Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nature ; 587(7834): 420-425, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177709

RESUMEN

Genome introgressions drive evolution across the animal1, plant2 and fungal3 kingdoms. Introgressions initiate from archaic admixtures followed by repeated backcrossing to one parental species. However, how introgressions arise in reproductively isolated species, such as yeast4, has remained unclear. Here we identify a clonal descendant of the ancestral yeast hybrid that founded the extant Saccharomyces cerevisiae Alpechin lineage5, which carries abundant Saccharomyces paradoxus introgressions. We show that this clonal descendant, hereafter defined as a 'living ancestor', retained the ancestral genome structure of the first-generation hybrid with contiguous S. cerevisiae and S. paradoxus subgenomes. The ancestral first-generation hybrid underwent catastrophic genomic instability through more than a hundred mitotic recombination events, mainly manifesting as homozygous genome blocks generated by loss of heterozygosity. These homozygous sequence blocks rescue hybrid fertility by restoring meiotic recombination and are the direct origins of the introgressions present in the Alpechin lineage. We suggest a plausible route for introgression evolution through the reconstruction of extinct stages and propose that genome instability allows hybrids to overcome reproductive isolation and enables introgressions to emerge.


Asunto(s)
Evolución Molecular , Introgresión Genética/genética , Genoma Fúngico/genética , Genómica , Filogenia , Saccharomyces cerevisiae/genética , Saccharomyces/genética , Cruzamientos Genéticos , Fertilidad/genética , Aptitud Genética/genética , Inestabilidad Genómica/genética , Recombinación Homóloga/genética , Pérdida de Heterocigocidad/genética , Meiosis/genética , Mitosis/genética , Reproducción Asexuada/genética , Saccharomyces/clasificación , Saccharomyces/citología , Saccharomyces cerevisiae/clasificación , Saccharomyces cerevisiae/citología
2.
Mol Biol Evol ; 36(12): 2861-2877, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31397846

RESUMEN

Mutations, recombinations, and genome duplications may promote genetic diversity and trigger evolutionary processes. However, quantifying these events in diploid hybrid genomes is challenging. Here, we present an integrated experimental and computational workflow to accurately track the mutational landscape of yeast diploid hybrids (MuLoYDH) in terms of single-nucleotide variants, small insertions/deletions, copy-number variants, aneuploidies, and loss-of-heterozygosity. Pairs of haploid Saccharomyces parents were combined to generate ancestor hybrids with phased genomes and varying levels of heterozygosity. These diploids were evolved under different laboratory protocols, in particular mutation accumulation experiments. Variant simulations enabled the efficient integration of competitive and standard mapping of short reads, depending on local levels of heterozygosity. Experimental validations proved the high accuracy and resolution of our computational approach. Finally, applying MuLoYDH to four different diploids revealed striking genetic background effects. Homozygous Saccharomyces cerevisiae showed a ∼4-fold higher mutation rate compared with its closely related species S. paradoxus. Intraspecies hybrids unveiled that a substantial fraction of the genome (∼250 bp per generation) was shaped by loss-of-heterozygosity, a process strongly inhibited in interspecies hybrids by high levels of sequence divergence between homologous chromosomes. In contrast, interspecies hybrids exhibited higher single-nucleotide mutation rates compared with intraspecies hybrids. MuLoYDH provided an unprecedented quantitative insight into the evolutionary processes that mold diploid yeast genomes and can be generalized to other genetic systems.


Asunto(s)
Evolución Molecular , Técnicas Genéticas , Hibridación Genética , Mutación , Polimorfismo Genético , Diploidia , Genoma Fúngico , Saccharomyces cerevisiae
4.
J Invertebr Pathol ; 121: 56-63, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24997384

RESUMEN

Viral covert infections in invertebrates have been traditionally attributed to sublethal infections that were not able to establish an acute infection. Recent studies are revealing that, although true for some viruses, other viruses may follow the strategy of establishing covert or persistent infections without producing the death of the host. Recently, and due to the revolution in the sequencing technologies, a large number of viruses causing covert infections in all type of hosts have been identified. The beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae) is a worldwide pest that causes significant losses to agricultural and ornamental plant industries. In a previous project we used NGS to obtain a comprehensive transcriptome of the larval stage, revealing the presence of an important number of unigenes belonging to novel RNA viruses, most of them from the order Picornavirales. In order to characterize S. exigua viral complex, in this work we have completed the genomic sequences of two picorna-like viruses, and compared them to a SeIV1, a member of Iflaviridae previously described by our group. We performed additional studies to determine virus morphology, horizontal transmission, tissue and life stage distribution and abundance in the hosts. We discuss the role of virus persistent infections on insect populations.


Asunto(s)
Interacciones Huésped-Patógeno , Virus ARN/fisiología , Spodoptera/virología , Animales , Genoma Viral , Filogenia , Virus ARN/genética
5.
Genetics ; 223(3)2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36563016

RESUMEN

Telomeres are ribonucleoproteins that cap chromosome-ends and their DNA length is controlled by counteracting elongation and shortening processes. The budding yeast Saccharomyces cerevisiae has been a leading model to study telomere DNA length control and dynamics. Its telomeric DNA is maintained at a length that slightly varies between laboratory strains, but little is known about its variation at the species level. The recent publication of the genomes of over 1,000 S. cerevisiae strains enabled us to explore telomere DNA length variation at an unprecedented scale. Here, we developed a bioinformatic pipeline (YeaISTY) to estimate telomere DNA length from whole-genome sequences and applied it to the sequenced S. cerevisiae collection. Our results revealed broad natural telomere DNA length variation among the isolates. Notably, telomere DNA length is shorter in those derived from wild rather than domesticated environments. Moreover, telomere DNA length variation is associated with mitochondrial metabolism, and this association is driven by wild strains. Overall, these findings reveal broad variation in budding yeast's telomere DNA length regulation, which might be shaped by its different ecological life-styles.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Telómero/genética , Telómero/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Unión a Telómeros/genética , Secuencia de Bases
6.
Nat Commun ; 12(1): 6564, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34772931

RESUMEN

Hybrids between diverged lineages contain novel genetic combinations but an impaired meiosis often makes them evolutionary dead ends. Here, we explore to what extent an aborted meiosis followed by a return-to-growth (RTG) promotes recombination across a panel of 20 Saccharomyces cerevisiae and S. paradoxus diploid hybrids with different genomic structures and levels of sterility. Genome analyses of 275 clones reveal that RTG promotes recombination and generates extensive regions of loss-of-heterozygosity in sterile hybrids with either a defective meiosis or a heavily rearranged karyotype, whereas RTG recombination is reduced by high sequence divergence between parental subgenomes. The RTG recombination preferentially arises in regions with low local heterozygosity and near meiotic recombination hotspots. The loss-of-heterozygosity has a profound impact on sexual and asexual fitness, and enables genetic mapping of phenotypic differences in sterile lineages where linkage analysis would fail. We propose that RTG gives sterile yeast hybrids access to a natural route for genome recombination and adaptation.


Asunto(s)
Diploidia , Hibridación Genética , Infertilidad/genética , Meiosis , Saccharomyces cerevisiae/genética , Mapeo Cromosómico , Evolución Molecular , Genoma Fúngico , Recombinación Homóloga , Fenotipo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA