RESUMEN
TCF1high progenitor CD8+ T cells mediate the efficacy of immunotherapy; however, the mechanisms that govern their generation and maintenance are poorly understood. Here, we show that targeting glycolysis through deletion of pyruvate kinase muscle 2 (PKM2) results in elevated pentose phosphate pathway (PPP) activity, leading to enrichment of a TCF1high progenitor-exhausted-like phenotype and increased responsiveness to PD-1 blockade in vivo. PKM2KO CD8+ T cells showed reduced glycolytic flux, accumulation of glycolytic intermediates and PPP metabolites and increased PPP cycling as determined by 1,2-13C glucose carbon tracing. Small molecule agonism of the PPP without acute glycolytic impairment skewed CD8+ T cells toward a TCF1high population, generated a unique transcriptional landscape and adoptive transfer of agonist-treated CD8+ T cells enhanced tumor control in mice in combination with PD-1 blockade and promoted tumor killing in patient-derived tumor organoids. Our study demonstrates a new metabolic reprogramming that contributes to a progenitor-like T cell state promoting immunotherapy efficacy.
Asunto(s)
Linfocitos T CD8-positivos , Factor Nuclear 1-alfa del Hepatocito , Inmunoterapia , Vía de Pentosa Fosfato , Proteínas de Unión a Hormona Tiroide , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Ratones , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Humanos , Inmunoterapia/métodos , Glucólisis , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Noqueados , Hormonas Tiroideas/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Inhibidores de Puntos de Control Inmunológico/farmacología , Ratones Endogámicos C57BL , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/metabolismo , Piruvato QuinasaRESUMEN
Adolescents are at relatively high-risk for developing anxiety, particularly social anxiety. A primary hallmark of social anxiety is the impulse to avoid situations that introduce risk. Here, we examined the neural and behavioral correlates of risk avoidance in adolescents (N=59) 11 to 19 years of age. The Balloon Risk Avoidance Task was used with concurrent electroencephalography to measure event-related potentials (frontal P2; late slow-wave; N2, feedback-related negativity, FRN; posterior P3) and oscillatory dynamics (midfrontal theta, 4-7 Hz) in response to unsuccessful and successful risk avoidance conditions. Social anxiety was measured using the Social Phobia and Anxiety Inventory for Children. Results indicated that, across the whole sample, youth exhibited smaller P3, larger FRN, and larger theta responses to unsuccessful risk avoidance. Youth reporting high (compared to low) levels of social anxiety exhibited larger P2, slow-wave, and FRN responses to unsuccessful, compared to successful, risk avoidance. Further, greater social anxiety was associated with reduced theta responses to successful avoidance. Youth with higher levels of social anxiety showed smaller theta responses to both conditions compared to those with low levels of social anxiety. Taken together, the ERP-component differences and weakened theta power in socially anxious youth following unsuccessful avoidance are informative neural correlates for socially anxious youth during risk avoidance.
Asunto(s)
Ansiedad , Electroencefalografía , Potenciales Evocados , Ritmo Teta , Humanos , Adolescente , Masculino , Femenino , Potenciales Evocados/fisiología , Ritmo Teta/fisiología , Niño , Electroencefalografía/métodos , Ansiedad/fisiopatología , Adulto Joven , Reacción de Prevención/fisiología , Fobia Social/fisiopatología , Asunción de Riesgos , Encéfalo/fisiopatología , Encéfalo/fisiologíaRESUMEN
Tumours evade immune control by creating hostile microenvironments that perturb T cell metabolism and effector function1-4. However, it remains unclear how intra-tumoral T cells integrate and interpret metabolic stress signals. Here we report that ovarian cancer-an aggressive malignancy that is refractory to standard treatments and current immunotherapies5-8-induces endoplasmic reticulum stress and activates the IRE1α-XBP1 arm of the unfolded protein response9,10 in T cells to control their mitochondrial respiration and anti-tumour function. In T cells isolated from specimens collected from patients with ovarian cancer, upregulation of XBP1 was associated with decreased infiltration of T cells into tumours and with reduced IFNG mRNA expression. Malignant ascites fluid obtained from patients with ovarian cancer inhibited glucose uptake and caused N-linked protein glycosylation defects in T cells, which triggered IRE1α-XBP1 activation that suppressed mitochondrial activity and IFNγ production. Mechanistically, induction of XBP1 regulated the abundance of glutamine carriers and thus limited the influx of glutamine that is necessary to sustain mitochondrial respiration in T cells under glucose-deprived conditions. Restoring N-linked protein glycosylation, abrogating IRE1α-XBP1 activation or enforcing expression of glutamine transporters enhanced mitochondrial respiration in human T cells exposed to ovarian cancer ascites. XBP1-deficient T cells in the metastatic ovarian cancer milieu exhibited global transcriptional reprogramming and improved effector capacity. Accordingly, mice that bear ovarian cancer and lack XBP1 selectively in T cells demonstrate superior anti-tumour immunity, delayed malignant progression and increased overall survival. Controlling endoplasmic reticulum stress or targeting IRE1α-XBP1 signalling may help to restore the metabolic fitness and anti-tumour capacity of T cells in cancer hosts.
Asunto(s)
Endorribonucleasas/metabolismo , Mitocondrias/metabolismo , Neoplasias Ováricas/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Linfocitos T/citología , Linfocitos T/inmunología , Proteína 1 de Unión a la X-Box/metabolismo , Sistemas de Transporte de Aminoácidos Básicos , Animales , Ascitis/metabolismo , Respiración de la Célula , Progresión de la Enfermedad , Estrés del Retículo Endoplásmico , Femenino , Regulación Neoplásica de la Expresión Génica , Glucosa/metabolismo , Glutamina/metabolismo , Glicosilación , Humanos , Interferón gamma/biosíntesis , Interferón gamma/genética , Ratones , Metástasis de la Neoplasia , Trasplante de Neoplasias , Neoplasias Ováricas/patología , Transducción de Señal , Tasa de Supervivencia , Linfocitos T/metabolismo , Escape del Tumor/inmunología , Respuesta de Proteína Desplegada , Proteína 1 de Unión a la X-Box/biosíntesis , Proteína 1 de Unión a la X-Box/deficienciaRESUMEN
Adolescents experience significant developmental changes during a time of heightened sensitivity to social cues, particularly rejection by peers, which can be especially overwhelming for those with elevated levels of social anxiety. Social evaluative decision-making tasks have been useful in uncovering the neural correlates of information processing biases; however, linking youths' task-based performance to individual differences in psychopathology (e.g., anxiety symptoms) has proven more elusive. Here, we address this weakness with drift diffusion modeling to decompose youths' performance on the social judgment paradigm (SJP) to determine if this approach is useful in discovering individual differences in anxiety symptoms, as well as puberty, age, and sex. A sample of 103 adolescents (55 males, Mage = 14.49, SD = 1.69) completed the SJP and self-report measures of anxiety, as well as self- and parent-reported measures of puberty. The decision threshold parameter, reflecting the amount of evidence needed to make a social evaluative decision, predicted youth self-reported anxiety, above and beyond typical metrics of SJP performance. Our results highlight the potential advantage of parsing task performance according to the underlying cognitive processes. Future research would likely benefit from applying computational modeling approaches to social judgment tasks when attempting to uncover performance-based individual differences in psychopathology.
RESUMEN
Background: Exposure to substances in utero may have significant early-life consequences. Less is known about the effects in emerging adulthood, particularly regarding patterns of substance use and related characteristics.Objectives: In this study, we recruited emerging adults, followed since birth, who had been prenatally exposed, or not, to cocaine. Individuals reported on their cannabis, alcohol, and tobacco use, and measures of impulsivity, anhedonia, emotional regulation, and mental health were obtained. Comparisons were made between emerging adults with prenatal cocaine exposure and those without. Correlations were performed between psychological measures and substance use, and regression analyses were conducted to determine potential pathways by which such measures may relate to prenatal exposure or substance use.Results: Individuals with prenatal cocaine exposure (vs. those without) used cannabis at younger ages, reported greater cannabis-use severity, and demonstrated higher impulsivity, state anxiety, and alexithymia. Earlier age of onset of cannabis use was associated with higher impulsivity, state anxiety, alexithymia, and social and physical anhedonia. Cannabis-use age-of-onset mediated the relationship between prenatal cocaine-exposure status and state anxiety and between prenatal cocaine-exposure status and cannabis-use severity in emerging adulthood but not relationships between prenatal cocaine-exposure status and impulsivity or alexithymia in emerging adulthood. Findings suggest that adults with prenatal cocaine exposure may use cannabis at younger ages, which may relate to increased anxiety and more severe use.Conclusions: These findings suggest both mechanisms and possible intervention targets to improve mental health in emerging adults with prenatal cocaine exposure.
Asunto(s)
Cannabis , Cocaína , Alucinógenos , Trastornos Relacionados con Sustancias , Embarazo , Adulto , Femenino , Humanos , Cannabis/efectos adversos , Trastornos Relacionados con Sustancias/psicología , Cocaína/efectos adversos , Uso de Tabaco , EtanolRESUMEN
Lignin, an abundant aromatic heteropolymer in secondary plant cell walls, is the single largest source of renewable aromatics in the biosphere. Leveraging this resource for renewable bioproducts through targeted microbial action depends on lignin fragment uptake by microbial hosts and subsequent enzymatic action to obtain the desired product. Recent computational work has emphasized that bacterial inner membranes are permeable to many aromatic compounds expected from lignin depolymerization processes. In this study, we expand on these findings through simulations for 42 lignin-related compounds across a gram-negative bacterial outer membrane model. Unbiased simulation trajectories indicate that spontaneous crossing for the full outer membrane is relatively rare at molecular simulation timescales, primarily due to preferential membrane partitioning and slow diffusion within the lipopolysaccharide layer within the outer membrane. Membrane partitioning and permeability coefficients were determined through replica exchange umbrella sampling simulations to overcome sampling limitations. We find that the glycosylated lipopolysaccharides found in the outer membrane increase the permeation barrier to many lignin-related compounds, particularly the most hydrophobic compounds. However, the effect is relatively modest; at industrially relevant concentrations, uncharged lignin-related compounds will readily diffuse across the outer membrane without the need for specific porins. Together, our results provide insight into the permeability of the bacterial outer membrane for assessing lignin fragment uptake and the future production of renewable bioproducts.
Asunto(s)
Membrana Externa Bacteriana , Lignina , Membrana Externa Bacteriana/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Transporte Biológico , Difusión , Lignina/metabolismo , Simulación de Dinámica Molecular , Bacterias GramnegativasRESUMEN
Frontal midline theta oscillatory dynamics have been implicated as an important neural signature of inhibitory control. However, most proactive cognitive control studies rely on behavioral tasks where individual differences are inferred through button presses. We applied computational modeling to further refine our understanding of theta dynamics in a cued anti-saccade task with gaze-contingent eye tracking. Using a drift diffusion model, increased frontal midline theta power during high-conflict, relative to low-conflict, trials predicted a more conservative style of responding through the starting point (bias). During both high- and low-conflict trials, increases in frontal midline theta also predicted improvements in response efficiency (drift rate). Regression analyses provided support for the importance of the starting point bias, which was associated with frontal midline theta over the course of the task above-and-beyond both drift rate and mean reaction time. Our findings provide a more thorough understanding of proactive gaze control by linking trial-by-trial increases of frontal midline theta to a shift in starting point bias facilitating a more neutral style of responding.
Asunto(s)
Electroencefalografía , Ritmo Teta , Humanos , Ritmo Teta/fisiología , Encéfalo/fisiología , Tiempo de Reacción/fisiología , Señales (Psicología) , Lóbulo Frontal/fisiologíaRESUMEN
BACKGROUND: Comprehensive Behavioral Intervention for Tics (CBIT) is recommended as a first-line treatment for Tourette syndrome in children and adults. While there is strong evidence proving its efficacy, the mechanisms of reduction in tic severity during CBIT are still poorly understood. In a recent study, our group identified a functional brain network involved in tic suppression in children with TS. We reasoned that voluntary tic suppression and CBIT may share some mechanisms and thus we wanted to assess whether functional connectivity during tic suppression was associated with CBIT outcome. METHODS: Thirty-two children with TS, aged 8 to 13 years old, participated in a randomized controlled trial of CBIT v. a treatment-as-usual control condition. EEG was recorded during tic suppression in all participants at baseline and endpoint. We used a source-reconstructed EEG connectivity pipeline to assess functional connectivity during tic suppression. RESULTS: Functional connectivity during tic suppression did not change from baseline to endpoint. However, baseline tic suppression-related functional connectivity specifically predicted the decrease in vocal tic severity from baseline to endpoint in the CBIT group. Supplementary analyses revealed that the functional connectivity between the right superior frontal gyrus and the right angular gyrus was mainly driving this effect. CONCLUSIONS: This study revealed that functional connectivity during tic suppression at baseline predicted reduction in vocal tic severity. These results suggest probable overlap between the mechanisms of voluntary tic suppression and those of behavior therapy for tics.
Asunto(s)
Trastornos de Tic , Tics , Síndrome de Tourette , Adulto , Niño , Humanos , Adolescente , Tics/terapia , Tics/complicaciones , Síndrome de Tourette/terapia , Índice de Severidad de la Enfermedad , Trastornos de Tic/terapia , Terapia Conductista/métodosRESUMEN
Disruptions in frontoparietal networks supporting emotion regulation have been long implicated in maladaptive childhood aggression. However, the association of connectivity between large-scale functional networks with aggressive behavior has not been tested. The present study examined whether the functional organization of the connectome predicts severity of aggression in children. This cross-sectional study included a transdiagnostic sample of 100 children with aggressive behavior (27 females) and 29 healthy controls without aggression or psychiatric disorders (13 females). Severity of aggression was indexed by the total score on the parent-rated Reactive-Proactive Aggression Questionnaire. During fMRI, participants completed a face emotion perception task of fearful and calm faces. Connectome-based predictive modeling with internal cross-validation was conducted to identify brain networks that predicted aggression severity. The replication and generalizability of the aggression predictive model was then tested in an independent sample of children from the Adolescent Brain Cognitive Development (ABCD) study. Connectivity predictive of aggression was identified within and between networks implicated in cognitive control (medial-frontal, frontoparietal), social functioning (default mode, salience), and emotion processing (subcortical, sensorimotor) (r = 0.31, RMSE = 9.05, p = 0.005). Out-of-sample replication (p < 0.002) and generalization (p = 0.007) of findings predicting aggression from the functional connectome was demonstrated in an independent sample of children from the ABCD study (n = 1791; n = 1701). Individual differences in large-scale functional networks contribute to variability in maladaptive aggression in children with psychiatric disorders. Linking these individual differences in the connectome to variation in behavioral phenotypes will advance identification of neural biomarkers of maladaptive childhood aggression to inform targeted treatments.
Asunto(s)
Conectoma , Adolescente , Agresión , Encéfalo , Niño , Estudios Transversales , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Red NerviosaRESUMEN
Although associations among borderline personality disorder (BPD), social rejection, and frontal EEG alpha asymmetry scores (FAA, a neural correlate of emotion regulation and approach-withdrawal motivations) have been explored in different studies, relatively little work has examined these relations during adolescence in the same study. We examined whether FAA moderated the relation between BPD features and rejection sensitivity following a validated social exclusion paradigm, Cyberball. A mixed, clinical-community sample of 64 adolescents (females = 62.5%; Mage = 14.45 years; SD = 1.6; range = 11-17 years) completed psychodiagnostic interviews and a self-report measure of BPD (Time 1). Approximately two weeks later (Time 2), participants completed a resting EEG recording followed by Cyberball. FAA moderated the relation between BPD features and overall feelings of rejection following Cyberball: individuals with greater relative left FAA had the highest and lowest feelings of social rejection depending on whether they had high and low BPD feature scores, respectively. Results remained after controlling for age, sex, gender, depression, and BPD diagnosis. These results suggest that FAA may moderate the relation between BPD features and social rejection, and that left frontal brain activity at rest may be differentially associated with those feelings in BPD. Findings are discussed in terms of the link between left frontal brain activity in the regulation and dysregulation of social approach behaviors, characteristic of BPD.
Asunto(s)
Trastorno de Personalidad Limítrofe , Femenino , Humanos , Adolescente , Trastorno de Personalidad Limítrofe/psicología , Estatus Social , Emociones , Aislamiento Social , ElectroencefalografíaRESUMEN
Constitutional LZTR1 or SMARCB1 pathogenic variants (PVs) have been found in â¼86% of familial and â¼40% of sporadic schwannomatosis cases. Hence, we performed massively parallel sequencing of the entire LZTR1, SMARCB1, and NF2 genomic loci in 35 individuals with schwannomas negative for constitutional first-hit PVs in the LZTR1/SMARCB1/NF2 coding sequences; however, with 22q deletion and/or a different NF2 PV in each tumor, including six cases with only one tumor available. Furthermore, we verified whether any other LZTR1/SMARCB1/NF2 (likely) PVs could be found in 16 cases carrying a SMARCB1 constitutional variant in the 3'-untranslated region (3'-UTR) c.*17C>T, c.*70C>T, or c.*82C>T. As no additional variants were found, functional studies were performed to clarify the effect of these 3'-UTR variants on the transcript. The 3'-UTR variants c.*17C>T and c.*82C>T showed pathogenicity by negatively affecting the SMARCB1 transcript level. Two novel deep intronic SMARCB1 variants, c.500+883T>G and c.500+887G>A, resulting in out-of-frame missplicing of intron 4, were identified in two unrelated individuals. Further resequencing of the entire repeat-masked genomics sequences of chromosome 22q in individuals negative for PVs in the SMARCB1/LZTR1/NF2 coding- and noncoding regions revealed five potential schwannomatosis-predisposing candidate genes, that is, MYO18B, NEFH, SGSM1, SGSM3, and SBF1, pending further verification.
Asunto(s)
Neurilemoma , Neurofibromatosis , Cromosomas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Neurilemoma/genética , Neurilemoma/patología , Neurofibromatosis/genética , Proteína SMARCB1/genética , Factores de Transcripción/genéticaRESUMEN
ST6Gal-I, an enzyme upregulated in numerous malignancies, adds α2-6-linked sialic acids to select membrane receptors, thereby modulating receptor signaling and cell phenotype. In this study, we investigated ST6Gal-I's role in epithelial to mesenchymal transition (EMT) using the Suit2 pancreatic cancer cell line, which has low endogenous ST6Gal-I and limited metastatic potential, along with two metastatic Suit2-derived subclones, S2-013 and S2-LM7AA, which have upregulated ST6Gal-I. RNA-Seq results suggested that the metastatic subclones had greater activation of EMT-related gene networks than parental Suit2 cells, and forced overexpression of ST6Gal-I in the Suit2 line was sufficient to activate EMT pathways. Accordingly, we evaluated expression of EMT markers and cell invasiveness (a key phenotypic feature of EMT) in Suit2 cells with or without ST6Gal-I overexpression, as well as S2-013 and S2-LM7AA cells with or without ST6Gal-I knockdown. Cells with high ST6Gal-I expression displayed enrichment in mesenchymal markers (N-cadherin, slug, snail, fibronectin) and cell invasiveness, relative to ST6Gal-I-low cells. Contrarily, epithelial markers (E-cadherin, occludin) were suppressed in ST6Gal-I-high cells. To gain mechanistic insight into ST6Gal-I's role in EMT, we examined the activity of epidermal growth factor receptor (EGFR), a known EMT driver. ST6Gal-I-high cells had greater α2-6 sialylation and activation of EGFR than ST6Gal-I-low cells. The EGFR inhibitor, erlotinib, neutralized ST6Gal-I-dependent differences in EGFR activation, mesenchymal marker expression, and invasiveness in Suit2 and S2-LM7AA, but not S2-013, lines. Collectively, these results advance our understanding of ST6Gal-I's tumor-promoting function by highlighting a role for ST6Gal-I in EMT, which may be mediated, at least in part, by α2-6-sialylated EGFR.
Asunto(s)
Transición Epitelial-Mesenquimal/fisiología , Neoplasias Pancreáticas/patología , Sialiltransferasas/fisiología , Biomarcadores/metabolismo , Línea Celular Tumoral , Receptores ErbB/metabolismo , Humanos , Invasividad Neoplásica , Metástasis de la Neoplasia , Neoplasias Pancreáticas/enzimología , beta-D-Galactósido alfa 2-6-SialiltransferasaRESUMEN
One of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virulence factors is the ability to interact with high affinity to the ACE2 receptor, which mediates viral entry into cells. The results of our study demonstrate that within a few passages in cell culture, both the natural isolate of SARS-CoV-2 and the recombinant cDNA-derived variant acquire an additional ability to bind to heparan sulfate (HS). This promotes a primary attachment of viral particles to cells before their further interactions with the ACE2. Interaction with HS is acquired through multiple mechanisms. These include (i) accumulation of point mutations in the N-terminal domain (NTD) of the S protein, which increases the positive charge of the surface of this domain, (ii) insertions into the NTD of heterologous peptides containing positively charged amino acids, and (iii) mutation of the first amino acid downstream of the furin cleavage site. This last mutation affects S protein processing, transforms the unprocessed furin cleavage site into the heparin-binding peptide, and makes viruses less capable of syncytium formation. These viral adaptations result in higher affinity of viral particles to heparin, dramatic increase in plaque sizes, more efficient viral spread, higher infectious titers, and 2 orders of magnitude higher infectivity. The detected adaptations also suggest an active role of NTD in virus attachment and entry. As in the case of other RNA-positive (RNA+) viruses, evolution to HS binding may result in virus attenuation in vivo. IMPORTANCE The spike protein of SARS-CoV-2 is a major determinant of viral pathogenesis. It mediates binding to the ACE2 receptor and, later, fusion of viral envelope and cellular membranes. The results of our study demonstrate that SARS-CoV-2 rapidly evolves during propagation in cultured cells. Its spike protein acquires mutations in the NTD and in the P1' position of the furin cleavage site (FCS). The amino acid substitutions or insertions of short peptides in NTD are closely located on the protein surface and increase its positive charge. They strongly increase affinity of the virus to heparan sulfate, make it dramatically more infectious for the cultured cells, and decrease the genome equivalent to PFU (GE/PFU) ratio by orders of magnitude. The S686G mutation also transforms the FCS into the heparin-binding peptide. Thus, the evolved SARS-CoV-2 variants efficiently use glycosaminoglycans on the cell surface for primary attachment before the high-affinity interaction of the spikes with the ACE2 receptor.
Asunto(s)
Evolución Molecular , Heparitina Sulfato/metabolismo , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/metabolismo , Adaptación Biológica , Animales , Sitios de Unión , Chlorocebus aethiops , Efecto Citopatogénico Viral , ADN Complementario , Furina/metabolismo , Heparina/metabolismo , Interacciones Huésped-Patógeno , Unión Proteica , Dominios Proteicos , Procesamiento Proteico-Postraduccional , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Pase Seriado , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Células Vero , Ensayo de Placa Viral , Acoplamiento ViralRESUMEN
Child maltreatment gives rise to atypical patterns of social functioning with peers which might be particularly pronounced in early adolescence when peer influence typically peaks. Yet, few neuroimaging studies in adolescents use peer interaction paradigms to parse neural correlates of distinct maltreatment exposures. This fMRI study examines effects of abuse, neglect, and emotional maltreatment (EM) among 98 youth (n = 58 maltreated; n = 40 matched controls) using an event-related Cyberball paradigm affording assessment of both social exclusion and inclusion across early and mid-adolescence (≤13.5 years, n = 50; >13.5 years, n = 48). Younger adolescents showed increased activation to social exclusion versus inclusion in regions implicated in mentalizing (e.g., superior temporal gyrus). Individual exposure-specific analyses suggested that neglect and EM coincided with less reduction of activation to social exclusion relative to inclusion in the dorsal anterior cingulate cortex/pre-supplementary motor area (dACC/pre-SMA) among younger versus older adolescents. Integrative follow-up analyses showed that EM accounted for this dACC/pre-SMA activation pattern over and above other exposures. Moreover, age-independent results within respective exposure groups revealed that greater magnitude of neglect predicted blunted exclusion-related activity in the parahippocampal gyrus, while EM predicted increased activation to social exclusion in the precuneus/posterior cingulate cortex.
Asunto(s)
Maltrato a los Niños , Imagen por Resonancia Magnética , Adolescente , Niño , Humanos , Giro del Cíngulo/diagnóstico por imagen , Emociones , Maltrato a los Niños/psicología , Grupo ParitarioRESUMEN
Cellulase enzymes deconstruct recalcitrant cellulose into soluble sugars, making them a biocatalyst of biotechnological interest for use in the nascent lignocellulosic bioeconomy. Cellobiohydrolases (CBHs) are cellulases capable of liberating many sugar molecules in a processive manner without dissociating from the substrate. Within the complete processive cycle of CBHs, dissociation from the cellulose substrate is rate limiting, but the molecular mechanism of this step is unknown. Here, we present a direct comparison of potential molecular mechanisms for dissociation via Hamiltonian replica exchange molecular dynamics of the model fungal CBH, Trichoderma reesei Cel7A. Computational rate estimates indicate that stepwise cellulose dethreading from the binding tunnel is 4 orders of magnitude faster than a clamshell mechanism, in which the substrate-enclosing loops open and release the substrate without reversing. We also present the crystal structure of a disulfide variant that covalently links substrate-enclosing loops on either side of the substrate-binding tunnel, which constitutes a CBH that can only dissociate via stepwise dethreading. Biochemical measurements indicate that this variant has a dissociation rate constant essentially equivalent to the wild type, implying that dethreading is likely the predominant mechanism for dissociation.
Asunto(s)
Celulasas/química , Proteínas Fúngicas/química , Trichoderma/enzimología , Sitios de Unión , Dominio Catalítico , Celulasas/metabolismo , Celulosa/química , Celulosa/metabolismo , Proteínas Fúngicas/metabolismo , Cinética , Simulación de Dinámica Molecular , Trichoderma/químicaRESUMEN
Lignin is an abundant aromatic polymer found in plant secondary cell walls. In recent years, lignin has attracted renewed interest as a feedstock for bio-based chemicals via catalytic and biological approaches and has emerged as a target for genetic engineering to improve lignocellulose digestibility by altering its composition. In lignin biosynthesis and microbial conversion, small phenolic lignin precursors or degradation products cross membrane bilayers through an unidentified translocation mechanism prior to incorporation into lignin polymers (synthesis) or catabolism (bioconversion), with both passive and transporter-assisted mechanisms postulated. To test the passive permeation potential of these phenolics, we performed molecular dynamics simulations for 69 monomeric and dimeric lignin-related phenolics with 3 model membranes to determine the membrane partitioning and permeability coefficients for each compound. The results support an accessible passive permeation mechanism for most compounds, including monolignols, dimeric phenolics, and the flavonoid, tricin. Computed lignin partition coefficients are consistent with concentration enrichment near lipid carbonyl groups, and permeability coefficients are sufficient to keep pace with cellular metabolism. Interactions between methoxy and hydroxy groups are found to reduce membrane partitioning and improve permeability. Only carboxylate-modified or glycosylated lignin phenolics are predicted to require transporters for membrane translocation. Overall, the results suggest that most lignin-related compounds can passively traverse plant and microbial membranes on timescales commensurate with required biological activities, with any potential transport regulation mechanism in lignin synthesis, catabolism, or bioconversion requiring compound functionalization.
Asunto(s)
Membrana Celular/metabolismo , Lignina/metabolismo , Difusión , Simulación de Dinámica MolecularRESUMEN
Technologies surrounding utilization of cellulosic materials have been integral to human society for millennia. In many materials, controlled introduction of defects provides a means to tailor properties, introduce reactivity, and modulate functionality for various applications. The importance of defects in defining the behavior of cellulose is becoming increasingly recognized. However, fully exploiting defects in cellulose to benefit biobased materials and conversion applications will require an improved understanding of the mechanisms of defect induction and corresponding molecular-level consequences. We have identified a fundamental relationship between the macromolecular structure and mechanical behavior of cellulose nanofibrils whereby molecular defects may be induced when the fibrils are subjected to bending stress exceeding a certain threshold. By nanomanipulation, imaging, and molecular modeling, we demonstrate that cellulose nanofibrils tend to form kink defects in response to bending stress, and that these macromolecular features are often accompanied by breakages in the glucan chains. Direct observation of deformed cellulose fibrils following partial enzymatic digestion reveals that processive cellulases exploit these defects as initiation sites for hydrolysis. Collectively, our findings provide a refined understanding of the interplay between the structure, mechanics, and reactivity of cellulose assemblies.
Asunto(s)
Celulosa/química , NanoestructurasRESUMEN
Microbial conversion of aromatic compounds is an emerging and promising strategy for valorization of the plant biopolymer lignin. A critical and often rate-limiting reaction in aromatic catabolism is O-aryl-demethylation of the abundant aromatic methoxy groups in lignin to form diols, which enables subsequent oxidative aromatic ring-opening. Recently, a cytochrome P450 system, GcoAB, was discovered to demethylate guaiacol (2-methoxyphenol), which can be produced from coniferyl alcohol-derived lignin, to form catechol. However, native GcoAB has minimal ability to demethylate syringol (2,6-dimethoxyphenol), the analogous compound that can be produced from sinapyl alcohol-derived lignin. Despite the abundance of sinapyl alcohol-based lignin in plants, no pathway for syringol catabolism has been reported to date. Here we used structure-guided protein engineering to enable microbial syringol utilization with GcoAB. Specifically, a phenylalanine residue (GcoA-F169) interferes with the binding of syringol in the active site, and on mutation to smaller amino acids, efficient syringol O-demethylation is achieved. Crystallography indicates that syringol adopts a productive binding pose in the variant, which molecular dynamics simulations trace to the elimination of steric clash between the highly flexible side chain of GcoA-F169 and the additional methoxy group of syringol. Finally, we demonstrate in vivo syringol turnover in Pseudomonas putida KT2440 with the GcoA-F169A variant. Taken together, our findings highlight the significant potential and plasticity of cytochrome P450 aromatic O-demethylases in the biological conversion of lignin-derived aromatic compounds.
Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Lignina/genética , Ingeniería de Proteínas , Pirogalol/análogos & derivados , Sistema Enzimático del Citocromo P-450/química , Lignina/biosíntesis , Lignina/metabolismo , Metilación , Oxidación-Reducción , Oxidorreductasas O-Demetilantes/química , Oxidorreductasas O-Demetilantes/genética , Pseudomonas putida/enzimología , Pseudomonas putida/genética , Pirogalol/química , Pirogalol/metabolismoRESUMEN
Family 45 glycoside hydrolases (GH45) are endoglucanases that are integral to cellulolytic secretomes, and their ability to break down cellulose has been successfully exploited in textile and detergent industries. In addition to their industrial relevance, understanding the molecular mechanism of GH45-catalyzed hydrolysis is of fundamental importance because of their structural similarity to cell wall-modifying enzymes such as bacterial lytic transglycosylases (LTs) and expansins present in bacteria, plants, and fungi. Our understanding of the catalytic itinerary of GH45s has been incomplete because a crystal structure with substrate spanning the -1 to +1 subsites is currently lacking. Here we constructed and validated a putative Michaelis complex in silico and used it to elucidate the hydrolytic mechanism in a GH45, Cel45A from the fungus Humicola insolens, via unbiased simulation approaches. These molecular simulations revealed that the solvent-exposed active-site architecture results in lack of coordination for the hydroxymethyl group of the substrate at the -1 subsite. This lack of coordination imparted mobility to the hydroxymethyl group and enabled a crucial hydrogen bond with the catalytic acid during and after the reaction. This suggests the possibility of a nonhydrolytic reaction mechanism when the catalytic base aspartic acid is missing, as is the case in some LTs (murein transglycosylase A) and expansins. We calculated reaction free energies and demonstrate the thermodynamic feasibility of the hydrolytic and nonhydrolytic reaction mechanisms. Our results provide molecular insights into the hydrolysis mechanism in HiCel45A, with possible implications for elucidating the elusive catalytic mechanism in LTs and expansins.
Asunto(s)
Celulasa/metabolismo , Proteínas Fúngicas/metabolismo , Dominio Catalítico , Celulasa/química , Celulasa/genética , Hongos del Género Humicola/enzimología , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Glicosiltransferasas/metabolismo , Hidrólisis , Cinética , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína , Teoría Cuántica , Especificidad por SustratoRESUMEN
This paper describes the microbial community composition and genes for key metabolic genes, particularly the nitrogen fixation of the mucous-enveloped gut digesta of green (Lytechinus variegatus) and purple (Strongylocentrotus purpuratus) sea urchins by using the shotgun metagenomics approach. Both green and purple urchins showed high relative abundances of Gammaproteobacteria at 30% and 60%, respectively. However, Alphaproteobacteria in the green urchins had higher relative abundances (20%) than the purple urchins (2%). At the genus level, Vibrio was dominant in both green (~9%) and purple (~10%) urchins, whereas Psychromonas was prevalent only in purple urchins (~24%). An enrichment of Roseobacter and Ruegeria was found in the green urchins, whereas purple urchins revealed a higher abundance of Shewanella, Photobacterium, and Bacteroides (q-value < 0.01). Analysis of key metabolic genes at the KEGG-Level-2 categories revealed genes for amino acids (~20%), nucleotides (~5%), cofactors and vitamins (~6%), energy (~5%), carbohydrates (~13%) metabolisms, and an abundance of genes for assimilatory nitrogen reduction pathway in both urchins. Overall, the results from this study revealed the differences in the microbial community and genes designated for the metabolic processes in the nutrient-rich sea urchin gut digesta, suggesting their likely importance to the host and their environment.