Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(2)2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467397

RESUMEN

Mycobacterium abscessus (Mab) is an emerging, nontuberculosis mycobacterium (NTM) that infects humans. Mab has two morphotypes, smooth (S) and rough (R), related to the production of glycopeptidolipid (GPL), that differ in pathogenesis. To further understand the pathogenicity of these morphotypes in vivo, the amphibian Xenopus laevis was used as an alternative animal model. Mab infections have been previously modeled in zebrafish embryos and mice, but Mab are cleared early from immunocompetent mice, preventing the study of chronic infection, and the zebrafish model cannot be used to model a pulmonary infection and T cell involvement. Here, we show that X. laevis tadpoles, which have lungs and T cells, can be used as a complementary model for persistent Mab infection and pathogenesis. Intraperitoneal (IP) inoculation of S and R Mab morphotypes disseminated to tadpole tissues including liver and lungs, persisting for up to 40 days without significant mortality. Furthermore, the R morphotype was more persistent, maintaining a higher bacterial load at 40 days postinoculation. In contrast, the intracardiac (IC) inoculation with S Mab induced significantly greater mortality than inoculation with the R Mab form. These data suggest that X. laevis tadpoles can serve as a useful comparative experimental organism to investigate pathogenesis and host resistance to M. abscessus.


Asunto(s)
Modelos Animales de Enfermedad , Mycobacterium abscessus/metabolismo , Xenopus laevis/crecimiento & desarrollo , Animales , Resistencia a la Enfermedad/inmunología , Interacciones Huésped-Patógeno , Humanos , Larva/crecimiento & desarrollo , Larva/inmunología , Larva/microbiología , Hígado/inmunología , Hígado/microbiología , Pulmón/inmunología , Pulmón/microbiología , Ratones Endogámicos C57BL , Infecciones por Mycobacterium no Tuberculosas/genética , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium abscessus/clasificación , Mycobacterium abscessus/patogenicidad , Linfocitos T/inmunología , Linfocitos T/microbiología , Factores de Tiempo , Virulencia , Xenopus laevis/inmunología , Xenopus laevis/microbiología
2.
Artículo en Inglés | MEDLINE | ID: mdl-30858221

RESUMEN

The in vitro activity of omadacycline, a new tetracycline derivative, was evaluated against isolates of Mycobacterium abscessus, Mycobacterium chelonae, and Mycobacterium fortuitum using a broth microtiter dilution assay. Omadacycline had MIC90 values of 2 µg/ml, 0.25 µg/ml, and 0.5 µg/ml, respectively. The in vitro activity of omadacycline against rapidly growing mycobacteria indicates that it may have the potential to improve therapy for infections caused by these organisms.


Asunto(s)
Antibacterianos/farmacología , Mycobacterium/efectos de los fármacos , Tetraciclinas/farmacología , Pruebas de Sensibilidad Microbiana , Mycobacterium abscessus/efectos de los fármacos , Mycobacterium chelonae/efectos de los fármacos , Mycobacterium fortuitum/efectos de los fármacos
3.
Artículo en Inglés | MEDLINE | ID: mdl-29784848

RESUMEN

The in vitro activity of contezolid (MRX-I) against clinical isolates of Mycobacterium tuberculosis was evaluated using a microtiter broth dilution assay. MRX-I was as effective as linezolid (LZD) in vitro MRX-I and LZD were subsequently studied in BALB/c mice infected intranasally with M. tuberculosis Erdman. MRX-I and LZD at 100 mg/kg significantly reduced the bacterial load in lungs compared to the untreated early and late controls.


Asunto(s)
Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Oxazolidinonas/farmacología , Piridonas/farmacología , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Animales , Carga Bacteriana/efectos de los fármacos , Modelos Animales de Enfermedad , Esquema de Medicación , Femenino , Humanos , Isoniazida/farmacología , Linezolid/farmacología , Pulmón/efectos de los fármacos , Pulmón/microbiología , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/aislamiento & purificación , Tetrazoles/farmacología , Tuberculosis Resistente a Múltiples Medicamentos/microbiología
4.
Proc Natl Acad Sci U S A ; 112(51): E7073-82, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26644565

RESUMEN

There is a growing need for new antibiotics. Compounds that target the proton motive force (PMF), uncouplers, represent one possible class of compounds that might be developed because they are already used to treat parasitic infections, and there is interest in their use for the treatment of other diseases, such as diabetes. Here, we tested a series of compounds, most with known antiinfective activity, for uncoupler activity. Many cationic amphiphiles tested positive, and some targeted isoprenoid biosynthesis or affected lipid bilayer structure. As an example, we found that clomiphene, a recently discovered undecaprenyl diphosphate synthase inhibitor active against Staphylococcus aureus, is an uncoupler. Using in silico screening, we then found that the anti-glioblastoma multiforme drug lead vacquinol is an inhibitor of Mycobacterium tuberculosis tuberculosinyl adenosine synthase, as well as being an uncoupler. Because vacquinol is also an inhibitor of M. tuberculosis cell growth, we used similarity searches based on the vacquinol structure, finding analogs with potent (∼0.5-2 µg/mL) activity against M. tuberculosis and S. aureus. Our results give a logical explanation of the observation that most new tuberculosis drug leads discovered by phenotypic screens and genome sequencing are highly lipophilic (logP ∼5.7) bases with membrane targets because such species are expected to partition into hydrophobic membranes, inhibiting membrane proteins, in addition to collapsing the PMF. This multiple targeting is expected to be of importance in overcoming the development of drug resistance because targeting membrane physical properties is expected to be less susceptible to the development of resistance.


Asunto(s)
Antiinfecciosos/farmacología , Fuerza Protón-Motriz/efectos de los fármacos , Desacopladores/farmacología , Transferasas Alquil y Aril/antagonistas & inhibidores , Antiinfecciosos/química , Fenómenos Biofísicos , Clomifeno/farmacología , Descubrimiento de Drogas , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Estructura Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/crecimiento & desarrollo , Piperidinas/farmacología , Quinolinas/farmacología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/enzimología , Desacopladores/química
5.
Bioorg Med Chem Lett ; 27(17): 3987-3991, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28778468

RESUMEN

To develop agents for the treatment of infections caused by Mycobacterium tuberculosis, a novel phenotypic screen was undertaken that identified a series of 2-N-aryl thiazole-based inhibitors of intracellular Mycobacterium tuberculosis. Analogs were optimized to improve potency against an attenuated BSL2 H37Ra laboratory strain cultivated in human macrophage cells in vitro. The insertion of a carboxylic acid functionality resulted in compounds that retained potency and greatly improved microsomal stability. However, the strong potency trends we observed in the attenuated H37Ra strain were inconsistent with the potency observed for virulent strains in vitro and in vivo.


Asunto(s)
Antibacterianos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Tiazoles/farmacología , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Ratones , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad , Tiazoles/síntesis química , Tiazoles/química
6.
Antimicrob Agents Chemother ; 59(3): 1534-41, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25534740

RESUMEN

Previous studies indicated that inhibition of efflux pumps augments tuberculosis therapy. In this study, we used timcodar (formerly VX-853) to determine if this efflux pump inhibitor could increase the potency of antituberculosis (anti-TB) drugs against Mycobacterium tuberculosis in in vitro and in vivo combination studies. When used alone, timcodar weakly inhibited M. tuberculosis growth in broth culture (MIC, 19 µg/ml); however, it demonstrated synergism in drug combination studies with rifampin, bedaquiline, and clofazimine but not with other anti-TB agents. When M. tuberculosis was cultured in host macrophage cells, timcodar had about a 10-fold increase (50% inhibitory concentration, 1.9 µg/ml) in the growth inhibition of M. tuberculosis and demonstrated synergy with rifampin, moxifloxacin, and bedaquiline. In a mouse model of tuberculosis lung infection, timcodar potentiated the efficacies of rifampin and isoniazid, conferring 1.0 and 0.4 log10 reductions in bacterial burden in lung, respectively, compared to the efficacy of each drug alone. Furthermore, timcodar reduced the likelihood of a relapse infection when evaluated in a mouse model of long-term, chronic infection with treatment with a combination of rifampin, isoniazid, and timcodar. Although timcodar had no effect on the pharmacokinetics of rifampin in plasma and lung, it did increase the plasma exposure of bedaquiline. These data suggest that the antimycobacterial drug-potentiating activity of timcodar is complex and drug dependent and involves both bacterial and host-targeted mechanisms. Further study of the improvement of the potency of antimycobacterial drugs and drug candidates when used in combination with timcodar is warranted.


Asunto(s)
Antituberculosos/farmacología , Piridinas/farmacología , Animales , Antituberculosos/farmacocinética , Línea Celular , Sinergismo Farmacológico , Femenino , Humanos , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/efectos de los fármacos
7.
Antimicrob Agents Chemother ; 59(3): 1455-65, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25534737

RESUMEN

New drugs to treat drug-resistant tuberculosis are urgently needed. Extensively drug-resistant and probably the totally drug-resistant tuberculosis strains are resistant to fluoroquinolones like moxifloxacin, which target gyrase A, and most people infected with these strains die within a year. In this study, we found that a novel aminobenzimidazole, VXc-486, which targets gyrase B, potently inhibits multiple drug-sensitive isolates and drug-resistant isolates of Mycobacterium tuberculosis in vitro (MICs of 0.03 to 0.30 µg/ml and 0.08 to 5.48 µg/ml, respectively) and reduces mycobacterial burdens in lungs of infected mice in vivo. VXc-486 is active against drug-resistant isolates, has bactericidal activity, and kills intracellular and dormant M. tuberculosis bacteria in a low-oxygen environment. Furthermore, we found that VXc-486 inhibits the growth of multiple strains of Mycobacterium abscessus, Mycobacterium avium complex, and Mycobacterium kansasii (MICs of 0.1 to 2.0 µg/ml), as well as that of several strains of Nocardia spp. (MICs of 0.1 to 1.0 µg/ml). We made a direct comparison of the parent compound VXc-486 and a phosphate prodrug of VXc-486 and showed that the prodrug of VXc-486 had more potent killing of M. tuberculosis than did VXc-486 in vivo. In combination with other antimycobacterial drugs, the prodrug of VXc-486 sterilized M. tuberculosis infection when combined with rifapentine-pyrazinamide and bedaquiline-pyrazinamide in a relapse infection study in mice. Furthermore, the prodrug of VXc-486 appeared to perform at least as well as the gyrase A inhibitor moxifloxacin. These findings warrant further development of the prodrug of VXc-486 for the treatment of tuberculosis and nontuberculosis mycobacterial infections.


Asunto(s)
Antibacterianos/uso terapéutico , Bencimidazoles/uso terapéutico , Infecciones por Mycobacterium/tratamiento farmacológico , Inhibidores de Topoisomerasa II/uso terapéutico , Animales , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana
8.
Biometals ; 28(2): 415-23, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25663372

RESUMEN

The minimal inhibitory concentrations (MICs) of copper and cobalt based dimeric pyrophosphate complexes with capping 1,10-phenanthroline groups on clinical isolates of C. albicans (28 isolates), C. krusei (20 isolates) and C. tropicalis (20 isolates) are reported. C. albicans was inhibited by the cobalt complex better than by the copper complex, while C. krusei demonstrated the opposite results. C. tropicalis showed similar sensitivities to both metals in terms of calculated MIC50 values but was more sensitive to cobalt when MIC90 values were noted. Knockout strains of C. albicans that had the copper efflux protein P-type ATPase (CRP1), the copper binding metallothionein CUP1 or both CRP1/CUP1 removed clearly demonstrate that the origins of copper resistant in C. albicans lies primarily in the P-type ATPase, with the MT playing an important secondary role in the absence of the efflux protein. This study suggests that certain strains of Candida have evolved to protect against particular metal ions and that in the case of C. albicans, a primary invasive fungal species, cobalt may be a good starting-point for new therapeutic development.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Candida tropicalis/efectos de los fármacos , Complejos de Coordinación/farmacología , Fenantrolinas/farmacología , Transportadoras de Casetes de Unión a ATP/genética , Antifúngicos/química , Candida albicans/fisiología , Candida tropicalis/fisiología , Cobalto/química , Complejos de Coordinación/química , Cobre/química , Farmacorresistencia Fúngica , Técnicas de Inactivación de Genes , Pruebas de Sensibilidad Microbiana , Fenantrolinas/química
10.
ACS Infect Dis ; 9(2): 342-364, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36706233

RESUMEN

SQ109 is a tuberculosis drug candidate that has high potency against Mycobacterium tuberculosis and is thought to function at least in part by blocking cell wall biosynthesis by inhibiting the MmpL3 transporter. It also has activity against bacteria and protozoan parasites that lack MmpL3, where it can act as an uncoupler, targeting lipid membranes and Ca2+ homeostasis. Here, we synthesized 18 analogs of SQ109 and tested them against M. smegmatis, M. tuberculosis, M. abscessus, Bacillus subtilis, and Escherichia coli, as well as against the protozoan parasites Trypanosoma brucei, T. cruzi, Leishmania donovani, L. mexicana, and Plasmodium falciparum. Activity against the mycobacteria was generally less than with SQ109 and was reduced by increasing the size of the alkyl adduct, but two analogs were ∼4-8-fold more active than SQ109 against M. abscessus, including a highly drug-resistant strain harboring an A309P mutation in MmpL3. There was also better activity than found with SQ109 with other bacteria and protozoa. Of particular interest, we found that the adamantyl C-2 ethyl, butyl, phenyl, and benzyl analogs had 4-10× increased activity against P. falciparum asexual blood stages, together with low toxicity to a human HepG2 cell line, making them of interest as new antimalarial drug leads. We also used surface plasmon resonance to investigate the binding of inhibitors to MmpL3 and differential scanning calorimetry to investigate binding to lipid membranes. There was no correlation between MmpL3 binding and M. tuberculosis or M. smegmatis cell activity, suggesting that MmpL3 is not a major target in mycobacteria. However, some of the more active species decreased lipid phase transition temperatures, indicating increased accumulation in membranes, which is expected to lead to enhanced uncoupler activity.


Asunto(s)
Malaria , Mycobacterium abscessus , Mycobacterium tuberculosis , Parásitos , Tuberculosis , Animales , Humanos , Antituberculosos/farmacología , Parásitos/metabolismo , Proteínas Bacterianas/metabolismo , Tuberculosis/microbiología , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Lípidos
11.
Antimicrob Agents Chemother ; 56(2): 1133-4, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22106219

RESUMEN

JPC 2067 is a novel dihydrotriazine dihydrofolate reductase inhibitor that is being developed as an antimalarial therapeutic. We evaluated the in vitro activity of JPC 2067 alone and in combination with sulfamethoxazole (SMX) against a panel of nocardia isolates. The MIC(50)s and MIC(90)s for JPC 2067, SMX, and the combination were 0.125 µg/ml and 4 µg/ml, 16 µg/ml and 32 µg/ml, and 0.03 µg/ml and 2 µg/ml, respectively. JPC 2067 alone and in combination with SMX should be evaluated further to understand its clinical potential.


Asunto(s)
Antibacterianos/farmacología , Nocardiosis/microbiología , Nocardia/efectos de los fármacos , Sulfametoxazol/farmacología , Triazinas/farmacología , Quimioterapia Combinada , Humanos , Pruebas de Sensibilidad Microbiana/normas , Nocardia/clasificación , Nocardia/aislamiento & purificación , Tetrahidrofolato Deshidrogenasa/efectos de los fármacos , Triazinas/química
12.
Antimicrob Agents Chemother ; 56(7): 3986-8, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22585214

RESUMEN

The in vitro activities of TP-271, a novel fluorocycline antimicrobial, against 22 isolates of Mycobacterium abscessus, 22 isolates of Mycobacterium fortuitum, and 19 isolates of Nocardia spp. were studied by a microtiter broth dilution method. The MIC(90)s for M. abscessus, M. fortuitum, and Nocardia spp. were 0.5 µg/ml, 0.03 µg/ml, and 8 µg/ml, respectively. TP-271 was significantly more active than the respective control drug in virtually all tests.


Asunto(s)
Antibacterianos/farmacología , Mycobacterium fortuitum/efectos de los fármacos , Mycobacterium/efectos de los fármacos , Nocardia/efectos de los fármacos , Pruebas de Sensibilidad Microbiana
13.
Microorganisms ; 10(2)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35208914

RESUMEN

BACKGROUND: The turnaround times for phenotypic tests used to monitor the bacterial load of Mycobacterium tuberculosis, in both clinical and preclinical studies, are delayed by the organism's slow growth in culture media. The existence of differentially culturable populations of M.tuberculosis may result in an underestimate of the true number. Moreover, culture methods are susceptible to contamination resulting in loss of critical data points. OBJECTIVES: We report the adaptation of our robust, culture-free assay utilising 16S ribosomal RNA, developed for sputum, to enumerate the number of bacteria present in animal tissues as a tool to improve the read-outs in preclinical drug efficacy studies. METHODS: Initial assay adaptation was performed using naïve mouse lungs spiked with known quantities of M. tuberculosis and an internal RNA control. Tissues were homogenised, total RNA extracted, and enumeration performed using RT-qPCR. We then evaluated the utility of the assay, in comparison to bacterial counts estimated using growth assays on solid and liquid media, to accurately inform bacterial load in tissues from M. tuberculosis-infected mice before and during treatment with a panel of drug combinations. RESULTS: When tested on lung tissues derived from infected mice, the MBL assay produced comparable results to the bacterial counts in solid culture (colony forming units: CFU). Notably, under specific drug treatments, the MBL assay was able to detect a significantly higher number of M. tuberculosis compared to CFU, likely indicating the presence of bacteria that were unable to produce colonies in solid-based culture. Additionally, growth recovery in liquid media using the most probable number (MPN) assay was able to account for the discrepancy between the MBL assay and CFU number, suggesting that the MBL assay detects differentially culturable sub-populations of M. tuberculosis. CONCLUSIONS: The MBL assay can enumerate the bacterial load in animal tissues in real time without the need to wait for extended periods for cultures to grow. The readout correlates well with CFUs. Importantly, we have shown that the MBL is able to measure specific populations of bacteria not cultured on solid agar. The adaptation of this assay for preclinical studies has the potential to decrease the readout time of data acquisition from animal experiments and could represent a valuable tool for tuberculosis drug discovery and development.

14.
Chemistry ; 17(52): 14772-84, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22113787

RESUMEN

The preparation of novel fluorinated allylamines and their use as key fragments for the stereoselective synthesis of hydroxyethyl secondary amine (HEA)-type peptidomimetics is described. Our strategy employs chiral sulfinyl imines as synthesis intermediates, by treatment of hemiaminal precursors with two equivalents of vinylmagnesium bromide. The subsequent oxidation of the allylic amines to the corresponding epoxides was achieved by treatment with methyl(trifluoromethyl)dioxirane. Finally, epoxide ring opening with a range of nitrogen nucleophiles provided a library of HEA-derived peptidomimetics with a phenyldifluoromethylene moiety. The biological evaluation of these derivatives revealed compounds with remarkable BACE1 inhibitory activity. Docking studies revealed the influence of the fluorine atoms in the binding mode of the synthesized ligands. Furthermore, the biological evaluation of our final products and synthesis intermediates led to the discovery of compounds with antimicrobial activity against Mycobacterium and Nocardia species.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/química , Antiinfecciosos/química , Antiinfecciosos/síntesis química , Antiinfecciosos/farmacología , Ácido Aspártico Endopeptidasas/química , Etanolamina/química , Etanolamina/síntesis química , Iminas/síntesis química , Mycobacterium/efectos de los fármacos , Nocardia/efectos de los fármacos , Peptidomiméticos/química , Ácidos Ftálicos/síntesis química , Compuestos de Sulfonio/química , Compuestos Epoxi/síntesis química , Compuestos Epoxi/química , Compuestos Epoxi/farmacología , Halogenación , Humanos , Iminas/química , Estructura Molecular , Ácidos Ftálicos/química , Estereoisomerismo
15.
Expert Opin Emerg Drugs ; 16(1): 1-21, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20868293

RESUMEN

INTRODUCTION: The tuberculosis epidemic continues in much of the developing world fueled by the concurrent HIV epidemic. Due to the emergence of multidrug and extensively drug-resistant isolates of tuberculosis, there is a critical need for new drug regimens for the treatment of this disease. Currently, five new compound classes are in various stages of clinical development for tuberculosis. AREAS COVERED: Selected literature from the past 5 years was reviewed and the current status of compounds in preclinical development and those compounds undergoing clinical studies in humans is described in detail as well as their known potential limitations. After a > 40-year period of almost no effort to discover and develop new therapeutics for tuberculosis, there are now significant activities by small and large pharmaceutical companies in this area. The reader will understand the current status of agents undergoing clinical evaluation for tuberculosis. EXPERT OPINION: The challenge in antituberculosis drug development is to make available to patients highly effective regimens which present substantial barriers to resistance development in an affordable formulation. Shortening the length of therapy from the current 6 to 3 months or less is a goal for the newly developed regimens. For the first time in many years, there are bright prospects for improving regimens for the therapy of tuberculosis.


Asunto(s)
Antituberculosos/uso terapéutico , Descubrimiento de Drogas , Tuberculosis Pulmonar/tratamiento farmacológico , Animales , Antituberculosos/administración & dosificación , Antituberculosos/efectos adversos , Ensayos Clínicos como Asunto , Esquema de Medicación , Evaluación Preclínica de Medicamentos , Quimioterapia Combinada , Humanos , Estructura Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Resultado del Tratamiento , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Tuberculosis Pulmonar/microbiología
16.
Antibiotics (Basel) ; 10(4)2021 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-33916775

RESUMEN

Infections caused by nontuberculous mycobacteria (NTM) are increasing worldwide, resulting in a new global health concern. NTM treatment is complex and requires combinations of several drugs for lengthy periods. In spite of this, NTM disease is often associated with poor treatment outcomes. The anti-parasitic family of macrocyclic lactones (ML) (divided in two subfamilies: avermectins and milbemycins) was previously described as having activity against mycobacteria, including Mycobacterium tuberculosis, Mycobacterium ulcerans, and Mycobacterium marinum, among others. Here, we aimed to characterize the in vitro anti-mycobacterial activity of ML against a wide range of NTM species, including Mycobacteroides abscessus. For this, Minimum Inhibitory Concentration (MIC) values of eight ML were determined against 80 strains belonging to nine different NTM species. Macrocyclic lactones showed variable ranges of anti-mycobacterial activity that were compound and species-dependent. Milbemycin oxime was the most active compound, displaying broad-spectrum activity with MIC lower than 8 mg/L. Time kill assays confirmed MIC data and showed bactericidal and sterilizing activity of some compounds. Macrocyclic lactones are available in many formulations and have been extensively used in veterinary and human medicine with suitable pharmacokinetics and safety properties. This information could be exploited to explore repurposing of anti-helminthics for NTM therapy.

17.
Sci Adv ; 7(5)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33571116

RESUMEN

Antibiotic resistance is now a major threat to human health, and one approach to combating this threat is to develop resistance-resistant antibiotics. Synthetic antimicrobial polymers are generally resistance resistant, having good activity with low resistance rates but usually with low therapeutic indices. Here, we report our solution to this problem by introducing dual-selective mechanisms of action to a short amidine-rich polymer, which can simultaneously disrupt bacterial membranes and bind to bacterial DNA. The oligoamidine shows unobservable resistance generation but high therapeutic indices against many bacterial types, such as ESKAPE strains and clinical isolates resistant to multiple drugs, including colistin. The oligomer exhibited excellent effectiveness in various model systems, killing extracellular or intracellular bacteria in the presence of mammalian cells, removing all bacteria from Caenorhabditis elegans, and rescuing mice with severe infections. This "dual mechanisms of action" approach may be a general strategy for future development of antimicrobial polymers.

19.
Antimicrob Agents Chemother ; 53(12): 5114-21, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19770283

RESUMEN

Antileishmanial therapy is suboptimal due to toxicity, high cost, and development of resistance to available drugs. Pyrazinamide (PZA) is a constituent of short-course tuberculosis chemotherapy. We investigated the effect of PZA on Leishmania major promastigote and amastigote survival. Promastigotes were more sensitive to the drug than amastigotes, with concentrations at which 50% of parasites were inhibited (MIC(50)) of 16.1 and 8.2 microM, respectively (48 h posttreatment). Moreover, 90% of amastigotes were eliminated at 120 h posttreatment, indicating that longer treatments will result in parasite elimination. Most strikingly, PZA treatment of infected C57BL/6 mice resulted in protection against disease and in a 100-fold reduction in the parasite burden. PZA treatment of J774 cells and bone marrow-derived dendritic cells and macrophages increased interleukin 12, tumor necrosis factor alpha, and activation marker expression, as well as nitric oxide production, suggesting that PZA enhances effective immune responses against the parasite. PZA treatment also activates dendritic cells deficient in Toll-like receptor 2 and 4 expression to initiate a proinflammatory response, confirming that the immunostimulatory effect of PZA is directly caused by the drug and is independent of Toll-like receptor stimulation. These results not only are strongly indicative of the promise of PZA as an alternative antileishmanial chemotherapy but also suggest that PZA causes collateral immunostimulation, a phenomenon that has never been reported for this drug.


Asunto(s)
Antiprotozoarios/uso terapéutico , Antituberculosos/uso terapéutico , Leishmaniasis Cutánea/tratamiento farmacológico , Pirazinamida/uso terapéutico , Animales , Antígeno B7-1/metabolismo , Antígeno B7-2/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Regulación de la Expresión Génica/efectos de los fármacos , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos BALB C , Óxido Nítrico/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
20.
J Clin Microbiol ; 47(5): 1607-8, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19297589

RESUMEN

We report a case of a previously healthy 38-year-old male with acute prostatitis and concurrent Pseudomonas aeruginosa urosepsis. Pulsed-field gel electrophoresis analysis confirmed that the source of the organism was the patient's newly purchased hot tub, which was filled with water from a stream.


Asunto(s)
Prostatitis/microbiología , Infecciones por Pseudomonas/diagnóstico , Pseudomonas aeruginosa/aislamiento & purificación , Infecciones Urinarias/microbiología , Adulto , Antibacterianos/uso terapéutico , Humanos , Masculino , Prostatitis/tratamiento farmacológico , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Conducta Sexual , Infecciones Urinarias/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA