Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 21(1): 54-64, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31819256

RESUMEN

Ptpn6 is a cytoplasmic phosphatase that functions to prevent autoimmune and interleukin-1 (IL-1) receptor-dependent, caspase-1-independent inflammatory disease. Conditional deletion of Ptpn6 in neutrophils (Ptpn6∆PMN) is sufficient to initiate IL-1 receptor-dependent cutaneous inflammatory disease, but the source of IL-1 and the mechanisms behind IL-1 release remain unclear. Here, we investigate the mechanisms controlling IL-1α/ß release from neutrophils by inhibiting caspase-8-dependent apoptosis and Ripk1-Ripk3-Mlkl-regulated necroptosis. Loss of Ripk1 accelerated disease onset, whereas combined deletion of caspase-8 and either Ripk3 or Mlkl strongly protected Ptpn6∆PMN mice. Ptpn6∆PMN neutrophils displayed increased p38 mitogen-activated protein kinase-dependent Ripk1-independent IL-1 and tumor necrosis factor production, and were prone to cell death. Together, these data emphasize dual functions for Ptpn6 in the negative regulation of p38 mitogen-activated protein kinase activation to control tumor necrosis factor and IL-1α/ß expression, and in maintaining Ripk1 function to prevent caspase-8- and Ripk3-Mlkl-dependent cell death and concomitant IL-1α/ß release.


Asunto(s)
Apoptosis/inmunología , Caspasa 8/inmunología , Neutrófilos/inmunología , Proteínas Quinasas/inmunología , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/inmunología , Animales , Caspasa 8/genética , Células Cultivadas , Eliminación de Gen , Inflamación/inmunología , Interleucina-1/inmunología , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Tirosina Fosfatasa no Receptora Tipo 6/genética , Receptores Tipo I de Interleucina-1/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
2.
Cell ; 157(5): 1175-88, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24813849

RESUMEN

Upon ligand binding, RIPK1 is recruited to tumor necrosis factor receptor superfamily (TNFRSF) and Toll-like receptor (TLR) complexes promoting prosurvival and inflammatory signaling. RIPK1 also directly regulates caspase-8-mediated apoptosis or, if caspase-8 activity is blocked, RIPK3-MLKL-dependent necroptosis. We show that C57BL/6 Ripk1(-/-) mice die at birth of systemic inflammation that was not transferable by the hematopoietic compartment. However, Ripk1(-/-) progenitors failed to engraft lethally irradiated hosts properly. Blocking TNF reversed this defect in emergency hematopoiesis but, surprisingly, Tnfr1 deficiency did not prevent inflammation in Ripk1(-/-) neonates. Deletion of Ripk3 or Mlkl, but not Casp8, prevented extracellular release of the necroptotic DAMP, IL-33, and reduced Myd88-dependent inflammation. Reduced inflammation in the Ripk1(-/-)Ripk3(-/-), Ripk1(-/-)Mlkl(-/-), and Ripk1(-/-)Myd88(-/-) mice prevented neonatal lethality, but only Ripk1(-/-)Ripk3(-/-)Casp8(-/-) mice survived past weaning. These results reveal a key function for RIPK1 in inhibiting necroptosis and, thereby, a role in limiting, not only promoting, inflammation.


Asunto(s)
Genes Letales , Hematopoyesis , Inflamación/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Animales , Animales Recién Nacidos , Caspasa 8/metabolismo , Muerte Celular , Hígado/metabolismo , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Factores de Necrosis Tumoral/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(30): e2408109121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39028694

RESUMEN

The prevalence of "long COVID" is just one of the conundrums highlighting how little we know about the lung's response to viral infection, particularly to syndromecoronavirus-2 (SARS-CoV-2), for which the lung is the point of entry. We used an in vitro human lung system to enable a prospective, unbiased, sequential single-cell level analysis of pulmonary cell responses to infection by multiple SARS-CoV-2 strains. Starting with human induced pluripotent stem cells and emulating lung organogenesis, we generated and infected three-dimensional, multi-cell-type-containing lung organoids (LOs) and gained several unexpected insights. First, SARS-CoV-2 tropism is much broader than previously believed: Many lung cell types are infectable, if not through a canonical receptor-mediated route (e.g., via Angiotensin-converting encyme 2(ACE2)) then via a noncanonical "backdoor" route (via macropinocytosis, a form of endocytosis). Food and Drug Administration (FDA)-approved endocytosis blockers can abrogate such entry, suggesting adjunctive therapies. Regardless of the route of entry, the virus triggers a lung-autonomous, pulmonary epithelial cell-intrinsic, innate immune response involving interferons and cytokine/chemokine production in the absence of hematopoietic derivatives. The virus can spread rapidly throughout human LOs resulting in mitochondrial apoptosis mediated by the prosurvival protein Bcl-xL. This host cytopathic response to the virus may help explain persistent inflammatory signatures in a dysfunctional pulmonary environment of long COVID. The host response to the virus is, in significant part, dependent on pulmonary Surfactant Protein-B, which plays an unanticipated role in signal transduction, viral resistance, dampening of systemic inflammatory cytokine production, and minimizing apoptosis. Exogenous surfactant, in fact, can be broadly therapeutic.


Asunto(s)
COVID-19 , Pulmón , Organoides , SARS-CoV-2 , Internalización del Virus , Humanos , SARS-CoV-2/fisiología , SARS-CoV-2/inmunología , COVID-19/inmunología , COVID-19/virología , Pulmón/virología , Pulmón/inmunología , Pulmón/patología , Organoides/virología , Tratamiento Farmacológico de COVID-19 , Células Madre Pluripotentes Inducidas/virología , Enzima Convertidora de Angiotensina 2/metabolismo , Inflamación , Citocinas/metabolismo , Apoptosis
4.
EMBO J ; 39(21): e106057, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32944968

RESUMEN

Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2 and has spread across the globe. SARS-CoV-2 is a highly infectious virus with no vaccine or antiviral therapy available to control the pandemic; therefore, it is crucial to understand the mechanisms of viral pathogenesis and the host immune responses to SARS-CoV-2. SARS-CoV-2 is a new member of the betacoronavirus genus like other closely related viruses including SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Both SARS-CoV and MERS-CoV have caused serious outbreaks and epidemics in the past eighteen years. Here, we report that one of the interferon-stimulated genes (ISGs), cholesterol 25-hydroxylase (CH25H), is induced by SARS-CoV-2 infection in vitro and in COVID-19-infected patients. CH25H converts cholesterol to 25-hydrocholesterol (25HC) and 25HC shows broad anti-coronavirus activity by blocking membrane fusion. Furthermore, 25HC inhibits USA-WA1/2020 SARS-CoV-2 infection in lung epithelial cells and viral entry in human lung organoids. Mechanistically, 25HC inhibits viral membrane fusion by activating the ER-localized acyl-CoA:cholesterol acyltransferase (ACAT) which leads to the depletion of accessible cholesterol from the plasma membrane. Altogether, our results shed light on a potentially broad antiviral mechanism by 25HC through depleting accessible cholesterol on the plasma membrane to suppress virus-cell fusion. Since 25HC is a natural product with no known toxicity at effective concentrations, it provides a potential therapeutic candidate for COVID-19 and emerging viral diseases in the future.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Colesterol/metabolismo , Infecciones por Coronavirus/tratamiento farmacológico , Neumonía Viral/tratamiento farmacológico , Mucosa Respiratoria/virología , Esteroide Hidroxilasas/farmacología , Internalización del Virus/efectos de los fármacos , Acetil-CoA C-Acetiltransferasa/metabolismo , Animales , COVID-19 , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Chlorocebus aethiops , Activación Enzimática/efectos de los fármacos , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Organoides/virología , Pandemias , Mucosa Respiratoria/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , SARS-CoV-2 , Células Vero , Tratamiento Farmacológico de COVID-19
5.
Nat Immunol ; 18(9): 953-954, 2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28829446
6.
EMBO Rep ; 23(11): e54446, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36194627

RESUMEN

Sterile inflammation is a central element in liver diseases. The immune response following injurious stimuli involves hepatic infiltration of neutrophils and monocytes. Neutrophils are major effectors of liver inflammation, rapidly recruited to sites of inflammation, and can augment the recruitment of other leukocytes. The NLRP3 inflammasome has been increasingly implicated in severe liver inflammation, fibrosis, and cell death. In this study, the role of NLRP3 activation in neutrophils during liver inflammation and fibrosis was investigated. Mouse models with neutrophil-specific expression of mutant NLRP3 were developed. Mutant mice develop severe liver inflammation and lethal autoinflammation phenocopying mice with a systemic expression of mutant NLRP3. NLRP3 activation in neutrophils leads to a pro-inflammatory cytokine and chemokine profile in the liver, infiltration by neutrophils and macrophages, and an increase in cell death. Furthermore, mutant mice develop liver fibrosis associated with increased expression of pro-fibrogenic genes. Taken together, the present work demonstrates how neutrophils, driven by the NLRP3 inflammasome, coordinate other inflammatory myeloid cells in the liver, and propagate the inflammatory response in the context of inflammation-driven fibrosis.


Asunto(s)
Hepatitis , Inflamasomas , Ratones , Animales , Inflamasomas/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Neutrófilos/metabolismo , Hepatitis/genética , Fibrosis , Inflamación/metabolismo , Interleucina-1beta/metabolismo
7.
PLoS Pathog ; 17(5): e1009519, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34003853

RESUMEN

SARS-CoV-2 is the novel coronavirus that is the causative agent of COVID-19, a sometimes-lethal respiratory infection responsible for a world-wide pandemic. The envelope (E) protein, one of four structural proteins encoded in the viral genome, is a 75-residue integral membrane protein whose transmembrane domain exhibits ion channel activity and whose cytoplasmic domain participates in protein-protein interactions. These activities contribute to several aspects of the viral replication-cycle, including virion assembly, budding, release, and pathogenesis. Here, we describe the structure and dynamics of full-length SARS-CoV-2 E protein in hexadecylphosphocholine micelles by NMR spectroscopy. We also characterized its interactions with four putative ion channel inhibitors. The chemical shift index and dipolar wave plots establish that E protein consists of a long transmembrane helix (residues 8-43) and a short cytoplasmic helix (residues 53-60) connected by a complex linker that exhibits some internal mobility. The conformations of the N-terminal transmembrane domain and the C-terminal cytoplasmic domain are unaffected by truncation from the intact protein. The chemical shift perturbations of E protein spectra induced by the addition of the inhibitors demonstrate that the N-terminal region (residues 6-18) is the principal binding site. The binding affinity of the inhibitors to E protein in micelles correlates with their antiviral potency in Vero E6 cells: HMA ≈ EIPA > DMA >> Amiloride, suggesting that bulky hydrophobic groups in the 5' position of the amiloride pyrazine ring play essential roles in binding to E protein and in antiviral activity. An N15A mutation increased the production of virus-like particles, induced significant chemical shift changes from residues in the inhibitor binding site, and abolished HMA binding, suggesting that Asn15 plays a key role in maintaining the protein conformation near the binding site. These studies provide the foundation for complete structure determination of E protein and for structure-based drug discovery targeting this protein.


Asunto(s)
Amilorida/farmacología , Tratamiento Farmacológico de COVID-19 , Proteínas de la Envoltura de Coronavirus/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , Amilorida/farmacocinética , Animales , Antivirales/farmacología , Sitios de Unión/efectos de los fármacos , COVID-19/virología , Chlorocebus aethiops , Proteínas de la Envoltura de Coronavirus/química , Humanos , Canales Iónicos/metabolismo , Resonancia Magnética Nuclear Biomolecular , Unión Proteica/efectos de los fármacos , Conformación Proteica/efectos de los fármacos , Dominios Proteicos , Células Vero , Ensamble de Virus/efectos de los fármacos
8.
PLoS Pathog ; 17(2): e1009165, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33571304

RESUMEN

The interactions between antibodies, SARS-CoV-2 and immune cells contribute to the pathogenesis of COVID-19 and protective immunity. To understand the differences between antibody responses in mild versus severe cases of COVID-19, we analyzed the B cell responses in patients 1.5 months post SARS-CoV-2 infection. Severe, and not mild, infection correlated with high titers of IgG against Spike receptor binding domain (RBD) that were capable of ACE2:RBD inhibition. B cell receptor (BCR) sequencing revealed that VH3-53 was enriched during severe infection. Of the 22 antibodies cloned from two severe donors, six exhibited potent neutralization against authentic SARS-CoV-2, and inhibited syncytia formation. Using peptide libraries, competition ELISA and mutagenesis of RBD, we mapped the epitopes of the neutralizing antibodies (nAbs) to three different sites on the Spike. Finally, we used combinations of nAbs targeting different immune-sites to efficiently block SARS-CoV-2 infection. Analysis of 49 healthy BCR repertoires revealed that the nAbs germline VHJH precursors comprise up to 2.7% of all VHJHs. We demonstrate that severe COVID-19 is associated with unique BCR signatures and multi-clonal neutralizing responses that are relatively frequent in the population. Moreover, our data support the use of combination antibody therapy to prevent and treat COVID-19.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , Convalecencia , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Adulto , Anciano , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/inmunología , COVID-19/genética , COVID-19/inmunología , Chlorocebus aethiops , Clonación Molecular , Mapeo Epitopo , Epítopos/genética , Epítopos/inmunología , Femenino , Humanos , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Masculino , Persona de Mediana Edad , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Células Vero
9.
Nat Immunol ; 11(4): 335-43, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20190759

RESUMEN

Here we describe a previously unknown form of inherited immunodeficiency revealed by an N-ethyl-N-nitrosourea-induced mutation called elektra. Mice homozygous for this mutation showed enhanced susceptibility to bacterial and viral infection and diminished numbers of T cells and inflammatory monocytes that failed to proliferate after infection and died via the intrinsic apoptotic pathway in response to diverse proliferative stimuli. They also had a greater proportion of T cells poised to replicate DNA, and their T cells expressed a subset of activation markers, suggestive of a semi-activated state. We positionally ascribe the elektra phenotype to a mutation in the gene encoding Schlafen-2 (Slfn2). Our findings identify a physiological role for Slfn2 in the defense against pathogens through the regulation of quiescence in T cells and monocytes.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/inmunología , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/inmunología , Leucocitos Mononucleares/inmunología , Linfocitos T/inmunología , Animales , Apoptosis/inmunología , Secuencia de Bases , Separación Celular , Citometría de Flujo , Activación de Linfocitos/inmunología , Ratones , Ratones Transgénicos , Mutación , Fenotipo , Transducción de Señal/inmunología
10.
PLoS Biol ; 17(9): e3000113, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31483778

RESUMEN

The initial host response to fungal pathogen invasion is critical to infection establishment and outcome. However, the diversity of leukocyte-pathogen interactions is only recently being appreciated. We describe a new form of interleukocyte conidial exchange called "shuttling." In Talaromyces marneffei and Aspergillus fumigatus zebrafish in vivo infections, live imaging demonstrated conidia initially phagocytosed by neutrophils were transferred to macrophages. Shuttling is unidirectional, not a chance event, and involves alterations of phagocyte mobility, intercellular tethering, and phagosome transfer. Shuttling kinetics were fungal-species-specific, implicating a fungal determinant. ß-glucan serves as a fungal-derived signal sufficient for shuttling. Murine phagocytes also shuttled in vitro. The impact of shuttling for microbiological outcomes of in vivo infections is difficult to specifically assess experimentally, but for these two pathogens, shuttling augments initial conidial redistribution away from fungicidal neutrophils into the favorable macrophage intracellular niche. Shuttling is a frequent host-pathogen interaction contributing to fungal infection establishment patterns.


Asunto(s)
Aspergilosis/inmunología , Interacciones Huésped-Patógeno , Macrófagos/fisiología , Neutrófilos/fisiología , beta-Glucanos/inmunología , Animales , Aspergillus fumigatus , Ratones , Fagocitosis , Fagosomas , Esporas Fúngicas , Talaromyces , Pez Cebra
11.
Arterioscler Thromb Vasc Biol ; 41(9): 2509-2511, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34261329
12.
Immunol Cell Biol ; 99(8): 796-799, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34355822

RESUMEN

The B-cell response to COVID-19 vaccines in convalescent individuals.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Linfocitos B/inmunología , Vacunas contra la COVID-19 , Humanos , Memoria Inmunológica , Caminata
13.
Immunity ; 37(6): 1009-23, 2012 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-23219391

RESUMEN

Cytopenias are key prognostic indicators of life-threatening infection, contributing to immunosuppression and mortality. Here we define a role for Caspase-1-dependent death, known as pyroptosis, in infection-induced cytopenias by studying inflammasome activation in hematopoietic progenitor cells. The NLRP1a inflammasome is expressed in hematopoietic progenitor cells and its activation triggers their pyroptotic death. Active NLRP1a induced a lethal systemic inflammatory disease that was driven by Caspase-1 and IL-1ß but was independent of apoptosis-associated speck-like protein containing a CARD (ASC) and ameliorated by IL-18. Surprisingly, in the absence of IL-1ß-driven inflammation, active NLRP1a triggered pyroptosis of hematopoietic progenitor cells resulting in leukopenia at steady state. During periods of hematopoietic stress induced by chemotherapy or lymphocytic choriomeningitis virus (LCMV) infection, active NLRP1a caused prolonged cytopenia, bone marrow hypoplasia, and immunosuppression. Conversely, NLRP1-deficient mice showed enhanced recovery from chemotherapy and LCMV infection, demonstrating that NLRP1 acts as a cellular sentinel to alert Caspase-1 to hematopoietic and infectious stress.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis , Células Madre Hematopoyéticas/metabolismo , Inflamasomas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Adaptadoras de Señalización CARD , Caspasa 1/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Dermatitis/inmunología , Dermatitis/metabolismo , Fluorouracilo/farmacología , Hematopoyesis/efectos de los fármacos , Hematopoyesis/inmunología , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/virología , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Interferón gamma/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Ratones , Ratones Noqueados , Mutación , Pancitopenia/inmunología , Pancitopenia/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo
15.
PLoS Biol ; 15(6): e2002711, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28650960

RESUMEN

Necroptosis is a regulated, nonapoptotic form of cell death initiated by receptor-interacting protein kinase-3 (RIPK3) and mixed lineage kinase domain-like (MLKL) proteins. It is considered to be a form of regulated necrosis, and, by lacking the "find me" and "eat me" signals that are a feature of apoptosis, necroptosis is considered to be inflammatory. One such "eat me" signal observed during apoptosis is the exposure of phosphatidylserine (PS) on the outer plasma membrane. Here, we demonstrate that necroptotic cells also expose PS after phosphorylated mixed lineage kinase-like (pMLKL) translocation to the membrane. Necroptotic cells that expose PS release extracellular vesicles containing proteins and pMLKL to their surroundings. Furthermore, inhibition of pMLKL after PS exposure can reverse the process of necroptosis and restore cell viability. Finally, externalization of PS by necroptotic cells drives recognition and phagocytosis, and this may limit the inflammatory response to this nonapoptotic form of cell death. The exposure of PS to the outer membrane and to extracellular vesicles is therefore a feature of necroptotic cell death and may serve to provide an immunologically-silent window by generating specific "find me" and "eat me" signals.


Asunto(s)
Membrana Celular/metabolismo , Necrosis/metabolismo , Fagocitosis , Fosfatidilserinas/metabolismo , Proteínas Quinasas/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/inmunología , Membrana Celular/ultraestructura , Permeabilidad de la Membrana Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Vesículas Extracelulares/efectos de los fármacos , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/ultraestructura , Humanos , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Necrosis/inmunología , Necrosis/patología , Necrosis/prevención & control , Fagocitosis/efectos de los fármacos , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/química , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Propiedades de Superficie/efectos de los fármacos
16.
J Immunol ; 200(10): 3341-3346, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29661823

RESUMEN

The mammalian inhibitor of apoptosis proteins (IAPs) are key regulators of cell death and inflammation. A major function of IAPs is to block the formation of a cell death-inducing complex, termed the ripoptosome, which can trigger caspase-8-dependent apoptosis or caspase-independent necroptosis. Recent studies report that upon TLR4 or TNF receptor 1 (TNFR1) signaling in macrophages, the ripoptosome can also induce NLRP3 inflammasome formation and IL-1ß maturation. Whether neutrophils have the capacity to assemble a ripoptosome to induce cell death and inflammasome activation during TLR4 and TNFR1 signaling is unclear. In this study, we demonstrate that murine neutrophils can signal via TNFR1-driven ripoptosome assembly to induce both cell death and IL-1ß maturation. However, unlike macrophages, neutrophils suppress TLR4-dependent cell death and NLRP3 inflammasome activation during IAP inhibition via deficiencies in the CD14/TRIF arm of TLR4 signaling.


Asunto(s)
Apoptosis/fisiología , Muerte Celular/fisiología , Proteínas Inhibidoras de la Apoptosis/metabolismo , Interleucina-1beta/metabolismo , Neutrófilos/metabolismo , Factores de Necrosis Tumoral/metabolismo , Animales , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Muerte Celular/efectos de los fármacos , Inflamasomas/metabolismo , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Necrosis/metabolismo , Neutrófilos/efectos de los fármacos , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal/fisiología , Receptor Toll-Like 4/metabolismo
17.
Immunol Cell Biol ; 95(2): 146-151, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27826146

RESUMEN

Immunological responses activated by pathogen recognition come in many guises. The proliferation, differentiation and recruitment of immune cells, and the production of inflammatory cytokines and chemokines are central to lifelong immunity. Cell death serves as a key function in the resolution of innate and adaptive immune responses. It also coordinates cell-intrinsic effector functions to restrict infection. Necrosis was formally considered a passive form of cell death or a consequence of pathogen virulence factor expression, and necrotic tissue is frequently associated with infection. However, there is now emerging evidence that points to a role for regulated forms of necrosis, such as pyroptosis and necroptosis, driving inflammation and shaping the immune response.


Asunto(s)
Apoptosis , Citotoxicidad Inmunológica , Animales , Bacterias/metabolismo , Caspasas/metabolismo , Trampas Extracelulares/metabolismo , Humanos , Inflamasomas/metabolismo
18.
Blood ; 123(3): 307-8, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24434994

RESUMEN

In this issue of Blood, Thompson et al reveal a key role for hypoxia-inducible factor (HIF)-2a in the adaptation of neutrophils to hypoxia. Tissue hypoxia is a common feature of trauma and inflammation. Infiltrating neutrophils must adapt to this low-oxygen environment to satisfy the metabolic and functional demands of an immune response.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica , Inflamación , Neutrófilos/metabolismo , Animales , Humanos
20.
Curr Opin Hematol ; 22(4): 293-301, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26049749

RESUMEN

PURPOSE OF REVIEW: A feature of the innate immune response that is conserved across kingdoms is the induction of cell death. In this review, we discuss the direct and indirect effects of increased inflammatory cell death, including pyroptosis - a caspase-1-dependent cell death - and necroptosis - a receptor-interacting protein kinase 3/mixed lineage kinase domain-like protein-dependent, caspase-independent cell death - on emergency hematopoiesis. RECENT FINDINGS: Activation of nonapoptotic cell death pathways during infection can trigger release of cytokines and/or damage-associated molecular patterns such as interleukin (IL)-1α, IL-1ß, IL-18, IL-33, high-mobility group protein B1, and mitochondrial DNA to promote emergency hematopoiesis. During systemic infection, pyroptosis and necroptosis can directly kill hematopoietic stem and progenitor cells, which results in impaired hematopoiesis, cytopenia, and immunosuppression. Although originally described as discrete entities, there now appear to be more intimate connections between the nonapoptotic and death receptor signaling pathways. SUMMARY: The choice to undergo pyroptotic and necroptotic cell death constitutes a rapid response system serving to eliminate infected cells, including hematopoietic stem and progenitor cells. This system has the potential to be detrimental to emergency hematopoiesis during severe infection. We discuss the potential of pharmacological intervention for the pyroptosis and necroptosis pathways that may be beneficial during periods of infection and emergency hematopoiesis.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Hematopoyesis/genética , Transducción de Señal/genética , Caspasa 1/genética , Caspasa 1/inmunología , Muerte Celular/genética , Muerte Celular/inmunología , Citocinas/genética , Citocinas/inmunología , ADN Mitocondrial/genética , ADN Mitocondrial/inmunología , Proteína HMGB1/genética , Proteína HMGB1/inmunología , Hematopoyesis/inmunología , Humanos , Inmunidad Innata , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Proteínas Quinasas/genética , Proteínas Quinasas/inmunología , Piroptosis/genética , Piroptosis/inmunología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/inmunología , Transducción de Señal/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA