RESUMEN
Mammalian SWI/SNF complexes are ATP-dependent chromatin remodeling complexes that regulate genomic architecture. Here, we present a structural model of the endogenously purified human canonical BAF complex bound to the nucleosome, generated using cryoelectron microscopy (cryo-EM), cross-linking mass spectrometry, and homology modeling. BAF complexes bilaterally engage the nucleosome H2A/H2B acidic patch regions through the SMARCB1 C-terminal α-helix and the SMARCA4/2 C-terminal SnAc/post-SnAc regions, with disease-associated mutations in either causing attenuated chromatin remodeling activities. Further, we define changes in BAF complex architecture upon nucleosome engagement and compare the structural model of endogenous BAF to those of related SWI/SNF-family complexes. Finally, we assign and experimentally interrogate cancer-associated hot-spot mutations localizing within the endogenous human BAF complex, identifying those that disrupt BAF subunit-subunit and subunit-nucleosome interfaces in the nucleosome-bound conformation. Taken together, this integrative structural approach provides important biophysical foundations for understanding the mechanisms of BAF complex function in normal and disease states.
Asunto(s)
Enfermedad , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Ensamble y Desensamble de Cromatina , Microscopía por Crioelectrón , ADN Helicasas/química , ADN Helicasas/genética , ADN Helicasas/metabolismo , Enfermedad/genética , Humanos , Mutación Missense/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleosomas/metabolismo , Unión Proteica , Dominios Proteicos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/metabolismo , Homología Estructural de Proteína , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Mammalian SWI/SNF (mSWI/SNF) ATP-dependent chromatin remodeling complexes are multi-subunit molecular machines that play vital roles in regulating genomic architecture and are frequently disrupted in human cancer and developmental disorders. To date, the modular organization and pathways of assembly of these chromatin regulators remain unknown, presenting a major barrier to structural and functional determination. Here, we elucidate the architecture and assembly pathway across three classes of mSWI/SNF complexes-canonical BRG1/BRM-associated factor (BAF), polybromo-associated BAF (PBAF), and newly defined ncBAF complexes-and define the requirement of each subunit for complex formation and stability. Using affinity purification of endogenous complexes from mammalian and Drosophila cells coupled with cross-linking mass spectrometry (CX-MS) and mutagenesis, we uncover three distinct and evolutionarily conserved modules, their organization, and the temporal incorporation of these modules into each complete mSWI/SNF complex class. Finally, we map human disease-associated mutations within subunits and modules, defining specific topological regions that are affected upon subunit perturbation.
Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Factores de Transcripción/metabolismo , Animales , Cromatina/química , Proteínas Cromosómicas no Histona/análisis , Proteínas Cromosómicas no Histona/genética , Drosophila/metabolismo , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Espectrometría de Masas , Mutagénesis , Subunidades de Proteína/análisis , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Factores de Transcripción/análisis , Factores de Transcripción/genéticaRESUMEN
Mammalian SWI/SNF (mSWI/SNF or BAF) ATP-dependent chromatin remodeling complexes play critical roles in governing genomic architecture and gene expression and are frequently perturbed in human cancers. Transcription factors (TFs), including fusion oncoproteins, can bind to BAF complex surfaces to direct chromatin targeting and accessibility, often activating oncogenic gene loci. Here, we demonstrate that the FUS::DDIT3 fusion oncoprotein hallmark to myxoid liposarcoma (MLPS) inhibits BAF complex-mediated remodeling of adipogenic enhancer sites via sequestration of the adipogenic TF, CEBPB, from the genome. In mesenchymal stem cells, small-molecule inhibition of BAF complex ATPase activity attenuates adipogenesis via failure of BAF-mediated DNA accessibility and gene activation at CEBPB target sites. BAF chromatin occupancy and gene expression profiles of FUS::DDIT3-expressing cell lines and primary tumors exhibit similarity to SMARCB1-deficient tumor types. These data present a mechanism by which a fusion oncoprotein generates a BAF complex loss-of-function phenotype, independent of deleterious subunit mutations.
Asunto(s)
Liposarcoma Mixoide , Animales , Línea Celular Tumoral , Cromatina/genética , Liposarcoma Mixoide/genética , Liposarcoma Mixoide/metabolismo , Liposarcoma Mixoide/patología , Mamíferos/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
SF3B1 is the most commonly mutated RNA splicing factor in cancer1-4, but the mechanisms by which SF3B1 mutations promote malignancy are poorly understood. Here we integrated pan-cancer splicing analyses with a positive-enrichment CRISPR screen to prioritize splicing alterations that promote tumorigenesis. We report that diverse SF3B1 mutations converge on repression of BRD9, which is a core component of the recently described non-canonical BAF chromatin-remodelling complex that also contains GLTSCR1 and GLTSCR1L5-7. Mutant SF3B1 recognizes an aberrant, deep intronic branchpoint within BRD9 and thereby induces the inclusion of a poison exon that is derived from an endogenous retroviral element and subsequent degradation of BRD9 mRNA. Depletion of BRD9 causes the loss of non-canonical BAF at CTCF-associated loci and promotes melanomagenesis. BRD9 is a potent tumour suppressor in uveal melanoma, such that correcting mis-splicing of BRD9 in SF3B1-mutant cells using antisense oligonucleotides or CRISPR-directed mutagenesis suppresses tumour growth. Our results implicate the disruption of non-canonical BAF in the diverse cancer types that carry SF3B1 mutations and suggest a mechanism-based therapeutic approach for treating these malignancies.
Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Neoplasias/genética , Empalme del ARN , Empalmosomas/metabolismo , Animales , Línea Celular Tumoral , Ensamble y Desensamble de Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Humanos , Ratones , Trasplante de Neoplasias , Neoplasias/patología , Fosfoproteínas/metabolismo , Factores de Empalme de ARN/metabolismo , Empalmosomas/genética , Factores de Transcripción/metabolismoRESUMEN
Membrane proteins are challenging to study and restraints for structure determination are typically sparse or of low resolution because the membrane environment that surrounds them leads to a variety of experimental challenges. When membrane protein structures are determined by different techniques in different environments, a natural question is "which structure is most biologically relevant?" Towards answering this question, we compiled a dataset of membrane proteins with known structures determined by both solution NMR and X-ray crystallography. By investigating differences between the structures, we found that RMSDs between crystal and NMR structures are below 5 Å in the membrane region, NMR ensembles have a higher convergence in the membrane region, crystal structures typically have a straighter transmembrane region, have higher stereo-chemical correctness, and are more tightly packed. After quantifying these differences, we used high-resolution refinement of the NMR structures to mitigate them, which paves the way for identifying and improving the structural quality of membrane proteins.
Asunto(s)
Simulación por Computador , Cristalografía por Rayos X/métodos , Proteínas de la Membrana/química , Resonancia Magnética Nuclear Biomolecular/métodos , Algoritmos , Bases de Datos de Proteínas , Modelos Moleculares , Estructura Molecular , Conformación ProteicaRESUMEN
Single-cell sequencing has characterized cell state heterogeneity across diverse healthy and malignant tissues. However, the plasticity or heritability of these cell states remains largely unknown. To address this, we introduce PATH (phylogenetic analysis of trait heritability), a framework to quantify cell state heritability versus plasticity and infer cell state transition and proliferation dynamics from single-cell lineage tracing data. Applying PATH to a mouse model of pancreatic cancer, we observed heritability at the ends of the epithelial-to-mesenchymal transition spectrum, with higher plasticity at more intermediate states. In primary glioblastoma, we identified bidirectional transitions between stem- and mesenchymal-like cells, which use the astrocyte-like state as an intermediary. Finally, we reconstructed a phylogeny from single-cell whole-genome sequencing in B cell acute lymphoblastic leukemia and delineated the heritability of B cell differentiation states linked with genetic drivers. Altogether, PATH replaces qualitative conceptions of plasticity with quantitative measures, offering a framework to study somatic evolution.
Asunto(s)
Fenotipo , Animales , Ratones , Humanos , Transición Epitelial-Mesenquimal/genética , Linaje de la Célula/genética , Plasticidad de la Célula/genética , Diferenciación Celular/genética , Análisis de la Célula Individual/métodos , Filogenia , Glioblastoma/genética , Glioblastoma/patología , Linfocitos B/metabolismo , Linfocitos B/citologíaRESUMEN
Mammalian SWI/SNF (mSWI/SNF) adenosine triphosphate-dependent chromatin remodelers modulate genomic architecture and gene expression and are frequently mutated in disease. However, the specific chromatin features that govern their nucleosome binding and remodeling activities remain unknown. We subjected endogenously purified mSWI/SNF complexes and their constituent assembly modules to a diverse library of DNA-barcoded mononucleosomes, performing more than 25,000 binding and remodeling measurements. Here, we define histone modification-, variant-, and mutation-specific effects, alone and in combination, on mSWI/SNF activities and chromatin interactions. Further, we identify the combinatorial contributions of complex module components, reader domains, and nucleosome engagement properties to the localization of complexes to selectively permissive chromatin states. These findings uncover principles that shape the genomic binding and activity of a major chromatin remodeler complex family.
Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Nucleosomas/metabolismo , Factores de Transcripción/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Cromosómicas no Histona/química , Código de Histonas , Histonas/química , Histonas/metabolismo , Humanos , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Mutación , Nucleosomas/química , Unión Proteica , Dominios Proteicos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Factores de Transcripción/químicaRESUMEN
Interactions between chromatin-associated proteins and the histone landscape play major roles in dictating genome topology and gene expression. Cancer-specific fusion oncoproteins, which display unique chromatin localization patterns, often lack classical DNA-binding domains, presenting challenges in identifying mechanisms governing their site-specific chromatin targeting and function. Here we identify a minimal region of the human SS18-SSX fusion oncoprotein (the hallmark driver of synovial sarcoma) that mediates a direct interaction between the mSWI/SNF complex and the nucleosome acidic patch. This binding results in altered mSWI/SNF composition and nucleosome engagement, driving cancer-specific mSWI/SNF complex targeting and gene expression. Furthermore, the C-terminal region of SSX confers preferential affinity to repressed, H2AK119Ub-marked nucleosomes, underlying the selective targeting to polycomb-marked genomic regions and synovial sarcoma-specific dependency on PRC1 function. Together, our results describe a functional interplay between a key nucleosome binding hub and a histone modification that underlies the disease-specific recruitment of a major chromatin remodeling complex.
Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Histonas/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras/metabolismo , Sarcoma Sinovial/metabolismo , Factores de Transcripción/metabolismo , Ubiquitinas/metabolismo , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/química , Células HEK293 , Humanos , Modelos Moleculares , Proteínas de Neoplasias/química , Nucleosomas/metabolismo , Nucleosomas/patología , Proteínas de Fusión Oncogénica/química , Conformación Proteica , Proteínas Proto-Oncogénicas/química , Proteínas Represoras/química , Sarcoma Sinovial/patología , Factores de Transcripción/química , UbiquitinaciónRESUMEN
Mutations in ARID1A, a subunit of the SWI/SNF chromatin remodeling complex, are the most common alterations of the SWI/SNF complex in estrogen-receptor-positive (ER+) breast cancer. We identify that ARID1A inactivating mutations are present at a high frequency in advanced endocrine-resistant ER+ breast cancer. An epigenome CRISPR-CAS9 knockout (KO) screen identifies ARID1A as the top candidate whose loss determines resistance to the ER degrader fulvestrant. ARID1A inactivation in cells and in patients leads to resistance to ER degraders by facilitating a switch from ER-dependent luminal cells to ER-independent basal-like cells. Cellular plasticity is mediated by loss of ARID1A-dependent SWI/SNF complex targeting to genomic sites of the luminal lineage-determining transcription factors including ER, forkhead box protein A1 (FOXA1) and GATA-binding factor 3 (GATA3). ARID1A also regulates genome-wide ER-FOXA1 chromatin interactions and ER-dependent transcription. Altogether, we uncover a critical role for ARID1A in maintaining luminal cell identity and endocrine therapeutic response in ER+ breast cancer.
Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Proteínas de Unión al ADN/genética , Resistencia a Antineoplásicos/genética , Receptores de Estrógenos/metabolismo , Factores de Transcripción/genética , Animales , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Estudios de Casos y Controles , Línea Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Femenino , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/metabolismo , Factor Nuclear 3-alfa del Hepatocito/genética , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Humanos , Ratones , Mutación , Receptores de Estrógenos/genética , Factores de Transcripción/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Perturbations to mammalian switch/sucrose non-fermentable (mSWI/SNF) chromatin remodeling complexes have been widely implicated as driving events in cancer1. One such perturbation is the dual loss of the SMARCA4 and SMARCA2 ATPase subunits in small cell carcinoma of the ovary, hypercalcemic type (SCCOHT)2-5, SMARCA4-deficient thoracic sarcomas6 and dedifferentiated endometrial carcinomas7. However, the consequences of dual ATPase subunit loss on mSWI/SNF complex subunit composition, chromatin targeting, DNA accessibility and gene expression remain unknown. Here we identify an ATPase module of subunits that is required for functional specification of the Brahma-related gene-associated factor (BAF) and polybromo-associated BAF (PBAF) mSWI/SNF family subcomplexes. Using SMARCA4/2 ATPase mutant variants, we define the catalytic activity-dependent and catalytic activity-independent contributions of the ATPase module to the targeting of BAF and PBAF complexes on chromatin genome-wide. Finally, by linking distinct mSWI/SNF complex target sites to tumor-suppressive gene expression programs, we clarify the transcriptional consequences of SMARCA4/2 dual loss in SCCOHT.
Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas Cromosómicas no Histona/genética , Mamíferos/genética , Factores de Transcripción/genética , Animales , Catálisis , Cromatina/genética , Ensamble y Desensamble de Cromatina/genética , Genómica/métodosRESUMEN
Mammalian SWI/SNF chromatin remodelling complexes exist in three distinct, final-form assemblies: canonical BAF (cBAF), PBAF and a newly characterized non-canonical complex (ncBAF). However, their complex-specific targeting on chromatin, functions and roles in disease remain largely undefined. Here, we comprehensively mapped complex assemblies on chromatin and found that ncBAF complexes uniquely localize to CTCF sites and promoters. We identified ncBAF subunits as synthetic lethal targets specific to synovial sarcoma and malignant rhabdoid tumours, which both exhibit cBAF complex (SMARCB1 subunit) perturbation. Chemical and biological depletion of the ncBAF subunit, BRD9, rapidly attenuates synovial sarcoma and malignant rhabdoid tumour cell proliferation. Importantly, in cBAF-perturbed cancers, ncBAF complexes maintain gene expression at retained CTCF-promoter sites and function in a manner distinct from fusion oncoprotein-bound complexes. Together, these findings unmask the unique targeting and functional roles of ncBAF complexes and present new cancer-specific therapeutic targets.
Asunto(s)
Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Tumor Rabdoide/genética , Sarcoma Sinovial/genética , Factores de Transcripción/genética , Línea Celular Tumoral , Proliferación Celular/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , Células HEK293 , Humanos , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas/genética , Interferencia de ARN , Tumor Rabdoide/metabolismo , Sarcoma Sinovial/metabolismo , Factores de Transcripción/metabolismoRESUMEN
Synovial sarcoma (SS) is defined by the hallmark SS18-SSX fusion oncoprotein, which renders BAF complexes aberrant in two manners: gain of SSX to the SS18 subunit and concomitant loss of BAF47 subunit assembly. Here we demonstrate that SS18-SSX globally hijacks BAF complexes on chromatin to activate an SS transcriptional signature that we define using primary tumors and cell lines. Specifically, SS18-SSX retargets BAF complexes from enhancers to broad polycomb domains to oppose PRC2-mediated repression and activate bivalent genes. Upon suppression of SS18-SSX, reassembly of BAF47 restores enhancer activation, but is not required for proliferative arrest. These results establish a global hijacking mechanism for SS18-SSX on chromatin, and define the distinct contributions of two concurrent BAF complex perturbations.