Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38712202

RESUMEN

The increased prevalence of opioid use disorder (OUD) makes it imperative to disentangle the biological mechanisms contributing to individual differences in OUD vulnerability. OUD shows strong heritability, however genetic variants contributing toward vulnerability remain poorly defined. We performed a genome-wide association study using over 850 male and female heterogeneous stock (HS) rats to identify genes underlying behaviors associated with OUD such as nociception, as well as heroin-taking, extinction and seeking behaviors. By using an animal model of OUD, we were able to identify genetic variants associated with distinct OUD behaviors while maintaining a uniform environment, an experimental design not easily achieved in humans. Furthermore, we used a novel non-linear network-based clustering approach to characterize rats based on OUD vulnerability to assess genetic variants associated with OUD susceptibility. Our findings confirm the heritability of several OUD-like behaviors, including OUD susceptibility. Additionally, several genetic variants associated with nociceptive threshold prior to heroin experience, heroin consumption, escalation of intake, and motivation to obtain heroin were identified. Tom1 , a microglial component, was implicated for nociception. Several genes involved in dopaminergic signaling, neuroplasticity and substance use disorders, including Brwd1 , Pcp4, Phb1l2 and Mmp15 were implicated for the heroin traits. Additionally, an OUD vulnerable phenotype was associated with genetic variants for consumption and break point, suggesting a specific genetic contribution for OUD-like traits contributing to vulnerability. Together, these findings identify novel genetic markers related to the susceptibility to OUD-relevant behaviors in HS rats.

2.
Neuropsychopharmacology ; 47(5): 1037-1045, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35145212

RESUMEN

Individuals diagnosed with post-traumatic stress disorder (PTSD) are often comorbid for substance use disorders. Cannabis is widely used by PSTD patients, and the literature is mixed on whether cannabis use ameliorates or exacerbates patient responses to stress-associated conditioned stimuli (stress-CS). We determined if cannabis use affects responsivity to stress-CS in rats receiving 2 h stress in the presence of an odor stress-CS. Three weeks after acute stress, rats self-administered cannabinoids (delta9-tetrahydrocannabinol + cannabidiol; THC + CBD) for 15 days, and the stressed males consumed more THC + CBD than sham males. We then used the stress-CS or a novel odor (stress-NS) to reinstate THC + CBD seeking. Surprisingly, the stress-NS reinstated THC + CBD seeking, an effect blocked by N-acetylcysteine. Moreover, the stress-CS inhibited THC + CBD-CS induced reinstatement. To determine if the unexpected effects of stress-NS and -CS resulted from THC + CBD altering conditioned stress, the effect of THC + CBD use on stress-NS/CS-induced coping behaviors and spine morphology was quantified. In THC + CBD-treated rats, stress-NS increased active coping (burying). Conversely, stress-CS reduced active coping and increased passive coping (immobility) and other behavioral parameters associated with stress responses, including self-grooming and defecation. Transient spine head expansion in nucleus accumbens core is necessary for cue-induced drug seeking, and THC + CBD self-administration prevented the increase in head diameter by stress-CS in control rats. These data show THC + CBD self-administration altered the salience of environmental cues, causing neutral cues to promote active behavior (drug seeking and burying) and stress-CS to switch from active to passive behavior (inhibiting drug seeking and immobilization). We hypothesize that cannabis may exacerbate conditioned stress responses.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Alucinógenos , Animales , Cannabidiol/farmacología , Agonistas de Receptores de Cannabinoides , Dronabinol/farmacología , Alucinógenos/farmacología , Humanos , Masculino , Ratas
3.
Psychopharmacology (Berl) ; 239(11): 3605-3620, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36112154

RESUMEN

RATIONALE: The ongoing rise in opioid use disorder (OUD) has made it imperative to better model the individual variation within the human population that contributes to OUD vulnerability. Using animal models that capture such variation can be a useful tool. Individual variation in novelty-induced locomotion is predictive of substance use disorder (SUD) propensity. In this model, rats are characterized as high-responders (HR) or low-responders (LR) using a median split based on distance travelled during a locomotor test, and HR rats are generally found to exhibit a more SUD vulnerable behavioral phenotype. OBJECTIVES: The HR/LR model has commonly been used to assess behaviors in male rats using psychostimulants, with limited knowledge of the predictive efficacy of this model in females or the use of an opioid as the reward. In the current study, we assessed several behaviors across the different phases of drug addiction (heroin taking, refraining, and seeking) in over 500 male and female heterogeneous stock rats run at two geographically separate locations. Rats were characterized as HRs or LRs within each sex for analysis. RESULTS: Overall, females exhibit a more OUD vulnerable phenotype relative to males. Additionally, the HR/LR model was predictive of OUD-like behaviors in male, but not female rats. Furthermore, phenotypes did not differ in anxiety-related behaviors, reacquisition of heroin-taking, or punished heroin-taking behavior in either sex. CONCLUSIONS: These results emphasize the importance of assessing females in models of individual variation in SUD and highlight limitations in using the HR/LR model to assess OUD propensity.


Asunto(s)
Conducta Exploratoria , Dependencia de Heroína , Humanos , Femenino , Ratas , Animales , Masculino , Analgésicos Opioides/farmacología , Actividad Motora , Heroína/farmacología
4.
Front Psychiatry ; 12: 745468, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975564

RESUMEN

Opioid use disorder is a psychological condition that affects over 200,000 people per year in the U.S., causing the Centers for Disease Control and Prevention to label the crisis as a rapidly spreading public health epidemic. The behavioral relationship between opioid exposure and development of opioid use disorder (OUD) varies greatly between individuals, implying existence of sup-populations with varying degrees of opioid vulnerability. However, effective pre-clinical identification of these sub-populations remains challenging due to the complex multivariate measurements employed in animal models of OUD. In this study, we propose a novel non-linear network-based data analysis workflow that employs seven behavioral traits to identify opioid use sub-populations and assesses contributions of behavioral variables to opioid vulnerability and resiliency. Through this analysis workflow we determined how behavioral variables across heroin taking, refraining and seeking interact with one another to identify potentially heroin resilient and vulnerable behavioral sub-populations. Data were collected from over 400 heterogeneous stock rats in two geographically distinct locations. Rats underwent heroin self-administration training, followed by a progressive ratio and heroin-primed reinstatement test. Next, rats underwent extinction training and a cue-induced reinstatement test. To enter the analysis workflow, we integrated data from different cohorts of rats and removed possible batch effects. We then constructed a rat-rat similarity network based on their behavioral patterns and implemented community detection on this similarity network using a Bayesian degree-corrected stochastic block model to uncover sub-populations of rats with differing levels of opioid vulnerability. We identified three statistically distinct clusters corresponding to distinct behavioral sub-populations, vulnerable, resilient and intermediate for heroin use, refraining and seeking. We implement this analysis workflow as an open source R package, named mlsbm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA