brain barrier like endothelium differentiated from human 22qDS+schizophrenia-induced pluripotent stem cells exhibited impaired barrier integrity, a phenotype substantiated in a mouse model of 22qDS. The proinflammatory intercellular adhesion molecule-1 was upregulated in 22qDS+schizophrenia-induced blood-brain barrier and in 22qDS mice, indicating compromise of the blood-brain barrier immune privilege. This immune imbalance resulted in increased migration/activation of leucocytes crossing the 22qDS+schizophrenia blood-brain barrier. We also found heightened astrocyte activation in murine 22qDS, suggesting that the blood-brain barrier promotes astrocyte-mediated neuroinflammation. Finally, we substantiated these findings in post-mortem 22qDS brain tissue. Overall, the barrier-promoting and immune privilege properties of the 22qDS blood-brain barrier are compromised, and this might increase the risk for neuropsychiatric disease.


Asunto(s)
Síndrome de Deleción 22q11/patología , Barrera Hematoencefálica/patología , Síndrome de Deleción 22q11/inmunología , Animales , Astrocitos/metabolismo , Humanos , Privilegio Inmunológico/fisiología , Inflamación/metabolismo , Ratones
4.
J Neuroinflammation ; 12: 56, 2015 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-25888781

RESUMEN

BACKGROUND: Chronic neuroinflammation and calcium (Ca(+2)) dysregulation are both components of Alzheimer's disease. Prolonged neuroinflammation produces elevation of pro-inflammatory cytokines and reactive oxygen species which can alter neuronal Ca(+2) homeostasis via L-type voltage-dependent Ca(+2) channels (L-VDCCs) and ryanodine receptors (RyRs). Chronic neuroinflammation also leads to deficits in spatial memory, which may be related to Ca(+2) dysregulation. METHODS: The studies herein use an in vivo model of chronic neuroinflammation: rats were infused intraventricularly with a continuous small dose of lipopolysaccharide (LPS) or artificial cerebrospinal fluid (aCSF) for 28 days. The rats were treated with the L-VDCC antagonist nimodipine or the RyR antagonist dantrolene. RESULTS: LPS-infused rats had significant memory deficits in the Morris water maze, and this deficit was ameliorated by treatment with nimodipine. Synaptosomes from LPS-infused rats had increased Ca(+2) uptake, which was reduced by a blockade of L-VDCCs either in vivo or ex vivo. CONCLUSIONS: Taken together, these data indicate that Ca(+2) dysregulation during chronic neuroinflammation is partially dependent on increases in L-VDCC function. However, blockade of the RyRs also slightly improved spatial memory of the LPS-infused rats, demonstrating that other Ca(+2) channels are dysregulated during chronic neuroinflammation. Ca(+2)-dependent immediate early gene expression was reduced in LPS-infused rats treated with dantrolene or nimodipine, indicating normalized synaptic function that may underlie improvements in spatial memory. Pro-inflammatory markers are also reduced in LPS-infused rats treated with either drug. Overall, these data suggest that Ca(+2) dysregulation via L-VDCCs and RyRs play a crucial role in memory deficits resulting from chronic neuroinflammation.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo , Encefalitis/complicaciones , Encefalitis/patología , Trastornos de la Memoria/etiología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Complejo Relacionado con el SIDA/metabolismo , Análisis de Varianza , Animales , Bloqueadores de los Canales de Calcio/uso terapéutico , Canales de Calcio Tipo L/genética , Enfermedad Crónica , Dantroleno/uso terapéutico , Modelos Animales de Enfermedad , Encefalitis/inducido químicamente , Encefalitis/tratamiento farmacológico , Regulación de la Expresión Génica/efectos de los fármacos , Lipopolisacáridos/toxicidad , Aprendizaje por Laberinto/efectos de los fármacos , Trastornos de la Memoria/tratamiento farmacológico , Relajantes Musculares Centrales/uso terapéutico , Nimodipina/uso terapéutico , Ratas , Ratas Endogámicas F344 , Canal Liberador de Calcio Receptor de Rianodina/genética , Memoria Espacial/efectos de los fármacos
5.
J Neuroinflammation ; 12: 63, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-25889938

RESUMEN

The role of insulin in the brain is still not completely understood. In the periphery, insulin can decrease inflammation induced by lipopolysaccharide (LPS); however, whether insulin can reduce inflammation within the brain is unknown. Experiments administrating intranasal insulin to young and aged adults have shown that insulin improves memory. In our animal model of chronic neuroinflammation, we administered insulin and/or LPS directly into the brain via the fourth ventricle for 4 weeks in young rats; we then analyzed their spatial memory and neuroinflammatory response. Additionally, we administered insulin or artificial cerebral spinal fluid (aCSF), in the same manner, to aged rats and then analyzed their spatial memory and neuroinflammatory response. Response to chronic neuroinflammation in young rats was analyzed in the presence or absence of insulin supplementation. Here, we show for the first time that insulin infused (i.c.v.) to young rats significantly attenuated the effects of LPS by decreasing the expression of neuroinflammatory markers in the hippocampus and by improving performance in the Morris water pool task. In young rats, insulin infusion alone significantly improved their performance as compared to all other groups. Unexpectedly, in aged rats, the responsiveness to insulin was completely absent, that is, spatial memory was still impaired suggesting that an age-dependent insulin resistance may contribute to the cognitive impairment observed in neurodegenerative diseases. Our data suggest a novel therapeutic effect of insulin on neuroinflammation in the young but not the aged brain.


Asunto(s)
Envejecimiento , Encefalitis/complicaciones , Encefalitis/patología , Hipocampo/metabolismo , Insulina/uso terapéutico , Trastornos de la Memoria/tratamiento farmacológico , Análisis de Varianza , Animales , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Encefalitis/inducido químicamente , Encefalitis/tratamiento farmacológico , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Trastornos de la Memoria/etiología , Proteína Quinasa C/metabolismo , Ratas , Ratas Endogámicas F344 , Tiempo de Reacción/efectos de los fármacos , Memoria Espacial/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA