Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 174(2): 422-432.e13, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29909987

RESUMEN

Increased androgen receptor (AR) activity drives therapeutic resistance in advanced prostate cancer. The most common resistance mechanism is amplification of this locus presumably targeting the AR gene. Here, we identify and characterize a somatically acquired AR enhancer located 650 kb centromeric to the AR. Systematic perturbation of this enhancer using genome editing decreased proliferation by suppressing AR levels. Insertion of an additional copy of this region sufficed to increase proliferation under low androgen conditions and to decrease sensitivity to enzalutamide. Epigenetic data generated in localized prostate tumors and benign specimens support the notion that this region is a developmental enhancer. Collectively, these observations underscore the importance of epigenomic profiling in primary specimens and the value of deploying genome editing to functionally characterize noncoding elements. More broadly, this work identifies a therapeutic vulnerability for targeting the AR and emphasizes the importance of regulatory elements as highly recurrent oncogenic drivers.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/metabolismo , Acetilación , Adulto , Anciano , Antineoplásicos/farmacología , Benzamidas , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Metilación de ADN , Edición Génica , Histonas/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia , Nitrilos , Feniltiohidantoína/análogos & derivados , Feniltiohidantoína/farmacología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/genética
2.
Cell ; 173(3): 611-623.e17, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29656891

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is characterized by near-universal loss of the short arm of chromosome 3, deleting several tumor suppressor genes. We analyzed whole genomes from 95 biopsies across 33 patients with clear cell renal cell carcinoma. We find hotspots of point mutations in the 5' UTR of TERT, targeting a MYC-MAX-MAD1 repressor associated with telomere lengthening. The most common structural abnormality generates simultaneous 3p loss and 5q gain (36% patients), typically through chromothripsis. This event occurs in childhood or adolescence, generally as the initiating event that precedes emergence of the tumor's most recent common ancestor by years to decades. Similar genomic changes drive inherited ccRCC. Modeling differences in age incidence between inherited and sporadic cancers suggests that the number of cells with 3p loss capable of initiating sporadic tumors is no more than a few hundred. Early development of ccRCC follows well-defined evolutionary trajectories, offering opportunity for early intervention.


Asunto(s)
Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Progresión de la Enfermedad , Neoplasias Renales/genética , Neoplasias Renales/patología , Mutación , Regiones no Traducidas 5' , Adulto , Anciano , Anciano de 80 o más Años , Cromosomas Humanos Par 3 , Cromosomas Humanos Par 5 , Femenino , Dosificación de Gen , Genoma Humano , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Telomerasa/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética
3.
Brief Bioinform ; 22(6)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34015811

RESUMEN

Formalin-fixed paraffin-embedded tissue, the most common tissue specimen stored in clinical practice, presents challenges in the analysis due to formalin-induced artifacts. Here, we present Strand Orientation Bias Detector (SOBDetector), a flexible computational platform compatible with all the common somatic SNV-calling pipelines, designed to assess the probability whether a given detected mutation is an artifact. The underlying predictor mechanism is based on the posterior distribution of a Bayesian logistic regression model trained on The Cancer Genome Atlas whole exomes. SOBDetector is a freely available cross-platform program, implemented in Java 1.8.


Asunto(s)
Artefactos , Técnicas Citológicas/normas , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Modelos Estadísticos , Análisis de Secuencia de ADN/normas , Moldes Genéticos , Algoritmos , ADN de Neoplasias , Bases de Datos Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Mutación , Neoplasias/diagnóstico , Neoplasias/genética , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN/métodos
4.
BMC Microbiol ; 23(1): 307, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37880630

RESUMEN

The bacterial growth rate is important for pathogenicity and food safety. Therefore, the study of bacterial growth rate over time can provide important data from a medical and veterinary point of view. We trained convolutional neural networks (CNNs) on manually annotated solid medium cultures to detect bacterial colonies as accurately as possible. Predictions of bacterial colony size and growth rate were estimated from image sequences of independent Staphylococcus aureus cultures using trained CNNs. A simple linear model for control cultures with less than 150 colonies estimated that the mean growth rate was 60.3 [Formula: see text] for the first 24 h. Analyzing with a mixed effect model that also takes into account the effect of culture, smaller values of change in colony size were obtained (control: 51.0 [Formula: see text], rifampicin pretreated: 36.5[Formula: see text]). An increase in the number of neighboring colonies clearly reduces the colony growth rate in the control group but less typically in the rifampicin-pretreated group. Based on our results, CNN-based bacterial colony detection and the subsequent analysis of bacterial colony growth dynamics might become an accurate and efficient tool for bacteriological work and research.


Asunto(s)
Aprendizaje Profundo , Rifampin/farmacología , Redes Neurales de la Computación
5.
Int J Mol Sci ; 24(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37239898

RESUMEN

A limited number of studies have focused on the mutational landscape of breast cancer in different ethnic populations within Europe and compared the data with other ethnic groups and databases. We performed whole-genome sequencing of 63 samples from 29 Hungarian breast cancer patients. We validated a subset of the identified variants at the DNA level using the Illumina TruSight Oncology (TSO) 500 assay. Canonical breast-cancer-associated genes with pathogenic germline mutations were CHEK2 and ATM. Nearly all the observed germline mutations were as frequent in the Hungarian breast cancer cohort as in independent European populations. The majority of the detected somatic short variants were single-nucleotide polymorphisms (SNPs), and only 8% and 6% of them were deletions or insertions, respectively. The genes most frequently affected by somatic mutations were KMT2C (31%), MUC4 (34%), PIK3CA (18%), and TP53 (34%). Copy number alterations were most common in the NBN, RAD51C, BRIP1, and CDH1 genes. For many samples, the somatic mutational landscape was dominated by mutational processes associated with homologous recombination deficiency (HRD). Our study, as the first breast tumor/normal sequencing study in Hungary, revealed several aspects of the significantly mutated genes and mutational signatures, and some of the copy number variations and somatic fusion events. Multiple signs of HRD were detected, highlighting the value of the comprehensive genomic characterization of breast cancer patient populations.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Hungría , Variaciones en el Número de Copia de ADN , Predisposición Genética a la Enfermedad , Mutación , Mutación de Línea Germinal , Genómica
6.
Cancer Immunol Immunother ; 71(3): 553-563, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34272988

RESUMEN

BACKGROUND: Studying tumor cell-T cell interactions in the tumor microenvironment (TME) can elucidate tumor immune escape mechanisms and help predict responses to cancer immunotherapy. METHODS: We selected 14 pairs of highly tumor-reactive tumor-infiltrating lymphocytes (TILs) and autologous short-term cultured cell lines, covering four distinct tumor types, and co-cultured TILs and tumors at sub-lethal ratios in vitro to mimic the interactions occurring in the TME. We extracted gene signatures associated with a tumor-directed T cell attack based on transcriptomic data of tumor cells. RESULTS: An autologous T cell attack induced pronounced transcriptomic changes in the attacked tumor cells, partially independent of IFN-γ signaling. Transcriptomic changes were mostly independent of the tumor histological type and allowed identifying common gene expression changes, including a shared gene set of 55 transcripts influenced by T cell recognition (Tumors undergoing T cell attack, or TuTack, focused gene set). TuTack scores, calculated from tumor biopsies, predicted the clinical outcome after anti-PD-1/anti-PD-L1 therapy in multiple tumor histologies. Notably, the TuTack scores did not correlate to the tumor mutational burden, indicating that these two biomarkers measure distinct biological phenomena. CONCLUSIONS: The TuTack scores measure the effects on tumor cells of an anti-tumor immune response and represent a comprehensive method to identify immunologically responsive tumors. Our findings suggest that TuTack may allow patient selection in immunotherapy clinical trials and warrant its application in multimodal biomarker strategies.


Asunto(s)
Biomarcadores de Tumor , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias/etiología , Transcriptoma , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Línea Celular Tumoral , Técnicas de Cocultivo , Biología Computacional/métodos , Contaminación de ADN , Perfilación de la Expresión Génica/métodos , Perfilación de la Expresión Génica/normas , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Inhibidores de Puntos de Control Inmunológico , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Especificidad de Órganos , Curva ROC , Células Tumorales Cultivadas
7.
PLoS Comput Biol ; 17(9): e1009327, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34534207

RESUMEN

DNA methylation provides one of the most widely studied biomarkers of ageing. Since the methylation of CpG dinucleotides function as switches in cellular mechanisms, it is plausible to assume that by proper adjustment of these switches age may be tuned. Though, adjusting hundreds of CpG methylation levels coherently may never be feasible and changing just a few positions may lead to biologically unstable state. A prominent example of methylation-based age estimators is provided by Horvath's clock, based on 353 CpG dinucleotides, showing a high correlation (not necessarily causation) with chronological age across multiple tissue types. On this small subset of CpG dinucleotides we demonstrate how the adjustment of one methylation level leads to a cascade of changes at other sites. Among the studied subset, we locate the most important CpGs (and related genes) that may have a large influence on the rest of the sub-system. According to our analysis, the structure of this network is way more hierarchical compared to what one would expect based on ensembles of uncorrelated connections. Therefore, only a handful of CpGs is enough to modify the system towards a desired state. When propagation of the change over the network is taken into account, the resulting modification in the predicted age can be significantly larger compared to the effect of isolated CpG perturbations. By adjusting the most influential single CpG site and following the propagation of methylation level changes we can reach up to 5.74 years in virtual age reduction, significantly larger than without taking into account of the network control. Extending our approach to the whole methylation network may identify key nodes that have controller role in the ageing process.


Asunto(s)
Envejecimiento/genética , Metilación de ADN , Islas de CpG , Humanos
8.
Value Health ; 25(9): 1590-1601, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35300933

RESUMEN

OBJECTIVES: This study aimed to evaluate the performance of machine learning and regression methods in the prediction of 3-level version of EQ-5D (EQ-5D-3L) index scores from a large diverse data set. METHODS: A total of 30 studies from 3 countries were combined. Predictions were performed via eXtreme Gradient Boosting classification (XGBC), eXtreme Gradient Boosting regression (XGBR) and ordinary least squares (OLS) regression using 10-fold cross-validation and 80%/20% partition for training and testing. We evaluated 6 prediction scenarios using 3 samples (general population, patients, total) and 2 predictor sets: demographic and disease-related variables with/without patient-reported outcomes. Model performance was evaluated by mean absolute error and percent of predictions within clinically irrelevant error range and within correct health severity group (EQ-5D-3L index <0.45, 0.45-0.926, >0.926). RESULTS: The data set involved 26 318 individuals (clinical settings n = 6214, general population n = 20 104) and 26 predictor variables plus diagnoses. Using all predictors and the total sample, mean absolute error values were 0.153, 0.126, and 0.131, percent of predictions within clinically irrelevant error range were 47.6%, 39.5%, and 37.4%, and within the correct health severity group were 56.3%, 64.9%, and 63.3% by XGBC, XGBR, and OLS, respectively. The performance of models depended on the applied evaluation criteria, the target population, the included predictors, and the EQ-5D-3L index score range. CONCLUSIONS: Regression models (XGBR and OLS) outperformed XGBC, yet prediction errors were outside the clinically irrelevant error range for most respondents. Our results highlight the importance of systematic patient-reported outcome (EQ-5D) data collection. Dialogs between artificial intelligence and outcomes research experts are encouraged to enhance the value of accumulating data in health systems.


Asunto(s)
Inteligencia Artificial , Calidad de Vida , Estado de Salud , Humanos , Análisis de los Mínimos Cuadrados , Aprendizaje Automático , Encuestas y Cuestionarios
9.
Int J Cancer ; 145(3): 694-704, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30694556

RESUMEN

A retrospective determination of the time of metastasis formation is essential for a better understanding of the evolution of oligometastatic cancer. This study was based on the hypothesis that genomic alterations induced by cancer therapies could be used to determine the temporal order of the treatment and the formation of metastases. We analysed the whole genome sequence of a primary tumour sample and three metastatic sites derived from autopsy samples from a young never-smoker lung adenocarcinoma patient with an activating EGFR mutation. Mutation detection methods were refined to accurately detect and distinguish clonal and subclonal mutations. In comparison to a panel of samples from untreated smoker or never-smoker patients, we showed that the mutagenic effect of cisplatin treatment could be specifically detected from the base substitution mutations. Metastases that arose before or after chemotherapeutic treatment could be distinguished based on the allele frequency of cisplatin-induced dinucleotide mutations. In addition, genomic rearrangements and late amplification of the EGFR gene likely induced by afatinib treatment following the acquisition of a T790M gefitinib resistance mutation provided further evidence to tie the time of metastasis formation to treatment history. The established analysis pipeline for the detection of treatment-derived mutations allows the drawing of tumour evolutionary paths based on genomic data, showing that metastases may be seeded well before they become detectable by clinical imaging.


Asunto(s)
Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Cisplatino/administración & dosificación , Gefitinib/administración & dosificación , Impresión Genómica/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Inhibidores de Proteínas Quinasas/administración & dosificación , Adenocarcinoma del Pulmón/sangre , Adenocarcinoma del Pulmón/patología , Algoritmos , Cisplatino/efectos adversos , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Gefitinib/efectos adversos , Reordenamiento Génico , Estudio de Asociación del Genoma Completo , Humanos , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/patología , Modelos Genéticos , Mutagénesis/efectos de los fármacos , Metástasis de la Neoplasia , Estudios Retrospectivos
10.
BMC Cancer ; 19(1): 1059, 2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31694571

RESUMEN

BACKGROUND: Long non-coding RNAs (lncRNAs) play a fundamental role in colorectal cancer (CRC) development, however, lncRNA expression profiles in CRC and its precancerous stages remain to be explored. We aimed to study whole genomic lncRNA expression patterns in colorectal adenoma-carcinoma transition and to analyze the underlying functional interactions of aberrantly expressed lncRNAs. METHODS: LncRNA expression levels of colonic biopsy samples (20 CRCs, 20 adenomas (Ad), 20 healthy controls (N)) were analyzed with Human Transcriptome Array (HTA) 2.0. Expression of a subset of candidates was verified by qRT-PCR and in situ hybridization (ISH) analyses. Furthermore, in silico validation was performed on an independent HTA 2.0, on HGU133Plus 2.0 array data and on the TCGA COAD dataset. MiRNA targets of lncRNAs were predicted with miRCODE and lncBase v2 algorithms and miRNA expression was analyzed on miRNA3.0 Array data. MiRNA-mRNA target prediction was performed using miRWALK and c-Met protein levels were analyzed by immunohistochemistry. Comprehensive lncRNA-mRNA-miRNA co-expression pattern analysis was also performed. RESULTS: Based on our HTA results, a subset of literature-based CRC-associated lncRNAs showed remarkable expression changes already in precancerous colonic lesions. In both Ad vs. normal and CRC vs. normal comparisons 16 lncRNAs, including downregulated LINC02023, MEG8, AC092834.1, and upregulated CCAT1, CASC19 were identified showing differential expression during early carcinogenesis that persisted until CRC formation (FDR-adjusted p < 0.05). The intersection of CRC vs. N and CRC vs. Ad comparisons defines lncRNAs characteristic of malignancy in colonic tumors, where significant downregulation of LINC01752 and overexpression of UCA1 and PCAT1 were found. Two candidates with the greatest increase in expression in the adenoma-carcinoma transition were further confirmed by qRT-PCR (UCA1, CCAT1) and by ISH (UCA1). In line with aberrant expression of certain lncRNAs in tumors, the expression of miRNA and mRNA targets showed systematic alterations. For example, UCA1 upregulation in CRC samples occurred in parallel with hsa-miR-1 downregulation, accompanied by c-Met target mRNA overexpression (p < 0.05). CONCLUSION: The defined lncRNA sets may have a regulatory role in the colorectal adenoma-carcinoma transition. A subset of CRC-associated lncRNAs showed significantly differential expression in precancerous samples, raising the possibility of developing adenoma-specific markers for early detection of colonic lesions.


Asunto(s)
Adenoma/genética , Carcinoma/genética , Neoplasias Colorrectales/genética , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , ARN Largo no Codificante/genética , Adenoma/patología , Adulto , Anciano , Carcinoma/patología , Neoplasias Colorrectales/patología , Ontología de Genes , Redes Reguladoras de Genes , Humanos , Persona de Mediana Edad , Modelos Genéticos , Adulto Joven
11.
Br J Cancer ; 119(11): 1392-1400, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30425352

RESUMEN

BACKGROUND: Poly-ADP ribose polymerase (PARP) inhibitor-based cancer therapy selectively targets cells with deficient homologous recombination repair. Considering their long-term use in maintenance treatment, any potential mutagenic effect of PARP inhibitor treatment could accelerate the development of resistance or harm non-malignant somatic cells. METHODS: We tested the mutagenicity of long-term treatment with the PARP inhibitor niraparib using whole-genome sequencing of cultured cell clones and whole-exome sequencing of patient-derived breast cancer xenografts. RESULTS: We observed no significant increase in the number and alteration in the spectrum of base substitutions, short insertions and deletions and genomic rearrangements upon niraparib treatment of human DLD-1 colon adenocarcinoma cells, wild-type and BRCA1 mutant chicken DT40 lymphoblastoma cells and BRCA1-defective SUM149PT breast carcinoma cells, except for a minor increase in specific deletion classes. We also did not detect any contribution of in vivo niraparib treatment to subclonal mutations arising in breast cancer-derived xenografts. CONCLUSIONS: The results suggest that long-term inhibition of DNA repair with PARP inhibitors has no or only limited mutagenic effect. Mutagenesis due to prolonged use of PARP inhibitors in cancer treatment is therefore not expected to contribute to the genetic evolution of resistance, generate significant immunogenic neoepitopes or induce secondary malignancies.


Asunto(s)
Antineoplásicos/uso terapéutico , Indazoles/uso terapéutico , Mutación , Piperidinas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Línea Celular Tumoral , Femenino , Xenoinjertos , Humanos
12.
BMC Cancer ; 18(1): 695, 2018 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-29945573

RESUMEN

BACKGROUND: DNA mutations occur randomly and sporadically in growth-related genes, mostly on cytosines. Demethylation of cytosines may lead to genetic instability through spontaneous deamination. Aims were whole genome methylation and targeted mutation analysis of colorectal cancer (CRC)-related genes and mRNA expression analysis of TP53 pathway genes. METHODS: Long interspersed nuclear element-1 (LINE-1) BS-PCR followed by pyrosequencing was performed for the estimation of global DNA metlyation levels along the colorectal normal-adenoma-carcinoma sequence. Methyl capture sequencing was done on 6 normal adjacent (NAT), 15 adenomatous (AD) and 9 CRC tissues. Overall quantitative methylation analysis, selection of top hyper/hypomethylated genes, methylation analysis on mutation regions and TP53 pathway gene promoters were performed. Mutations of 12 CRC-related genes (APC, BRAF, CTNNB1, EGFR, FBXW7, KRAS, NRAS, MSH6, PIK3CA, SMAD2, SMAD4, TP53) were evaluated. mRNA expression of TP53 pathway genes was also analyzed. RESULTS: According to the LINE-1 methylation results, overall hypomethylation was observed along the normal-adenoma-carcinoma sequence. Within top50 differential methylated regions (DMRs), in AD-N comparison TP73, NGFR, PDGFRA genes were hypermethylated, FMN1, SLC16A7 genes were hypomethylated. In CRC-N comparison DKK2, SDC2, SOX1 genes showed hypermethylation, while ERBB4, CREB5, CNTN1 genes were hypomethylated. In certain mutation hot spot regions significant DNA methylation alterations were detected. The TP53 gene body was addressed by hypermethylation in adenomas. APC, TP53 and KRAS mutations were found in 30, 15, 21% of adenomas, and in 29, 53, 29% of CRCs, respectively. mRNA expression changes were observed in several TP53 pathway genes showing promoter methylation alterations. CONCLUSIONS: DNA methylation with consecutive phenotypic effect can be observed in a high number of promoter and gene body regions through CRC development.


Asunto(s)
Neoplasias Colorrectales/genética , Metilación de ADN , Exones , Mutación , Regiones Promotoras Genéticas , Adenoma/genética , Islas de CpG , Humanos , Elementos de Nucleótido Esparcido Largo , Transducción de Señal , Proteína p53 Supresora de Tumor/fisiología
13.
Cancer ; 123(18): 3532-3539, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28608931

RESUMEN

BACKGROUND: Breast cancer 2 (BRCA2)-associated breast and ovarian cancers are sensitive to platinum-based chemotherapy. It is unknown whether BRCA2-associated prostate cancer responds favorably to such treatment. METHODS: A retrospective analysis of a single-institution cohort of men with castration-resistant, metastatic prostate cancer was performed to determine the association between carrier status of pathogenic BRCA2 germline variants and prostate-specific antigen response to carboplatin-based chemotherapy. From 2001 through 2015, 8081 adult men with prostate cancer who had a consultation and/or underwent treatment at Dana-Farber Cancer Institute provided blood samples and consented to analyses of biologic material and clinical records. A subgroup of 141 men received at least 2 doses of carboplatin and docetaxel for castration-resistant disease (94% were also taxane refractory). These patients were categorized according to the absence or presence of pathogenic germline mutations in BRCA2 based on DNA sequencing from whole blood. The primary outcome was the response rate to carboplatin/docetaxel chemotherapy, defined according to a decline in prostate-specific antigen that exceeded 50% within 12 weeks of initiating this regimen. Associations between BRCA2 mutation status and response to carboplatin-based chemotherapy were tested using the Fisher exact test, with a 2-sided P value < .05 as the threshold for significance. RESULTS: Pathogenic germline BRCA2 variants were observed in 8 of 141 men (5.7%; 95% confidence interval, 2.5%-10.9%). Six of 8 BRCA2 carriers (75%) experienced prostate-specific antigen declines >50% within 12 weeks, compared with 23 of 133 noncarriers (17%; absolute difference, 58%; 95% confidence interval, 27%-88%; P < .001). Prostate cancer cell lines functionally corroborated these clinical findings. CONCLUSIONS: BRCA2-associated, castration-resistant prostate cancer is associated with a higher likelihood of response to carboplatin-based chemotherapy than non-BRCA2-associated prostate cancer. Cancer 2017;123:3532-9. © 2017 American Cancer Society.


Asunto(s)
Carboplatino/uso terapéutico , Genes BRCA2 , Mutación de Línea Germinal , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Adulto , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Instituciones Oncológicas , Estudios de Cohortes , Supervivencia sin Enfermedad , Resistencia a Antineoplásicos , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Invasividad Neoplásica/patología , Metástasis de la Neoplasia , Estadificación de Neoplasias , Pronóstico , Antígeno Prostático Específico/sangre , Neoplasias de la Próstata Resistentes a la Castración/mortalidad , Neoplasias de la Próstata Resistentes a la Castración/patología , Estudios Retrospectivos , Análisis de Supervivencia , Taxoides/uso terapéutico
14.
Sci Data ; 11(1): 96, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38242926

RESUMEN

Astrocytes, a type of glial cell, significantly influence neuronal function, with variations in morphology and density linked to neurological disorders. Traditional methods for their accurate detection and density measurement are laborious and unsuited for large-scale operations. We introduce a dataset from human brain tissues stained with aldehyde dehydrogenase 1 family member L1 (ALDH1L1) and glial fibrillary acidic protein (GFAP). The digital whole slide images of these tissues were partitioned into 8730 patches of 500 × 500 pixels, comprising 2323 ALDH1L1 and 4714 GFAP patches at a pixel size of 0.5019/pixel, furthermore 1382 ADHD1L1 and 311 GFAP patches at 0.3557/pixel. Sourced from 16 slides and 8 patients our dataset promotes the development of tools for glial cell detection and quantification, offering insights into their density distribution in various brain areas, thereby broadening neuropathological study horizons. These samples hold value for automating detection methods, including deep learning. Derived from human samples, our dataset provides a platform for exploring astrocyte functionality, potentially guiding new diagnostic and treatment strategies for neurological disorders.


Asunto(s)
Aprendizaje Profundo , Enfermedades del Sistema Nervioso , Humanos , Astrocitos/metabolismo , Encéfalo/patología , Neuroglía
15.
medRxiv ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38883738

RESUMEN

Patients with High-Grade Serous Ovarian Cancer (HGSOC) exhibit varied responses to treatment, with 20-30% showing de novo resistance to platinum-based chemotherapy. While hematoxylin-eosin (H&E) pathological slides are used for routine diagnosis of cancer type, they may also contain diagnostically useful information about treatment response. Our study demonstrates that combining H&E-stained Whole Slide Images (WSIs) with proteomic signatures using a multimodal deep learning framework significantly improves the prediction of platinum response in both discovery and validation cohorts. This method outperforms the Homologous Recombination Deficiency (HRD) score in predicting platinum response and overall patient survival. The study sets new performance benchmarks and explores the intersection of histology and proteomics, highlighting phenotypes related to treatment response pathways, including homologous recombination, DNA damage response, nucleotide synthesis, apoptosis, and ER stress. This integrative approach has the potential to improve personalized treatment and provide insights into the therapeutic vulnerabilities of HGSOC.

16.
Sci Rep ; 14(1): 1306, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225268

RESUMEN

Ageing is often characterised by progressive accumulation of damage, and it is one of the most important risk factors for chronic disease development. Epigenetic mechanisms including DNA methylation could functionally contribute to organismal aging, however the key functions and biological processes may govern ageing are still not understood. Although age predictors called epigenetic clocks can accurately estimate the biological age of an individual based on cellular DNA methylation, their models have limited ability to explain the prediction algorithm behind and underlying key biological processes controlling ageing. Here we present XAI-AGE, a biologically informed, explainable deep neural network model for accurate biological age prediction across multiple tissue types. We show that XAI-AGE outperforms the first-generation age predictors and achieves similar results to deep learning-based models, while opening up the possibility to infer biologically meaningful insights of the activity of pathways and other abstract biological processes directly from the model.


Asunto(s)
Aprendizaje Profundo , Algoritmos , Metilación de ADN , Epigénesis Genética
17.
Nat Commun ; 15(1): 517, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225254

RESUMEN

Systematic monitoring of SARS-CoV-2 co-infections between different lineages and assessing the risk of intra-host recombinant emergence are crucial for forecasting viral evolution. Here we present a comprehensive analysis of more than 2 million SARS-CoV-2 raw read datasets submitted to the European COVID-19 Data Portal to identify co-infections and intra-host recombination. Co-infection was observed in 0.35% of the investigated cases. Two independent procedures were implemented to detect intra-host recombination. We show that sensitivity is predominantly determined by the density of lineage-defining mutations along the genome, thus we used an expanded list of mutually exclusive defining mutations of specific variant combinations to increase statistical power. We call attention to multiple challenges rendering recombinant detection difficult and provide guidelines for the reduction of false positives arising from chimeric sequences produced during PCR amplification. Additionally, we identify three recombination hotspots of Delta - Omicron BA.1 intra-host recombinants.


Asunto(s)
COVID-19 , Coinfección , Humanos , SARS-CoV-2/genética , Mutación , Recombinación Genética
18.
NPJ Precis Oncol ; 8(1): 87, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589664

RESUMEN

Homologous recombination (HR) and nucleotide excision repair (NER) are the two most frequently disabled DNA repair pathways in cancer. HR-deficient breast, ovarian, pancreatic and prostate cancers respond well to platinum chemotherapy and PARP inhibitors. However, the frequency of HR deficiency in gastric and esophageal adenocarcinoma (GEA) still lacks diagnostic and functional validation. Using whole exome and genome sequencing data, we found that a significant subset of GEA, but very few colorectal adenocarcinomas, show evidence of HR deficiency by mutational signature analysis (HRD score). High HRD gastric cancer cell lines demonstrated functional HR deficiency by RAD51 foci assay and increased sensitivity to platinum chemotherapy and PARP inhibitors. Of clinical relevance, analysis of three different GEA patient cohorts demonstrated that platinum treated HR deficient cancers had better outcomes. A gastric cancer cell line with strong sensitivity to cisplatin showed HR proficiency but exhibited NER deficiency by two photoproduct repair assays. Single-cell RNA-sequencing revealed that, in addition to inducing apoptosis, cisplatin treatment triggered ferroptosis in a NER-deficient gastric cancer, validated by intracellular GSH assay. Overall, our study provides preclinical evidence that a subset of GEAs harbor genomic features of HR and NER deficiency and may therefore benefit from platinum chemotherapy and PARP inhibitors.

19.
Res Sq ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38645014

RESUMEN

We analyzed genomic data derived from the prostate cancer of African and European American men in order to identify differences that may contribute to racial disparity of outcome and that could also define novel therapeutic strategies. In addition to analyzing patient derived next generation sequencing data, we performed FISH based confirmatory studies of Chromodomain helicase DNA-binding protein 1 (CHD1) loss on prostate cancer tissue microarrays. We created CRISPR edited, CHD1 deficient prostate cancer cell lines for genomic, drug sensitivity and functional homologous recombination (HR) activity analysis. We found that subclonal deletion of CHD1 is nearly three times as frequent in prostate tumors of African American men than in men of European ancestry and it associates with rapid disease progression. We further showed that CHD1 deletion is not associated with homologous recombination deficiency associated mutational signatures in prostate cancer. In prostate cancer cell line models CHD1 deletion did not induce HR deficiency as detected by RAD51 foci formation assay or mutational signatures, which was consistent with the moderate increase of olaparib sensitivity. CHD1 deficient prostate cancer cells, however, showed higher sensitivity to talazoparib. CHD1 loss may contribute to worse outcome of prostate cancer in African American men. A deeper understanding of the interaction between CHD1 loss and PARP inhibitor sensitivity will be needed to determine the optimal use of targeted agents such as talazoparib in the context of castration resistant prostate cancer.

20.
Microb Genom ; 10(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38358325

RESUMEN

The COVID-19 pandemic has seen large-scale pathogen genomic sequencing efforts, becoming part of the toolbox for surveillance and epidemic research. This resulted in an unprecedented level of data sharing to open repositories, which has actively supported the identification of SARS-CoV-2 structure, molecular interactions, mutations and variants, and facilitated vaccine development and drug reuse studies and design. The European COVID-19 Data Platform was launched to support this data sharing, and has resulted in the deposition of several million SARS-CoV-2 raw reads. In this paper we describe (1) open data sharing, (2) tools for submission, analysis, visualisation and data claiming (e.g. ORCiD), (3) the systematic analysis of these datasets, at scale via the SARS-CoV-2 Data Hubs as well as (4) lessons learnt. This paper describes a component of the Platform, the SARS-CoV-2 Data Hubs, which enable the extension and set up of infrastructure that we intend to use more widely in the future for pathogen surveillance and pandemic preparedness.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias , COVID-19/epidemiología , Genómica , Difusión de la Información
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA