Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 79(3): 164, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35229202

RESUMEN

Alternative polyadenylation in the 3' UTR (3' UTR-APA) is a mode of gene expression regulation, fundamental for mRNA stability, translation and localization. In the immune system, it was shown that upon T cell activation, there is an increase in the relative expression of mRNA isoforms with short 3' UTRs resulting from 3' UTR-APA. However, the functional significance of 3' UTR-APA remains largely unknown. Here, we studied the physiological function of 3' UTR-APA in the regulation of Myeloid Cell Leukemia 1 (MCL1), an anti-apoptotic member of the Bcl-2 family essential for T cell survival. We found that T cells produce two MCL1 mRNA isoforms (pA1 and pA2) by 3' UTR-APA. We show that upon T cell activation, there is an increase in both the shorter pA1 mRNA isoform and MCL1 protein levels. Moreover, the less efficiently translated pA2 isoform is downregulated by miR-17, which is also more expressed upon T cell activation. Therefore, by increasing the expression of the more efficiently translated pA1 mRNA isoform, which escapes regulation by miR-17, 3' UTR-APA fine tunes MCL1 protein levels, critical for activated T cells' survival. Furthermore, using CRISPR/Cas9-edited cells, we show that depletion of either pA1 or pA2 mRNA isoforms causes severe defects in mitochondria morphology, increases apoptosis and impacts cell proliferation. Collectively, our results show that MCL1 alternative polyadenylation has a key role in the regulation of MCL1 protein levels upon T cell activation and reveal an essential function for MCL1 3' UTR-APA in cell viability and mitochondria dynamics.


Asunto(s)
Activación de Linfocitos , MicroARNs/metabolismo , Mitocondrias/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Poliadenilación , Linfocitos T/metabolismo , Supervivencia Celular , Humanos , Células Jurkat , Isoformas de ARN , Linfocitos T/fisiología
2.
EMBO Rep ; 21(12): e50893, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33225610

RESUMEN

Polyploidization frequently precedes tumorigenesis but also occurs during normal development in several tissues. Hepatocyte ploidy is controlled by the PIDDosome during development and regeneration. This multi-protein complex is activated by supernumerary centrosomes to induce p53 and restrict proliferation of polyploid cells, otherwise prone for chromosomal instability. PIDDosome deficiency in the liver results in drastically increased polyploidy. To investigate PIDDosome-induced p53-activation in the pathogenesis of liver cancer, we chemically induced hepatocellular carcinoma (HCC) in mice. Strikingly, PIDDosome deficiency reduced tumor number and burden, despite the inability to activate p53 in polyploid cells. Liver tumors arise primarily from cells with low ploidy, indicating an intrinsic pro-tumorigenic effect of PIDDosome-mediated ploidy restriction. These data suggest that hyperpolyploidization caused by PIDDosome deficiency protects from HCC. Moreover, high tumor cell density, as a surrogate marker of low ploidy, predicts poor survival of HCC patients receiving liver transplantation. Together, we show that the PIDDosome is a potential therapeutic target to manipulate hepatocyte polyploidization for HCC prevention and that tumor cell density may serve as a novel prognostic marker for recurrence-free survival in HCC patients.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Carcinogénesis/genética , Carcinoma Hepatocelular/genética , Humanos , Neoplasias Hepáticas/genética , Ratones , Ploidias , Proteína p53 Supresora de Tumor/genética
3.
bioRxiv ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38496445

RESUMEN

Hydrolethalus Syndrome (HLS) is a lethal, autosomal recessive ciliopathy caused by the mutation of the conserved centriole protein HYLS1. However, how HYLS1 facilitates the centriole-based templating of cilia is poorly understood. Here, we show that mice harboring the HYLS1 disease mutation die shortly after birth and exhibit developmental defects that recapitulate several manifestations of the human disease. These phenotypes arise from tissue-specific defects in cilia assembly and function caused by a loss of centriole integrity. We show that HYLS1 is recruited to the centriole by CEP120 and functions to recruit centriole inner scaffold proteins that stabilize the centriolar microtubule wall. The HLS mutation disrupts the interaction of HYLS1 with CEP120 leading to HYLS1 displacement and degeneration of the centriole distal end. We propose that tissue-specific defects in centriole integrity caused by the HYLS1 mutation prevent ciliogenesis and drive HLS phenotypes.

4.
J Cell Biol ; 222(12)2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37773039

RESUMEN

Polo-like kinase 4 (PLK4) is a key regulator of centriole biogenesis, but how PLK4 selects a single site for procentriole assembly remains unclear. Using ultrastructure expansion microscopy, we show that PLK4 localizes to discrete sites along the wall of parent centrioles. While there is variation in the number of sites PLK4 occupies on the parent centriole, most PLK4 localize at a dominant site that directs procentriole assembly. Inhibition of PLK4 activity leads to stable binding of PLK4 to the centriole and increases occupancy to a maximum of nine sites. We show that self-phosphorylation of an unstructured linker promotes the release of active PLK4 from the centriole to drive the selection of a single site for procentriole assembly. Preventing linker phosphorylation blocks PLK4 turnover, leading to supernumerary sites of PLK4 localization and centriole amplification. Therefore, self-phosphorylation is a major driver of the spatial patterning of PLK4 at the centriole and plays a critical role in selecting a single centriole duplication site.


Asunto(s)
Proteínas de Ciclo Celular , Centriolos , Proteínas Serina-Treonina Quinasas , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centriolos/genética , Centriolos/metabolismo , Fosforilación , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
6.
Nucleus ; 5(6): 508-19, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25484187

RESUMEN

Polyadenylation is the RNA processing step that completes the maturation of nearly all eukaryotic mRNAs. It is a two-step nuclear process that involves an endonucleolytic cleavage of the pre-mRNA at the 3'-end and the polymerization of a polyadenosine (polyA) tail, which is fundamental for mRNA stability, nuclear export and efficient translation during development. The core molecular machinery responsible for the definition of a polyA site includes several recognition, cleavage and polyadenylation factors that identify and act on a given polyA signal present in a pre-mRNA, usually an AAUAAA hexamer or similar sequence. This mechanism is tightly regulated by other cis-acting elements and trans-acting factors, and its misregulation can cause inefficient gene expression and may ultimately lead to disease. The majority of genes generate multiple mRNAs as a result of alternative polyadenylation in the 3'-untranslated region. The variable lengths of the 3' untranslated regions created by alternative polyadenylation are a recognizable target for differential regulation and clearly affect the fate of the transcript, ultimately modulating the expression of the gene. Over the past few years, several studies have highlighted the importance of polyadenylation and alternative polyadenylation in gene expression and their impact in a variety of physiological conditions, as well as in several illnesses. Abnormalities in the 3'-end processing mechanisms thus represent a common feature among many oncological, immunological, neurological and hematological disorders, but slight imbalances can lead to the natural establishment of a specific cellular state. This review addresses the key steps of polyadenylation and alternative polyadenylation in different cellular conditions and diseases focusing on the molecular effectors that ensure a faultless pre-mRNA 3' end formation.


Asunto(s)
Regiones no Traducidas 3'/genética , Enfermedades Genéticas Congénitas/genética , Poliadenilación/genética , ARN Mensajero/genética , Regulación del Desarrollo de la Expresión Génica , Enfermedades Genéticas Congénitas/patología , Humanos , Poli A/genética , Estabilidad del ARN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA