Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 84(14): 2682-2697.e6, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38996576

RESUMEN

RNA can directly control protein activity in a process called riboregulation; only a few mechanisms of riboregulation have been described in detail, none of which have been characterized on structural grounds. Here, we present a comprehensive structural, functional, and phylogenetic analysis of riboregulation of cytosolic serine hydroxymethyltransferase (SHMT1), the enzyme interconverting serine and glycine in one-carbon metabolism. We have determined the cryoelectron microscopy (cryo-EM) structure of human SHMT1 in its free- and RNA-bound states, and we show that the RNA modulator competes with polyglutamylated folates and acts as an allosteric switch, selectively altering the enzyme's reactivity vs. serine. In addition, we identify the tetrameric assembly and a flap structural motif as key structural elements necessary for binding of RNA to eukaryotic SHMT1. The results presented here suggest that riboregulation may have played a role in evolution of eukaryotic SHMT1 and in compartmentalization of one-carbon metabolism. Our findings provide insights for RNA-based therapeutic strategies targeting this cancer-linked metabolic pathway.


Asunto(s)
Microscopía por Crioelectrón , Glicina Hidroximetiltransferasa , Glicina Hidroximetiltransferasa/metabolismo , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/química , Humanos , ARN/metabolismo , ARN/genética , Serina/metabolismo , Regulación Alostérica , Unión Proteica , Filogenia , Modelos Moleculares , Conformación Proteica , Relación Estructura-Actividad , Glicina/metabolismo , Glicina/química , Sitios de Unión
2.
Cell Commun Signal ; 22(1): 104, 2024 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331871

RESUMEN

Extravasation is a fundamental step in the metastatic journey, where cancer cells exit the bloodstream and breach the endothelial cell barrier to infiltrate target tissues. The tactics cancer cells employ are sophisticated, closely reflecting those used by the immune system for tissue surveillance. Remarkably, tumor cells have been observed to form distinct associations or clusters with immune cells where neutrophils stand out as particularly crucial partners. These interactions are not accidental; they are critical for cancer cells to exploit the immune functions of neutrophils and successfully extravasate. In another strategy, tumor cells mimic the behavior and characteristics of immune cells. They release a suite of inflammatory mediators, which under normal circumstances, guide the processes of endothelium reshaping and facilitate the entry and movement of immune cells within tissues. In this review, we offer a new perspective on the tactics employed by cancer cells to extravasate and infiltrate target tissues. We delve into the myriad mechanisms that tumor cells borrow, adapt, and refine from the immune playbook. Video Abstract.


Asunto(s)
Células Endoteliales , Neutrófilos , Movimiento Celular , Neutrófilos/metabolismo , Células Endoteliales/metabolismo
3.
Bioorg Chem ; 138: 106607, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37210829

RESUMEN

Growth factor receptor bound protein 2 (Grb2) is an adaptor protein featured by a nSH3-SH2-cSH3 domains. Grb2 finely regulates important cellular pathways such as growth, proliferation and metabolism and a minor lapse of this tight control may totally change the entire pathway to the oncogenic. Indeed, Grb2 is found overexpressed in many tumours type. Consequently, Grb2 is an attractive therapeutic target for the development of new anticancer drug. Herein, we reported the synthesis and the biological evaluation of a series of Grb2 inhibitors, developed starting from a hit-compound already reported by this research unit. The newly synthesized compounds were evaluated by kinetic binding experiments, and the most promising derivatives were assayed in a short panel of cancer cells. Five of the newly synthesized derivatives proved to be able to bind the targeted protein with valuable inhibitory concentration in one-digit micromolar concentration. The most active compound of this series, derivative 12, showed an inhibitory concentration of about 6 µM for glioblastoma and ovarian cancer cells, and an IC50 of 1.67 for lung cancer cell. For derivative 12, the metabolic stability and the ROS production was also evaluated. The biological data together with the docking studies led to rationalize an early structure activity relationship.


Asunto(s)
Antineoplásicos , Proteína Adaptadora GRB2/química , Proteína Adaptadora GRB2/metabolismo , Secuencia de Aminoácidos , Unión Proteica , Antineoplásicos/farmacología , Relación Estructura-Actividad
4.
Proteins ; 90(2): 435-442, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34495558

RESUMEN

Aspergillus fumigatus is a saprophytic ubiquitous fungus whose spores can trigger reactions such as allergic bronchopulmonary aspergillosis or the fatal invasive pulmonary aspergillosis. To survive in the lungs, the fungus must adapt to a hypoxic and nutritionally restrictive environment, exploiting the limited availability of aromatic amino acids (AAAs) in the best possible way, as mammals do not synthesize them. A key enzyme for AAAs catabolism in A. fumigatus is AroH, a pyridoxal 5'-phosphate-dependent aromatic aminotransferase. AroH was recently shown to display a broad substrate specificity, accepting L-kynurenine and α-aminoadipate as amino donors besides AAAs. Given its pivotal role in the adaptability of the fungus to nutrient conditions, AroH represents a potential target for the development of innovative therapies against A. fumigatus-related diseases. We have solved the crystal structure of Af-AroH at 2.4 Å resolution and gained new insight into the dynamics of the enzyme's active site, which appears to be crucial for the design of inhibitors. The conformational plasticity of the active site pocket is probably linked to the wide substrate specificity of AroH.


Asunto(s)
Aspergillus fumigatus/enzimología , Transaminasas/química , Dominio Catalítico , Especificidad por Sustrato
5.
Int J Mol Sci ; 23(8)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35457206

RESUMEN

Bacterial biofilm represents a multicellular community embedded within an extracellular matrix attached to a surface. This lifestyle confers to bacterial cells protection against hostile environments, such as antibiotic treatment and host immune response in case of infections. The Pseudomonas genus is characterised by species producing strong biofilms difficult to be eradicated and by an extraordinary metabolic versatility which may support energy and carbon/nitrogen assimilation under multiple environmental conditions. Nutrient availability can be perceived by a Pseudomonas biofilm which, in turn, readapts its metabolism to finally tune its own formation and dispersion. A growing number of papers is now focusing on the mechanism of nutrient perception as a possible strategy to weaken the biofilm barrier by environmental cues. One of the most important nutrients is amino acid L-arginine, a crucial metabolite sustaining bacterial growth both as a carbon and a nitrogen source. Under low-oxygen conditions, L-arginine may also serve for ATP production, thus allowing bacteria to survive in anaerobic environments. L-arginine has been associated with biofilms, virulence, and antibiotic resistance. L-arginine is also a key precursor of regulatory molecules such as polyamines, whose involvement in biofilm homeostasis is reported. Given the biomedical and biotechnological relevance of biofilm control, the state of the art on the effects mediated by the L-arginine nutrient on biofilm modulation is presented, with a special focus on the Pseudomonas biofilm. Possible biotechnological and biomedical applications are also discussed.


Asunto(s)
GMP Cíclico , Pseudomonas aeruginosa , Arginina/metabolismo , Arginina/farmacología , Proteínas Bacterianas/metabolismo , Biopelículas , Carbono/metabolismo , Carbono/farmacología , GMP Cíclico/metabolismo , Nitrógeno/metabolismo , Nitrógeno/farmacología , Nutrientes , Pseudomonas/metabolismo , Pseudomonas aeruginosa/fisiología
6.
Eur Biophys J ; 50(3-4): 523-542, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33730175

RESUMEN

Melanoma is the most fatal form of skin cancer, with increasing prevalence worldwide. The most common melanoma genetic driver is mutation of the proto-oncogene serine/threonine kinase BRAF; thus, the inhibition of its MAP kinase pathway by specific inhibitors is a commonly applied therapy. However, many patients are resistant, or develop resistance to this type of monotherapy, and therefore combined therapies which target other signaling pathways through various molecular mechanisms are required. A possible strategy may involve targeting cellular energy metabolism, which has been recognized as crucial for cancer development and progression and which connects through glycolysis to cell surface glycan biosynthetic pathways. Protein glycosylation is a hallmark of more than 50% of the human proteome and it has been recognized that altered glycosylation occurs during the metastatic progression of melanoma cells which, in turn facilitates their migration. This review provides a description of recent advances in the search for factors able to remodel cell metabolism between glycolysis and oxidative phosphorylation, and of changes in specific markers and in the biophysical properties of cells during melanoma development from a nevus to metastasis. This development is accompanied by changes in the expression of surface glycans, with corresponding changes in ligand-receptor affinity, giving rise to structural features and viscoelastic parameters particularly well suited to study by label-free biophysical methods.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Línea Celular Tumoral , Resistencia a Antineoplásicos , Humanos , Mutación , Fenotipo , Transducción de Señal
7.
Nucleic Acids Res ; 47(8): 4240-4254, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30809670

RESUMEN

Enzymes of intermediary metabolism are often reported to have moonlighting functions as RNA-binding proteins and have regulatory roles beyond their primary activities. Human serine hydroxymethyltransferase (SHMT) is essential for the one-carbon metabolism, which sustains growth and proliferation in normal and tumour cells. Here, we characterize the RNA-binding function of cytosolic SHMT (SHMT1) in vitro and using cancer cell models. We show that SHMT1 controls the expression of its mitochondrial counterpart (SHMT2) by binding to the 5'untranslated region of the SHMT2 transcript (UTR2). Importantly, binding to RNA is modulated by metabolites in vitro and the formation of the SHMT1-UTR2 complex inhibits the serine cleavage activity of the SHMT1, without affecting the reverse reaction. Transfection of UTR2 in cancer cells controls SHMT1 activity and reduces cell viability. We propose a novel mechanism of SHMT regulation, which interconnects RNA and metabolites levels to control the cross-talk between cytosolic and mitochondrial compartments of serine metabolism.


Asunto(s)
Citosol/enzimología , Glicina Hidroximetiltransferasa/genética , Mitocondrias/enzimología , Proteínas de Unión al ARN/genética , Serina/metabolismo , Regiones no Traducidas 5' , Compartimento Celular/genética , Línea Celular Tumoral , Proliferación Celular , Fibroblastos/citología , Fibroblastos/enzimología , Regulación de la Expresión Génica , Glicina Hidroximetiltransferasa/metabolismo , Humanos , Linfocitos/citología , Linfocitos/enzimología , Mitocondrias/genética , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Unión al ARN/metabolismo
8.
Int J Mol Sci ; 22(7)2021 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-33916835

RESUMEN

The disturbance of protein O-GlcNAcylation is emerging as a possible link between altered brain metabolism and the progression of neurodegeneration. As observed in brains with Alzheimer's disease (AD), flaws of the cerebral glucose uptake translate into reduced protein O-GlcNAcylation, which promote the formation of pathological hallmarks. A high-fat diet (HFD) is known to foster metabolic dysregulation and insulin resistance in the brain and such effects have been associated with the reduction of cognitive performances. Remarkably, a significant role in HFD-related cognitive decline might be played by aberrant protein O-GlcNAcylation by triggering the development of AD signature and mitochondrial impairment. Our data support the impairment of total protein O-GlcNAcylation profile both in the brain of mice subjected to a 6-week high-fat-diet (HFD) and in our in vitro transposition on SH-SY5Y cells. The reduction of protein O-GlcNAcylation was associated with the development of insulin resistance, induced by overfeeding (i.e., defective insulin signaling and reduced mitochondrial activity), which promoted the dysregulation of the hexosamine biosynthetic pathway (HBP) flux, through the AMPK-driven reduction of GFAT1 activation. Further, we observed that a HFD induced the selective impairment of O-GlcNAcylated-tau and of O-GlcNAcylated-Complex I subunit NDUFB8, thus resulting in tau toxicity and reduced respiratory chain functionality respectively, highlighting the involvement of this posttranslational modification in the neurodegenerative process.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Dieta Alta en Grasa/efectos adversos , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Acilación , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/patología , Animales , Encéfalo/patología , Línea Celular Tumoral , Masculino , Ratones , Mitocondrias/patología
9.
Biochem J ; 476(24): 3751-3768, 2019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31794008

RESUMEN

Peroxisomal alanine:glyoxylate aminotransferase (AGT) is responsible for glyoxylate detoxification in human liver and utilizes pyridoxal 5'-phosphate (PLP) as coenzyme. The deficit of AGT leads to Primary Hyperoxaluria Type I (PH1), a rare disease characterized by calcium oxalate stones deposition in the urinary tract as a consequence of glyoxylate accumulation. Most missense mutations cause AGT misfolding, as in the case of the G41R, which induces aggregation and proteolytic degradation. We have investigated the interaction of wild-type AGT and the pathogenic G41R variant with d-cycloserine (DCS, commercialized as Seromycin), a natural product used as a second-line treatment of multidrug-resistant tuberculosis, and its synthetic enantiomer l-cycloserine (LCS). In contrast with evidences previously reported on other PLP-enzymes, both ligands are AGT reversible inhibitors showing inhibition constants in the micromolar range. While LCS undergoes half-transamination generating a ketimine intermediate and behaves as a classical competitive inhibitor, DCS displays a time-dependent binding mainly generating an oxime intermediate. Using a mammalian cellular model, we found that DCS, but not LCS, is able to promote the correct folding of the G41R variant, as revealed by its increased specific activity and expression as a soluble protein. This effect also translates into an increased glyoxylate detoxification ability of cells expressing the variant upon treatment with DCS. Overall, our findings establish that DCS could play a role as pharmacological chaperone, thus suggesting a new line of intervention against PH1 based on a drug repositioning approach. To a widest extent, this strategy could be applied to other disease-causing mutations leading to AGT misfolding.


Asunto(s)
Cicloserina/análogos & derivados , Cicloserina/farmacología , Hiperoxaluria Primaria/genética , Transaminasas/metabolismo , Animales , Sitios de Unión , Células CHO , Cricetinae , Cricetulus , Inhibidores Enzimáticos/farmacología , Predisposición Genética a la Enfermedad , Humanos , Mutación , Unión Proteica , Conformación Proteica , Transaminasas/antagonistas & inhibidores , Transaminasas/genética
10.
Trends Biochem Sci ; 39(4): 191-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24657017

RESUMEN

Serine and glycine are biosynthetically linked, and together provide the essential precursors for the synthesis of proteins, nucleic acids, and lipids that are crucial to cancer cell growth. Moreover, serine/glycine biosynthesis also affects cellular antioxidative capacity, thus supporting tumour homeostasis. A crucial contribution of serine/glycine to cellular metabolism is through the glycine cleavage system, which refuels one-carbon metabolism; a complex cyclic metabolic network based on chemical reactions of folate compounds. The importance of serine/glycine metabolism is further highlighted by genetic and functional evidence indicating that hyperactivation of the serine/glycine biosynthetic pathway drives oncogenesis. Recent developments in our understanding of these pathways provide novel translational opportunities for drug development, dietary intervention, and biomarker identification of human cancers.


Asunto(s)
Glicina/metabolismo , Neoplasias/metabolismo , Serina/metabolismo , Proliferación Celular , Humanos , Redes y Vías Metabólicas , Neoplasias/patología
11.
Biochemistry ; 57(51): 6984-6996, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30500180

RESUMEN

Serine hydroxymethyltransferase (SHMT) catalyzes the reversible conversion of l-serine and tetrahydrofolate into glycine and 5,10-methylenetetrahydrofolate. This enzyme, which plays a pivotal role in one-carbon metabolism, is involved in cancer metabolic reprogramming and is a recognized target of chemotherapy intervention. In humans, two isoforms of the enzyme exist, which are commonly termed cytosolic SHMT1 and mitochondrial SHMT2. Considerable attention has been paid to the structural, mechanistic, and metabolic features of these isozymes. On the other hand, a detailed comparison of their catalytic and regulatory properties is missing, although this aspect seems to be considerably important, considering that SHMT1 and SHMT2 reside in different cellular compartments, where they play distinct roles in folate metabolism. Here we performed a full kinetic characterization of the serine hydroxymethyltransferase reaction catalyzed by SHMT1 and SHMT2, with a focus on pH dependence and substrate inhibition. Our investigation, which allowed the determination of all kinetic parameters of serine hydroxymethyltransferase forward and backward reactions, uncovered a previously unobserved substrate inhibition by l-serine and highlighted several interesting differences between SHMT1 and SHMT2. In particular, SHMT2 maintains a pronounced tetrahydrofolate substrate inhibition even at the alkaline pH characteristic of the mitochondrial matrix, whereas with SHMT1 this is almost abolished. At this pH, SHMT2 also shows a catalytic efficiency that is much higher than that of SHMT1. These observations suggest that such different properties represent an adaptation of the isoforms to the respective cellular environments and that substrate inhibition may be a form of regulation.


Asunto(s)
Glicina Hidroximetiltransferasa/metabolismo , Citosol/enzimología , Glicina/metabolismo , Glicina Hidroximetiltransferasa/antagonistas & inhibidores , Glicina Hidroximetiltransferasa/química , Humanos , Concentración de Iones de Hidrógeno , Isoenzimas/antagonistas & inhibidores , Isoenzimas/química , Isoenzimas/metabolismo , Cinética , Mitocondrias/enzimología , Modelos Biológicos , Serina/metabolismo , Especificidad por Sustrato , Tetrahidrofolatos/metabolismo
12.
Arch Biochem Biophys ; 653: 71-79, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29991441

RESUMEN

Serine hydroxymethyltransferase (SHMT) is a pivotal enzyme in one-carbon metabolism that catalyses the reversible conversion of serine and tetrahydrofolate into glycine and methylenetetrahydrofolate. It exists in cytosolic (SHMT1) and mitochondrial (SHMT2) isoforms. Research on one-carbon metabolism in cancer cell lines has shown that SHMT1 preferentially catalyses serine synthesis, whereas in mitochondria SHMT2 is involved in serine breakdown. Recent research has focused on the identification of inhibitors that bind at the folate pocket. We have previously found that a representative derivative of the pyrazolopyran scaffold, namely 2.12, inhibits both SHMT isoforms, with a preference for SHMT1, causing apoptosis in lung cancer cell lines. Here we show that the affinity of 2.12 for SHMT depends on the identity of the amino acid substrate bound to the enzyme. The dissociation constant of 2.12 is 50-fold lower when it binds to SHMT1 enzyme-serine complex, as compared to the enzyme-glycine complex. Evidence is presented for a similar behaviour of compound 2.12 in the cellular environment. These findings suggest that the presence and identity of the amino acid substrate should be considered when designing SHMT inhibitors. Moreover, our data provide the proof-of-concept that SHMT inhibitors selectively targeting the directionality of one-carbon metabolism flux could be designed.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Glicina Hidroximetiltransferasa/antagonistas & inhibidores , Glicina Hidroximetiltransferasa/química , Glicina/química , Piranos/farmacología , Pirazoles/farmacología , Serina/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Inhibidores Enzimáticos/metabolismo , Humanos , Enlace de Hidrógeno , Neoplasias Pulmonares/patología , Piranos/química , Pirazoles/química , Espectrometría de Fluorescencia , Especificidad por Sustrato
13.
Biochim Biophys Acta ; 1864(11): 1506-17, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27530298

RESUMEN

The cytosolic and mitochondrial isoforms of serine hydroxymethyltransferase (SHMT1 and SHMT2, respectively) are well-recognized targets of cancer research, since their activity is critical for purine and pyrimidine biosynthesis and because of their prominent role in the metabolic reprogramming of cancer cells. Here we show that 3-bromopyruvate (3BP), a potent novel anti-tumour agent believed to function primarily by blocking energy metabolism, differentially inactivates human SHMT1 and SHMT2. SHMT1 is completely inhibited by 3BP, whereas SHMT2 retains a significant fraction of activity. Site directed mutagenesis experiments on SHMT1 demonstrate that selective inhibition relies on the presence of a cysteine residue at the active site of SHMT1 (Cys204) that is absent in SHMT2. Our results show that 3BP binds to SHMT1 active site, forming an enzyme-3BP complex, before reacting with Cys204. The physiological substrate l-serine is still able to bind at the active site of the inhibited enzyme, although catalysis does not occur. Modelling studies suggest that alkylation of Cys204 prevents a productive binding of l-serine, hampering interaction between substrate and Arg402. Conversely, the partial inactivation of SHMT2 takes place without the formation of a 3BP-enzyme complex. The introduction of a cysteine residue in the active site of SHMT2 by site directed mutagenesis (A206C mutation), at a location corresponding to that of Cys204 in SHMT1, yields an enzyme that forms a 3BP-enzyme complex and is completely inactivated. This work sets the basis for the development of selective SHMT1 inhibitors that target Cys204, starting from the structure and reactivity of 3BP.


Asunto(s)
Antineoplásicos/química , Cisteína/química , Glicina Hidroximetiltransferasa/química , Piruvatos/química , Serina/química , Secuencia de Aminoácidos , Dominio Catalítico , Clonación Molecular , Cisteína/metabolismo , Citosol/química , Citosol/enzimología , Pruebas de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Glicina Hidroximetiltransferasa/antagonistas & inhibidores , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Humanos , Cinética , Mitocondrias/química , Mitocondrias/enzimología , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/metabolismo , Relación Estructura-Actividad
14.
J Bacteriol ; 198(1): 55-65, 2016 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-26260455

RESUMEN

The formation of the organized bacterial community called biofilm is a crucial event in bacterial physiology. Given that biofilms are often refractory to antibiotics and disinfectants to which planktonic bacteria are susceptible, their formation is also an industrially and medically relevant issue. Pseudomonas aeruginosa, a well-known human pathogen causing acute and chronic infections, is considered a model organism to study biofilms. A large number of environmental cues control biofilm dynamics in bacterial cells. In particular, the dispersal of individual cells from the biofilm requires metabolic and morphological reprogramming in which the second messenger bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) plays a central role. The diatomic gas nitric oxide (NO), a well-known signaling molecule in both prokaryotes and eukaryotes, is able to induce the dispersal of P. aeruginosa and other bacterial biofilms by lowering c-di-GMP levels. In this review, we summarize the current knowledge on the molecular mechanisms connecting NO sensing to the activation of c-di-GMP-specific phosphodiesterases in P. aeruginosa, ultimately leading to c-di-GMP decrease and biofilm dispersal.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Óxido Nítrico/metabolismo , Pseudomonas aeruginosa/fisiología , Regulación Bacteriana de la Expresión Génica/fisiología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Transducción de Señal/fisiología
15.
J Bacteriol ; 198(1): 147-56, 2016 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-26416830

RESUMEN

UNLABELLED: Biofilm formation is responsible for increased antibiotic tolerance in pathogenic bacteria. Cyclic di-GMP (c-di-GMP) is a widely used second-messenger signal that plays a key role in bacterial biofilm formation. c-di-GMP is synthesized by diguanylate cyclases (DGCs), a conserved class of enzymes absent in mammals and hence considered attractive molecular targets for the development of antibiofilm agents. Here, the results of a virtual screening approach aimed at identifying small-molecule inhibitors of the DGC PleD from Caulobacter crescentus are described. A three-dimensional (3D) pharmacophore model, derived from the mode of binding of GTP to the active site of PleD, was exploited to screen the ZINC database of compounds. Seven virtual hits were tested in vitro for their ability to inhibit the activity of purified PleD by using circular dichroism spectroscopy. Two drug-like molecules with a catechol moiety and a sulfonohydrazide scaffold were shown to competitively inhibit PleD at the low-micromolar range (50% inhibitory concentration [IC50] of ∼11 µM). Their predicted binding mode highlighted key structural features presumably responsible for the efficient inhibition of PleD by both hits. These molecules represent the most potent in vitro inhibitors of PleD identified so far and could therefore result in useful leads for the development of novel classes of antimicrobials able to hamper biofilm formation. IMPORTANCE: Biofilm-mediated infections are difficult to eradicate, posing a threatening health issue worldwide. The capability of bacteria to form biofilms is almost universally stimulated by the second messenger c-di-GMP. This evidence has boosted research in the last decade for the development of new antibiofilm strategies interfering with c-di-GMP metabolism. Here, two potent inhibitors of c-di-GMP synthesis have been identified in silico and characterized in vitro by using the well-characterized DGC enzyme PleD from C. crescentus as a structural template and molecular target. Given that the protein residues implied as crucial for enzyme inhibition are found to be highly conserved among DGCs, the outcome of this study could pave the way for the future development of broad-spectrum antibiofilm compounds.


Asunto(s)
Catecoles/química , Caulobacter crescentus/enzimología , Simulación por Computador , Descubrimiento de Drogas/métodos , Proteínas de Escherichia coli/antagonistas & inhibidores , Modelos Biológicos , Liasas de Fósforo-Oxígeno/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Modelos Moleculares , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , Reproducibilidad de los Resultados
16.
J Bacteriol ; 197(8): 1525-35, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25691523

RESUMEN

UNLABELLED: The intracellular level of the bacterial secondary messenger cyclic di-3',5'-GMP (c-di-GMP) is determined by a balance between its biosynthesis and degradation, the latter achieved via dedicated phosphodiesterases (PDEs) bearing a characteristic EAL or HD-GYP domain. We here report the crystal structure of PA4781, one of the three Pseudomonas aeruginosa HD-GYP proteins, which we have previously characterized in vitro. The structure shows a bimetallic active site whose metal binding mode is different from those of both HD-GYP PDEs characterized so far. Purified PA4781 does not contain iron in the active site as for other HD-GYPs, and we show that it binds to a wide range of transition metals with similar affinities. Moreover, the structural features of PA4781 indicate that this is preferentially a pGpG binding protein, as we previously suggested. Our results point out that the structural features of HD-GYPs are more complex than predicted so far and identify the HD-GYP domain as a conserved scaffold which has evolved to preferentially interact with a partner GGDEF but which harbors different functions obtained through diversification of the active site. IMPORTANCE: In bacteria, the capability to form biofilms, responsible for increased pathogenicity and antibiotic resistance, is almost universally stimulated by the second messenger cyclic di-GMP (c-di-GMP). To design successful strategies for targeting biofilm formation, a detailed characterization of the enzymes involved in c-di-GMP metabolism is crucial. We solved the structure of the HD-GYP domain of PA4781 from Pseudomonas aeruginosa, involved in c-di-GMP degradation. This is the third structure of this class of phosphodiesterases to be solved, and with respect to its homologues, it shows significant differences both in the nature and in the binding mode of the coordinated metals, indicating that HD-GYP proteins are able to fine-tune their function, thereby increasing the chances of the microorganism to adapt to different environmental needs.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sitios de Unión/fisiología , Pseudomonas aeruginosa/metabolismo , Regulación Alostérica , Proteínas Bacterianas/genética , Cristalización , Modelos Moleculares , Filogenia , Conformación Proteica , Estructura Terciaria de Proteína/fisiología , Pseudomonas aeruginosa/genética
17.
Nucleic Acids Res ; 41(7): e79, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23358823

RESUMEN

Bacteria react to adverse environmental stimuli by clustering into organized communities called biofilms. A remarkably sophisticated control system based on the dinucleotide 3'-5' cyclic diguanylic acid (c-di-GMP) is involved in deciding whether to form or abandon biofilms. The ability of c-di-GMP to form self-intercalated dimers is also thought to play a role in this complex regulation. A great advantage in the quest of elucidating the catalytic properties of the enzymes involved in c-di-GMP turnover (diguanylate cyclases and phosphodiesterases) would come from the availability of an experimental approach for in vitro quantification of c-di-GMP in real-time. Here, we show that c-di-GMP can be detected and quantified by circular dichroism (CD) spectroscopy in the low micromolar range. The method is based on the selective ability of manganese ions to induce formation of the intercalated dimer of the c-di-GMP dinucleotide in solution, which displays an intense sigmoidal CD spectrum in the near-ultraviolet region. This characteristic spectrum originates from the stacking interaction of the four mutually intercalated guanines, as it is absent in the other cyclic dinucleotide 3'-5' cyclic adenilic acid (c-di-AMP). Thus, near-ultraviolet CD can be used to effectively quantify in real-time the activity of diguanylate cyclases and phosphodiesterases in solution.


Asunto(s)
3',5'-GMP Cíclico Fosfodiesterasas/metabolismo , Dicroismo Circular/métodos , GMP Cíclico/análogos & derivados , Guanilato Ciclasa/metabolismo , GMP Cíclico/química , GMP Cíclico/metabolismo , Manganeso/química , Modelos Moleculares
18.
Biochem Biophys Res Commun ; 451(3): 449-54, 2014 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-25117445

RESUMEN

The reduction of nitrite into nitric oxide (NO) in denitrifying bacteria is catalyzed by nitrite reductase. In several species, this enzyme is a heme-containing protein with one c heme and one d1 heme per monomer (cd1NiR), encoded by the nirS gene. For many years, the evidence of a link between NO and this hemeprotein represented a paradox, given that NO was known to tightly bind and, possibly, inhibit hemeproteins, including cd1NiRs. It is now established that, during catalysis, cd1NiRs diverge from "canonical" hemeproteins, since the product NO rapidly dissociates from the ferrous d1 heme, which, in turn, displays a peculiar "low" affinity for NO (KD=0.11 µM at pH 7.0). It has been also previously shown that the c heme reacts with NO at acidic pH but c heme nitrosylation was not extensively investigated, given that in cd1NiR it was considered a side reaction, rather than a genuine process controlling catalysis. The spectroscopic study of the reaction of cd1NiR and its semi-apo derivative (containing the sole c heme) with NO reported here shows that c heme nitrosylation is enhanced during catalysis; this evidence has been discussed in order to assess the potential of c heme nitrosylation as a regulatory process, as observed for cytochrome c nitrosylation in mammalian mitochondria.


Asunto(s)
Hemo/análogos & derivados , Óxido Nítrico/metabolismo , Nitrito Reductasas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Catálisis , Hemo/metabolismo , Nitrito Reductasas/metabolismo , Pseudomonas aeruginosa/enzimología
19.
IUBMB Life ; 66(1): 52-62, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24408864

RESUMEN

Modulation of the interaction of regulatory 14-3-3 proteins to their physiological partners through small cell-permeant molecules is a promising strategy to control cellular processes where 14-3-3s are engaged. Here, we show that the fungal phytotoxin fusicoccin (FC), known to stabilize 14-3-3 association to the plant plasma membrane H(+) -ATPase, is able to stabilize 14-3-3 interaction to several client proteins with a mode III binding motif. Isothermal titration calorimetry analysis of the interaction between 14-3-3s and different peptides reproducing a mode III binding site demonstrated the FC ability to stimulate 14-3-3 the association. Moreover, molecular docking studies provided the structural rationale for the differential FC effect, which exclusively depends on the biochemical properties of the residue in peptide C-terminal position. Our study proposes FC as a promising tool to control cellular processes regulated by 14-3-3 proteins, opening new perspectives on its potential pharmacological applications.


Asunto(s)
Proteínas 14-3-3/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Glicósidos/farmacología , Micotoxinas/farmacología , Fosfopéptidos/metabolismo , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Proteínas 14-3-3/química , Sitios de Unión , Calorimetría , Membrana Celular/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Humanos , Modelos Moleculares , Proteínas del Tejido Nervioso/metabolismo , Fosfolipasa D/metabolismo , Fosfopéptidos/química , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Unión Proteica , Conformación Proteica , ATPasas de Translocación de Protón/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Interleucina-9/metabolismo , Receptores de Péptidos/metabolismo , Termodinámica
20.
Biometals ; 27(4): 763-73, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25007853

RESUMEN

In the opportunistic pathogen Pseudomonas aeruginosa the denitrification process is triggered by nitric oxide (NO) and plays a crucial role for the survival in chronic infection sites as a microaerobic-anaerobic biofilm. This respiratory pathway is transcriptionally induced by DNR, an heme-based gas sensor which positively responds to NO. Molecular details of the NO sensing mechanism employed by DNR are now emerging: we recently reported an in vitro study which dissected, for the first time, the heme-iron environment and identified one of the heme axial ligand (i.e. His187), found to be crucial to respond to NO. Nevertheless, the identification of the second heme axial ligand has been unsuccessful, given that a peculiar phenomenon of ligand switching around the heme-iron presumably occurs in DNR. The unusual heme binding properties of DNR could be due to the remarkable flexibility in solution of DNR itself, which, in turns, is crucial for the sensing activity; protein flexibility and dynamics indeed represent a common strategy employed by heme-based redox sensors, which present features deeply different from those of "canonical" hemeproteins. The capability of DNR to deeply rearrange around the heme-iron as been here demonstrated by means of spectroscopic characterization of the H167A/H187A DNR double mutant, which shows unusual kinetics of binding of NO and CO. Moreover, we show that the alteration (such as histidines mutations) of the distal side of the heme pocket is perceived by the proximal one, possibly via the DNR protein chain.


Asunto(s)
Proteínas Bacterianas/química , Óxido Nítrico/química , Pseudomonas aeruginosa , Factores de Transcripción/química , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Sitios de Unión , Monóxido de Carbono/química , Hemo/química , Unión Proteica , Factores de Transcripción/genética , Espectroscopía de Absorción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA