Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(10): 13535-13544, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36861349

RESUMEN

Polymer-based nanocomposites containing inorganic ferroelectric inclusions, typically ABO3 perovskites, have emerged as innovative dielectric materials for energy storage and electric insulation, potentially coupling the high breakdown strength (BDS) and easy processing of polymers with the enhancement of dielectric constant provided by the ferroelectric phase. In this paper, experimental data and three-dimensional finite element method (3D FEM) simulations were combined to shed some light on the effect of microstructures on the dielectric properties of poly(vinylidene fluoride) (PVDF)-BaTiO3 composites. The existence of particle aggregates or touching particles has a strong effect on the effective dielectric constant and determines an increase of the local field in the neck region of the ferroelectric phase with a detrimental effect on the BDS. The distribution of the field and the effective permittivity are very sensitive to the specific microstructure considered. The degradation of the BDS can be overcome by coating the ferroelectric particles with a thin shell of an insulating oxide with a low dielectric constant, such as SiO2 (εr = 4). The local field is highly concentrated on the shell, while the field in the ferroelectric phase is reduced almost to zero and that on the matrix is close to the applied one. The electric field in the matrix becomes less homogeneous with increasing the dielectric constant of the shell material, as happens with TiO2 (εr = 30). These results provide a solid background to explain the enhanced dielectric properties and the superior BDS of composites containing core-shell inclusions.

2.
ACS Appl Mater Interfaces ; 15(4): 5744-5759, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36651701

RESUMEN

The paper presents a study concerning the role of ferroelectric filler size and clustering in the dielectric properties of 20%BaTiO3-80%PVDF and of 20% (2%Ag-98%BaTiO3)-PVDF hybrid nanocomposites. By finite element calculations, it was shown that using fillers with ε > 103 does not provide a permittivity rise in the composites and the effective dielectric constant tends to saturate to specific values determined by the filler size and agglomeration degree. Irrespective of the ferroelectric filler sizes, the addition of metallic ultrafine nanoparticles (Ag) results in permittivity intensification and the effect is even stronger if the metallic nanoparticles are connected to a higher degree with the ferroelectric particles' surfaces. When using coarse ferroelectric fillers, the probability of clustering is higher, thus favoring the permittivity increase by field concentration in small regions close to the interfaces separating dissimilar materials. The modeling results were validated by an experimental dielectric analysis performed in a series of PVDF-based thick films with the same amount of BaTiO3 fillers or with Ag-BaTiO3 hybrid fillers. Similar trends as predicted by simulations were found experimentally but with slightly higher permittivity values which were assigned to the modifications of the polymer phase composition due to the presence of nanofillers and the local sample inhomogeneity (the presence of clustering, in particular for coarse BaTiO3 grains), which create regions with enhanced local fields.

3.
Nanomaterials (Basel) ; 12(6)2022 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-35335747

RESUMEN

The role of Ag addition on the structural, dielectric, and mechanical harvesting response of 20%(xAg - (1 - x)BaTiO3) - 80%PVDF (x = 0, 2, 5, 7 and 27 vol.%) flexible composites is investigated. The inorganic fillers were realized by precipitating fine (~3 nm) silver nanoparticles onto BaTiO3 nanoparticles (~60 nm average size). The hybrid admixtures with a total filling factor of 20 vol.% were embedded into the PVDF matrix. The presence of filler enhances the amount of ß-PVDF polar phase and the BaTiO3 filler induces an increase of the permittivity from 11 to 18 (1 kHz) in the flexible composites. The addition of increasing amounts of Ag is further beneficial for permittivity increase; with the maximum amount (x = 27 vol.%), permittivity is three times larger than in pure PVDF (εr ~ 33 at 1 kHz) with a similar level of tangent losses. This result is due to the local field enhancement in the regions close to the filler-PVDF interfaces which are additionally intensified by the presence of silver nanoparticles. The metallic addition is also beneficial for the mechanical harvesting ability of such composites: the amplitude of the maximum piezoelectric-triboelectric combined output collected in open circuit conditions increases from 0.2 V/cm2 (PVDF) to 30 V/cm2 for x = 27 vol.% Ag in a capacitive configuration. The role of ferroelectric and metallic nanoparticles on the increasing mechanical-electric conversion response is also been explained.

4.
Materials (Basel) ; 13(19)2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33019737

RESUMEN

In the present work, BaZr0.05Ti0.95O3 ceramics with grain sizes between 0.45 and 135 µm were prepared by solid-state reaction and classical sintering. The effect of grain size on dielectric properties was systematically explored, and it was found that dielectric permittivity reaches a maximum value for grain sizes between 1.5 and 10 µm and then rapidly drops for larger grain sizes. A numerical finite element method was employed to eliminate the effect of porosity on the effective values of permittivity. The results indicate that it is possible to have a critical size in slightly doped barium titanate ceramics with enhanced functional properties for a grain size between 1.5 and 10 µm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA