Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Nature ; 620(7975): 890-897, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37558881

RESUMEN

Alveolar epithelial type 1 (AT1) cells are necessary to transfer oxygen and carbon dioxide between the blood and air. Alveolar epithelial type 2 (AT2) cells serve as a partially committed stem cell population, producing AT1 cells during postnatal alveolar development and repair after influenza A and SARS-CoV-2 pneumonia1-6. Little is known about the metabolic regulation of the fate of lung epithelial cells. Here we report that deleting the mitochondrial electron transport chain complex I subunit Ndufs2 in lung epithelial cells during mouse gestation led to death during postnatal alveolar development. Affected mice displayed hypertrophic cells with AT2 and AT1 cell features, known as transitional cells. Mammalian mitochondrial complex I, comprising 45 subunits, regenerates NAD+ and pumps protons. Conditional expression of yeast NADH dehydrogenase (NDI1) protein that regenerates NAD+ without proton pumping7,8 was sufficient to correct abnormal alveolar development and avert lethality. Single-cell RNA sequencing revealed enrichment of integrated stress response (ISR) genes in transitional cells. Administering an ISR inhibitor9,10 or NAD+ precursor reduced ISR gene signatures in epithelial cells and partially rescued lethality in the absence of mitochondrial complex I function. Notably, lung epithelial-specific loss of mitochondrial electron transport chain complex II subunit Sdhd, which maintains NAD+ regeneration, did not trigger high ISR activation or lethality. These findings highlight an unanticipated requirement for mitochondrial complex I-dependent NAD+ regeneration in directing cell fate during postnatal alveolar development by preventing pathological ISR induction.


Asunto(s)
Células Epiteliales Alveolares , Diferenciación Celular , Linaje de la Célula , Pulmón , Mitocondrias , Estrés Fisiológico , Animales , Ratones , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Pulmón/citología , Pulmón/metabolismo , Pulmón/patología , Mitocondrias/enzimología , Mitocondrias/metabolismo , NAD/metabolismo , NADH Deshidrogenasa/metabolismo , Protones , RNA-Seq , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Análisis de Expresión Génica de una Sola Célula
2.
Am J Respir Cell Mol Biol ; 66(5): 564-576, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35202558

RESUMEN

Epithelial polyploidization after injury is a conserved phenomenon recently shown to improve barrier restoration during wound healing. Whether lung injury can induce alveolar epithelial polyploidy is not known. We show that bleomycin injury induces alveolar type 2 cell (AT2) hypertrophy and polyploidy. AT2 polyploidization is also seen in short term ex vivo cultures, where AT2-to-AT1 transdifferentiation is associated with substantial binucleation due to failed cytokinesis. Both hypertrophic and polyploid features of AT2 cells can be attenuated by inhibiting the integrated stress response using the small molecule ISRIB. These data suggest that AT2 hypertrophic growth and polyploidization may be a feature of alveolar epithelial injury. Because AT2 cells serve as facultative progenitors for the distal lung epithelium, a propensity for injury-induced binucleation has implications for AT2 self-renewal and regenerative potential upon reinjury, which may benefit from targeting the integrated stress response.


Asunto(s)
Lesión Pulmonar , Células Epiteliales Alveolares/metabolismo , Diferenciación Celular , Humanos , Hipertrofia/metabolismo , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/genética , Lesión Pulmonar/metabolismo , Poliploidía
3.
J Membr Biol ; 254(5-6): 447-457, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34114062

RESUMEN

The Na,K-ATPase establishes the electrochemical gradient of cells by driving an active exchange of Na+ and K+ ions while consuming ATP. The minimal functional transporter consists of a catalytic α-subunit and a ß-subunit with chaperon activity. The Na,K-ATPase also functions as a cell adhesion molecule and participates in various intracellular signaling pathways. The maturation and trafficking of the Na,K-ATPase include co- and post-translational processing of the enzyme in the endoplasmic reticulum (ER) and the Golgi apparatus and subsequent delivery to the plasma membrane (PM). The ER folding of the enzyme is considered as the rate-limiting step in the membrane delivery of the protein. It has been demonstrated that only assembled Na,K-ATPase α:ß-complexes may exit the organelle, whereas unassembled, misfolded or unfolded subunits are retained in the ER and are subsequently degraded. Loss of function of the Na,K-ATPase has been associated with lung, heart, kidney and neurological disorders. Recently, it has been shown that ER dysfunction, in particular, alterations in the homeostasis of the organelle, as well as impaired ER-resident chaperone activity may impede folding of Na,K-ATPase subunits, thus decreasing the abundance and function of the enzyme at the PM. Here, we summarize our current understanding on maturation and subsequent processing of the Na,K-ATPase in the ER under physiological and pathophysiological conditions.


Asunto(s)
Retículo Endoplásmico , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Iones/metabolismo , Pliegue de Proteína , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
4.
J Immunol ; 202(2): 484-493, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30530483

RESUMEN

Muscle dysfunction is common in patients with adult respiratory distress syndrome and is associated with morbidity that can persist for years after discharge. In a mouse model of severe influenza A pneumonia, we found the proinflammatory cytokine IL-6 was necessary for the development of muscle dysfunction. Treatment with a Food and Drug Administration-approved Ab antagonist to the IL-6R (tocilizumab) attenuated the severity of influenza A-induced muscle dysfunction. In cultured myotubes, IL-6 promoted muscle degradation via JAK/STAT, FOXO3a, and atrogin-1 upregulation. Consistent with these findings, atrogin-1+/- and atrogin-1-/- mice had attenuated muscle dysfunction following influenza infection. Our data suggest that inflammatory endocrine signals originating from the injured lung activate signaling pathways in the muscle that induce dysfunction. Inhibiting these pathways may limit morbidity in patients with influenza A pneumonia and adult respiratory distress syndrome.


Asunto(s)
Virus de la Influenza A/fisiología , Gripe Humana/inmunología , Interleucina-6/metabolismo , Pulmón/fisiología , Proteínas Musculares/metabolismo , Músculos/patología , Infecciones por Orthomyxoviridae/inmunología , Neumonía Viral/inmunología , Proteínas Ligasas SKP Cullina F-box/metabolismo , Síndrome Debilitante/inmunología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Proteína Forkhead Box O3/metabolismo , Humanos , Interleucina-6/genética , Quinasas Janus/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Musculares/genética , Proteínas Ligasas SKP Cullina F-box/genética , Factores de Transcripción STAT/metabolismo , Transducción de Señal
5.
Proc Natl Acad Sci U S A ; 114(47): E10178-E10186, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29109255

RESUMEN

Organisms have evolved adaptive mechanisms in response to stress for cellular survival. During acute hypoxic stress, cells down-regulate energy-consuming enzymes such as Na,K-ATPase. Within minutes of alveolar epithelial cell (AEC) exposure to hypoxia, protein kinase C zeta (PKCζ) phosphorylates the α1-Na,K-ATPase subunit and triggers it for endocytosis, independently of the hypoxia-inducible factor (HIF). However, the Na,K-ATPase activity is essential for cell homeostasis. HIF induces the heme-oxidized IRP2 ubiquitin ligase 1L (HOIL-1L), which leads to PKCζ degradation. Here we report a mechanism of prosurvival adaptation of AECs to prolonged hypoxia where PKCζ degradation allows plasma membrane Na,K-ATPase stabilization at ∼50% of normoxic levels, preventing its excessive down-regulation and cell death. Mice lacking HOIL-1L in lung epithelial cells (CreSPC/HOIL-1Lfl/fl ) were sensitized to hypoxia because they express higher levels of PKCζ and, consequently, lower plasma membrane Na,K-ATPase levels, which increased cell death and worsened lung injury. In AECs, expression of an α1-Na,K-ATPase construct bearing an S18A (α1-S18A) mutation, which precludes PKCζ phosphorylation, stabilized the Na,K-ATPase at the plasma membrane and prevented hypoxia-induced cell death even in the absence of HOIL-1L. Adenoviral overexpression of the α1-S18A mutant Na,K-ATPase in vivo rescued the enhanced sensitivity of CreSPC/HOIL-1Lfl/fl mice to hypoxic lung injury. These data suggest that stabilization of Na,K-ATPase during severe hypoxia is a HIF-dependent process involving PKCζ degradation. Accordingly, we provide evidence of an important adaptive mechanism to severe hypoxia, whereby halting the exaggerated down-regulation of plasma membrane Na,K-ATPase prevents cell death and lung injury.


Asunto(s)
Proteínas Portadoras/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/patología , Lesión Pulmonar/patología , Proteína Quinasa C/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Células A549 , Animales , Apoptosis , Células COS , Proteínas Portadoras/genética , Hipoxia de la Célula , Membrana Celular/metabolismo , Chlorocebus aethiops , Regulación hacia Abajo , Endocitosis , Células Epiteliales/patología , Humanos , Hipoxia/complicaciones , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Lesión Pulmonar/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , Mutación , Fosforilación , Cultivo Primario de Células , Proteolisis , Alveolos Pulmonares/citología , Alveolos Pulmonares/patología , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , ATPasa Intercambiadora de Sodio-Potasio/genética
6.
Int J Mol Sci ; 21(4)2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32098115

RESUMEN

Alveolar edema, impaired alveolar fluid clearance, and elevated CO2 levels (hypercapnia) are hallmarks of the acute respiratory distress syndrome (ARDS). This study investigated how hypercapnia affects maturation of the Na,K-ATPase (NKA), a key membrane transporter, and a cell adhesion molecule involved in the resolution of alveolar edema in the endoplasmic reticulum (ER). Exposure of human alveolar epithelial cells to elevated CO2 concentrations caused a significant retention of NKA-ß in the ER and, thus, decreased levels of the transporter in the Golgi apparatus. These effects were associated with a marked reduction of the plasma membrane (PM) abundance of the NKA-α/ß complex as well as a decreased total and ouabain-sensitive ATPase activity. Furthermore, our study revealed that the ER-retained NKA-ß subunits were only partially assembled with NKA α-subunits, which suggests that hypercapnia modifies the ER folding environment. Moreover, we observed that elevated CO2 levels decreased intracellular ATP production and increased ER protein and, particularly, NKA-ß oxidation. Treatment with α-ketoglutaric acid (α-KG), which is a metabolite that has been shown to increase ATP levels and rescue mitochondrial function in hypercapnia-exposed cells, attenuated the deleterious effects of elevated CO2 concentrations and restored NKA PM abundance and function. Taken together, our findings provide new insights into the regulation of NKA in alveolar epithelial cells by elevated CO2 levels, which may lead to the development of new therapeutic approaches for patients with ARDS and hypercapnia.


Asunto(s)
Células Epiteliales Alveolares/enzimología , Dióxido de Carbono/metabolismo , Retículo Endoplásmico/enzimología , Hipercapnia/enzimología , Pliegue de Proteína , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Células A549 , Células Epiteliales Alveolares/patología , Animales , Retículo Endoplásmico/patología , Humanos , Hipercapnia/patología , Ratas
7.
J Cell Sci ; 129(12): 2394-406, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27142834

RESUMEN

FXYD5 (also known as dysadherin), a regulatory subunit of the Na,K-ATPase, impairs intercellular adhesion by a poorly understood mechanism. Here, we determined whether FXYD5 disrupts the trans-dimerization of Na,K-ATPase molecules located in neighboring cells. Mutagenesis of the Na,K-ATPase ß1 subunit identified four conserved residues, including Y199, that are crucial for the intercellular Na,K-ATPase trans-dimerization and adhesion. Modulation of expression of FXYD5 or of the ß1 subunit with intact or mutated ß1-ß1 binding sites demonstrated that the anti-adhesive effect of FXYD5 depends on the presence of Y199 in the ß1 subunit. Immunodetection of the plasma membrane FXYD5 was prevented by the presence of O-glycans. Partial FXYD5 deglycosylation enabled antibody binding and showed that the protein level and the degree of O-glycosylation were greater in cancer than in normal cells. FXYD5-induced impairment of adhesion was abolished by both genetic and pharmacological inhibition of FXYD5 O-glycosylation. Therefore, the extracellular O-glycosylated domain of FXYD5 impairs adhesion by interfering with intercellular ß1-ß1 interactions, suggesting that the ratio between FXYD5 and α1-ß1 heterodimer determines whether the Na,K-ATPase acts as a positive or negative regulator of intercellular adhesion.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Multimerización de Proteína , Subunidades de Proteína/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Células A549 , Aminoácidos/metabolismo , Animales , Especificidad de Anticuerpos , Adhesión Celular , Línea Celular Tumoral , Membrana Celular/metabolismo , Perros , Células Epiteliales/metabolismo , Técnicas de Silenciamiento del Gen , Glicosilación , Células HEK293 , Humanos , Canales Iónicos , Células de Riñón Canino Madin Darby , Ratones , Proteínas de Microfilamentos , Unión Proteica , Subunidades de Proteína/química , Ratas , ATPasa Intercambiadora de Sodio-Potasio/química
8.
J Biol Chem ; 291(21): 11072-82, 2016 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-27006401

RESUMEN

The FXYD proteins are a family of small membrane proteins that share an invariant four amino acid signature motif F-X-Y-D and act as tissue-specific regulatory subunits of the Na,K-ATPase. FXYD5 (also termed dysadherin or RIC) is a structurally and functionally unique member of the FXYD family. As other FXYD proteins, FXYD5 specifically interacts with the Na,K-ATPase and alters its kinetics by increasing Vmax However, unlike other family members FXYD5 appears to have additional functions, which cannot be readily explained by modulation of transport kinetics. Knockdown of FXYD5 in MDA-MB-231 breast cancer cells largely decreases expression and secretion of the chemokine CCL2 (MCP-1). A related effect has also been observed in renal cell carcinoma cells. The current study aims to further characterize the relationship between the expression of FXYD5 and CCL2 secretion. We demonstrate that transfection of M1 epithelial cell line with FXYD5 largely increases lipopolysaccharide (LPS) stimulated CCL2 mRNA and secretion of the translated protein. We have completed a detailed analysis of the molecular events leading to the above response. Our key findings indicate that FXYD5 generates a late response by increasing the surface expression of the TNFα receptor, without affecting its total protein level, or mRNA transcription. LPS administration to mice demonstrates induced secretion of CCL2 and TNFα in FXYD5-expressing lung peripheral tissue, which suggests a possible role for FXYD5 in normal epithelia during inflammation.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Células Epiteliales/metabolismo , Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Mediadores de Inflamación/metabolismo , Canales Iónicos , Cinética , Lipopolisacáridos/farmacología , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/genética , Ratones , Proteínas de Microfilamentos , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores del Factor de Necrosis Tumoral/genética , Receptores del Factor de Necrosis Tumoral/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal/efectos de los fármacos
9.
J Biol Chem ; 291(44): 23159-23174, 2016 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-27624940

RESUMEN

The Na,K-ATPase α2 subunit plays a key role in cardiac muscle contraction by regulating intracellular Ca2+, whereas α1 has a more conventional role of maintaining ion homeostasis. The ß subunit differentially regulates maturation, trafficking, and activity of α-ß heterodimers. It is not known whether the distinct role of α2 in the heart is related to selective assembly with a particular one of the three ß isoforms. We show here by immunofluorescence and co-immunoprecipitation that α2 is preferentially expressed with ß2 in T-tubules of cardiac myocytes, forming α2ß2 heterodimers. We have expressed human α1ß1, α2ß1, α2ß2, and α2ß3 in Pichia pastoris, purified the complexes, and compared their functional properties. α2ß2 and α2ß3 differ significantly from both α2ß1 and α1ß1 in having a higher K0.5K+ and lower K0.5Na+ for activating Na,K-ATPase. These features are the result of a large reduction in binding affinity for extracellular K+ and shift of the E1P-E2P conformational equilibrium toward E1P. A screen of perhydro-1,4-oxazepine derivatives of digoxin identified several derivatives (e.g. cyclobutyl) with strongly increased selectivity for inhibition of α2ß2 and α2ß3 over α1ß1 (range 22-33-fold). Molecular modeling suggests a possible basis for isoform selectivity. The preferential assembly, specific T-tubular localization, and low K+ affinity of α2ß2 could allow an acute response to raised ambient K+ concentrations in physiological conditions and explain the importance of α2ß2 for cardiac muscle contractility. The high sensitivity of α2ß2 to digoxin derivatives explains beneficial effects of cardiac glycosides for treatment of heart failure and potential of α2ß2-selective digoxin derivatives for reducing cardiotoxicity.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Transporte de Catión/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Inhibidores Enzimáticos/química , Miocardio/enzimología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/química , Animales , Proteínas de Transporte de Catión/antagonistas & inhibidores , Proteínas de Transporte de Catión/química , Moléculas de Adhesión Celular Neuronal/antagonistas & inhibidores , Moléculas de Adhesión Celular Neuronal/química , Dimerización , Inhibidores Enzimáticos/metabolismo , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Ratones , Miocardio/química , Potasio/química , Potasio/metabolismo , Sodio/química , Sodio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , ATPasa Intercambiadora de Sodio-Potasio/química , ATPasa Intercambiadora de Sodio-Potasio/genética
10.
Am J Respir Cell Mol Biol ; 54(6): 761-8, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26848516

RESUMEN

The covalent attachment of ubiquitin to target proteins is one of the most prevalent post-translational modifications, regulating a myriad of cellular processes including cell growth, survival, and metabolism. Recently, a novel RING E3 ligase complex was described, called linear ubiquitin assembly complex (LUBAC), which is capable of connecting ubiquitin molecules in a novel head-to-tail fashion via the N-terminal methionine residue. LUBAC is a heteromeric complex composed of heme-oxidized iron-responsive element-binding protein 2 ubiquitin ligase-1L (HOIL-1L), HOIL-1L-interacting protein, and shank-associated RH domain-interacting protein (SHARPIN). The essential role of LUBAC-generated linear chains for activation of nuclear factor-κB (NF-κB) signaling was first described in the activation of tumor necrosis factor-α receptor signaling complex. A decade of research has identified additional pathways that use LUBAC for downstream signaling, including CD40 ligand and the IL-1ß receptor, as well as cytosolic pattern recognition receptors including nucleotide-binding oligomerization domain containing 2 (NOD2), retinoic acid-inducible gene 1 (RIG-1), and the NOD-like receptor family, pyrin domain containing 3 inflammasome (NLRP3). Even though the three components of the complex are required for full activation of NF-κB, the individual components of LUBAC regulate specific cell type- and stimuli-dependent effects. In humans, autosomal defects in LUBAC are associated with both autoinflammation and immunodeficiency, with additional disorders described in mice. Moreover, in the lung epithelium, HOIL-1L ubiquitinates target proteins independently of the other LUBAC components, adding another layer of complexity to the function and regulation of LUBAC. Although many advances have been made, the diverse functions of linear ubiquitin chains and the regulation of LUBAC are not yet completely understood. In this review, we discuss the various roles of linear ubiquitin chains and point to areas of study that would benefit from further investigation into LUBAC-mediated signaling pathways in lung pathophysiology.


Asunto(s)
Enfermedad , Salud , Ubiquitinación , Animales , Humanos , Pulmón/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo
11.
J Biol Chem ; 290(9): 5280-97, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25575596

RESUMEN

Septins are a family of 14 cytoskeletal proteins that dynamically form hetero-oligomers and organize membrane microdomains for protein complexes. The previously reported interactions with SNARE proteins suggested the involvement of septins in exocytosis. However, the contradictory results of up- or down-regulation of septin-5 in various cells and mouse models or septin-4 in mice suggested either an inhibitory or a stimulatory role for these septins in exocytosis. The involvement of the ubiquitously expressed septin-2 or general septin polymerization in exocytosis has not been explored to date. Here, by nano-LC with tandem MS and immunoblot analyses of the septin-2 interactome in mouse brain, we identified not only SNARE proteins but also Munc-18-1 (stabilizes assembled SNARE complexes), N-ethylmaleimide-sensitive factor (NSF) (disassembles SNARE complexes after each membrane fusion event), and the chaperones Hsc70 and synucleins (maintain functional conformation of SNARE proteins after complex disassembly). Importantly, α-soluble NSF attachment protein (SNAP), the adaptor protein that mediates NSF binding to the SNARE complex, did not interact with septin-2, indicating that septins undergo reorganization during each exocytosis cycle. Partial depletion of septin-2 by siRNA or impairment of septin dynamics by forchlorfenuron inhibited constitutive and stimulated exocytosis of secreted and transmembrane proteins in various cell types. Forchlorfenuron impaired the interaction between SNAP-25 and its chaperone Hsc70, decreasing SNAP-25 levels in cultured neuroendocrine cells, and inhibited both spontaneous and stimulated acetylcholine secretion in mouse motor neurons. The results demonstrate a stimulatory role of septin-2 and the dynamic reorganization of septin oligomers in exocytosis.


Asunto(s)
Encéfalo/metabolismo , Exocitosis , Proteoma/metabolismo , Septinas/metabolismo , Animales , Western Blotting , Encéfalo/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Perros , Femenino , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby , Masculino , Ratones Endogámicos BALB C , Microscopía Confocal , Células PC12 , Compuestos de Fenilurea/farmacología , Unión Proteica/efectos de los fármacos , Multimerización de Proteína , Proteómica , Piridinas/farmacología , Interferencia de ARN , Ratas , Septinas/química , Septinas/genética , Proteína 25 Asociada a Sinaptosomas/metabolismo
12.
J Biol Chem ; 290(14): 9183-94, 2015 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-25691571

RESUMEN

Patients with chronic obstructive pulmonary disease, acute lung injury, and critical care illness may develop hypercapnia. Many of these patients often have muscle dysfunction which increases morbidity and impairs their quality of life. Here, we investigated whether hypercapnia leads to skeletal muscle atrophy. Mice exposed to high CO2 had decreased skeletal muscle wet weight, fiber diameter, and strength. Cultured myotubes exposed to high CO2 had reduced fiber diameter, protein/DNA ratios, and anabolic capacity. High CO2 induced the expression of MuRF1 in vivo and in vitro, whereas MuRF1(-/-) mice exposed to high CO2 did not develop muscle atrophy. AMP-activated kinase (AMPK), a metabolic sensor, was activated in myotubes exposed to high CO2, and loss-of-function studies showed that the AMPKα2 isoform is necessary for muscle-specific ring finger protein 1 (MuRF1) up-regulation and myofiber size reduction. High CO2 induced AMPKα2 activation, triggering the phosphorylation and nuclear translocation of FoxO3a, and leading to an increase in MuRF1 expression and myotube atrophy. Accordingly, we provide evidence that high CO2 activates skeletal muscle atrophy via AMPKα2-FoxO3a-MuRF1, which is of biological and potentially clinical significance in patients with lung diseases and hypercapnia.


Asunto(s)
Adenilato Quinasa/metabolismo , Dióxido de Carbono/metabolismo , Factores de Transcripción Forkhead/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/etiología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Secuencia de Bases , Línea Celular , Cartilla de ADN , Proteína Forkhead Box O3 , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas de Motivos Tripartitos , Regulación hacia Arriba
14.
Am J Respir Crit Care Med ; 190(6): 688-98, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25118570

RESUMEN

RATIONALE: Protein kinase C zeta (PKCζ) has been reported to act as a tumor suppressor. Deletion of PKCζ in experimental cancer models has been shown to increase tumor growth. However, the mechanisms of PKCζ down-regulation in cancerous cells have not been previously described. OBJECTIVES: To determine the molecular mechanisms that lead to decreased PKCζ expression and thus increased survival in cancer cells and tumor growth. METHODS: The levels of expression of heme-oxidized IRP2 ubiquitin ligase 1L (HOIL-1L), HOIL-1-interacting protein (HOIP), Shank-associated RH domain-interacting protein (SHARPIN), and PKCζ were analyzed by Western blot and/or quantitative real-time polymerase chain reaction in different cell lines. Coimmunoprecipitation experiments were used to demonstrate the interaction between HOIL-1L and PKCζ. Ubiquitination was measured in an in vitro ubiquitination assay and by Western blot with specific antibodies. The role of hypoxia-inducible factor (HIF) was determined by gain/loss-of-function experiments. The effect of HOIL-1L expression on cell death was investigated using RNA interference approaches in vitro and on tumor growth in mice models. Increased HOIL-1L and decreased PKCζ expression was assessed in lung adenocarcinoma and glioblastoma multiforme and documented in several other cancer types by oncogenomic analysis. MEASUREMENTS AND MAIN RESULTS: Hypoxia is a hallmark of rapidly growing solid tumors. We found that during hypoxia, PKCζ is ubiquitinated and degraded via the ubiquitin ligase HOIL-1L, a component of the linear ubiquitin chain assembly complex (LUBAC). In vitro ubiquitination assays indicate that HOIL-1L ubiquitinates PKCζ at Lys-48, targeting it for proteasomal degradation. In a xenograft tumor model and lung cancer model, we found that silencing of HOIL-1L increased the abundance of PKCζ and decreased the size of tumors, suggesting that lower levels of HOIL-1L promote survival. Indeed, mRNA transcript levels of HOIL-1L were elevated in tumor of patients with lung adenocarcinoma, and in a lung adenocarcinoma tissue microarray the levels of HOIL-1L were associated with high-grade tumors. Moreover, we found that HOIL-1L expression was regulated by HIFs. Interestingly, the actions of HOIL-1L were independent of LUBAC. CONCLUSIONS: These data provide first evidence of a mechanism of cancer cell adaptation to hypoxia where HIFs regulate HOIL-1L, which targets PKCζ for degradation to promote tumor survival. We provided a proof of concept that silencing of HOIL-1L impairs lung tumor growth and that HOIL-1L expression predicts survival rate in cancer patients suggesting that HOIL-1L is an attractive target for cancer therapy.


Asunto(s)
Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Línea Celular Tumoral/metabolismo , Glioblastoma/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Proteína Quinasa C/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Adenocarcinoma del Pulmón , Animales , Hipoxia de la Célula/fisiología , Proliferación Celular/fisiología , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Proteína Quinasa C/genética , Factores de Transcripción , Ubiquitinación/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto
15.
J Cell Sci ; 125(Pt 6): 1605-16, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22328500

RESUMEN

Epithelial junctions depend on intercellular interactions between ß(1) subunits of the Na(+)/K(+)-ATPase molecules of neighboring cells. The interaction between dog and rat subunits is less effective than the interaction between two dog ß(1) subunits, indicating the importance of species-specific regions for ß(1)-ß(1) binding. To identify these regions, the species-specific amino acid residues were mapped on a high-resolution structure of the Na(+)/K(+)-ATPase ß(1) subunit to select those exposed towards the ß(1) subunit of the neighboring cell. These exposed residues were mutated in both dog and rat YFP-linked ß(1) subunits (YFP-ß(1)) and also in the secreted extracellular domain of the dog ß(1) subunit. Five rat-like mutations in the amino acid region spanning residues 198-207 of the dog YFP-ß(1) expressed in Madin-Darby canine kidney (MDCK) cells decreased co-precipitation of the endogenous dog ß(1) subunit with YFP-ß(1) to the level observed between dog ß(1) and rat YFP-ß(1). In parallel, these mutations impaired the recognition of YFP-ß(1) by the dog-specific antibody that inhibits cell adhesion between MDCK cells. Accordingly, dog-like mutations in rat YFP-ß(1) increased both the (YFP-ß(1))-ß(1) interaction in MDCK cells and recognition by the antibody. Conversely, rat-like mutations in the secreted extracellular domain of the dog ß(1) subunit increased its interaction with rat YFP-ß(1) in vitro. In addition, these mutations resulted in a reduction of intercellular adhesion between rat lung epithelial cells following addition of the secreted extracellular domain of the dog ß(1) subunit to a cell suspension. Therefore, the amino acid region 198-207 is crucial for both trans-dimerization of the Na(+)/K(+)-ATPase ß(1) subunits and cell-cell adhesion.


Asunto(s)
Comunicación Celular/fisiología , Células Epiteliales/enzimología , ATPasa Intercambiadora de Sodio-Potasio/química , ATPasa Intercambiadora de Sodio-Potasio/fisiología , Secuencia de Aminoácidos , Aminoácidos/química , Aminoácidos/genética , Aminoácidos/fisiología , Animales , Línea Celular , Perros , Células Epiteliales/citología , Datos de Secuencia Molecular , Multimerización de Proteína , Estructura Terciaria de Proteína/genética , Ratas , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
17.
Proc Natl Acad Sci U S A ; 107(30): 13444-9, 2010 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-20624960

RESUMEN

The zinc finger transcription factor Miz1 is a negative regulator of TNFalpha-induced JNK activation and cell death through inhibition of TRAF2 K63-polyubiquitination in a transcription-independent manner. Upon TNFalpha stimulation, Miz1 undergoes K48-linked polyubiquitination and proteasomal degradation, thereby relieving its inhibition. However, the underling regulatory mechanism is not known. Here, we report that HECT-domain-containing Mule is the E3 ligase that catalyzes TNFalpha-induced Miz1 polyubiquitination. Mule is a Miz1-associated protein and catalyzes its K48-linked polyubiquitination. TNFalpha-induced polyubiquitination and degradation of Miz1 were inhibited by silencing of Mule and were promoted by ectopic expression of Mule. The interaction between Mule and Miz1 was promoted by TNFalpha independently of the pox virus and zinc finger domain of Miz1. Silencing of Mule stabilized Miz1, thereby suppressing TNFalpha-induced JNK activation and cell death. Thus, our study reveals a molecular mechanism by which Mule regulates TNFalpha-induced JNK activation and apoptosis by catalyzing the polyubiquitination of Miz1.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Inhibidoras de STAT Activados/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Activación Enzimática/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Immunoblotting , Inmunoprecipitación , Ratones , Ratones Noqueados , Proteínas Nucleares/genética , Unión Proteica/efectos de los fármacos , Proteínas Inhibidoras de STAT Activados/genética , Interferencia de ARN , Transfección , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/efectos de los fármacos
18.
JCI Insight ; 8(4)2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36626234

RESUMEN

Persistent symptoms and radiographic abnormalities suggestive of failed lung repair are among the most common symptoms in patients with COVID-19 after hospital discharge. In mechanically ventilated patients with acute respiratory distress syndrome (ARDS) secondary to SARS-CoV-2 pneumonia, low tidal volumes to reduce ventilator-induced lung injury necessarily elevate blood CO2 levels, often leading to hypercapnia. The role of hypercapnia on lung repair after injury is not completely understood. Here - using a mouse model of hypercapnia exposure, cell lineage tracing, spatial transcriptomics, and 3D cultures - we show that hypercapnia limits ß-catenin signaling in alveolar type II (AT2) cells, leading to their reduced proliferative capacity. Hypercapnia alters expression of major Wnts in PDGFRα+ fibroblasts from those maintaining AT2 progenitor activity toward those that antagonize ß-catenin signaling, thereby limiting progenitor function. Constitutive activation of ß-catenin signaling in AT2 cells or treatment of organoid cultures with recombinant WNT3A protein bypasses the inhibitory effects of hypercapnia. Inhibition of AT2 proliferation in patients with hypercapnia may contribute to impaired lung repair after injury, preventing sealing of the epithelial barrier and increasing lung flooding, ventilator dependency, and mortality.


Asunto(s)
Hipercapnia , Vía de Señalización Wnt , Ratones , beta Catenina/metabolismo , Proliferación Celular , COVID-19/complicaciones , Hipercapnia/metabolismo , Animales
19.
Am J Physiol Cell Physiol ; 302(9): C1271-81, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22277755

RESUMEN

The ion gradients generated by the Na-K-ATPase play a critical role in epithelia by driving transepithelial transport of various solutes. The efficiency of this Na-K-ATPase-driven vectorial transport depends on the integrity of epithelial junctions that maintain polar distribution of membrane transporters, including the basolateral sodium pump, and restrict paracellular diffusion of solutes. The review summarizes the data showing that, in addition to pumping ions, the Na-K-ATPase located at the sites of cell-cell junction acts as a cell adhesion molecule by interacting with the Na-K-ATPase of the adjacent cell in the intercellular space accompanied by anchoring to the cytoskeleton in the cytoplasm. The review also discusses the experimental evidence on the importance of a specific amino acid region in the extracellular domain of the Na-K-ATPase ß(1) subunit for the Na-K-ATPase trans-dimerization and intercellular adhesion. Furthermore, a possible role of N-glycans linked to the Na-K-ATPase ß(1) subunit in regulation of epithelial junctions by modulating ß(1)-ß(1) interactions is discussed.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Células Epiteliales/metabolismo , Multimerización de Proteína , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Moléculas de Adhesión Celular/química , Células Epiteliales/química , Humanos , Uniones Intercelulares/química , Uniones Intercelulares/metabolismo , Estructura Cuaternaria de Proteína , ATPasa Intercambiadora de Sodio-Potasio/química
20.
J Cell Sci ; 123(Pt 8): 1343-51, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20332111

RESUMEN

Stimulation of Na(+)/K(+)-ATPase translocation to the cell surface increases active Na(+) transport, which is the driving force of alveolar fluid reabsorption, a process necessary to keep the lungs free of edema and to allow normal gas exchange. Here, we provide evidence that insulin increases alveolar fluid reabsorption and Na(+)/K(+)-ATPase activity by increasing its translocation to the plasma membrane in alveolar epithelial cells. Insulin-induced Akt activation is necessary and sufficient to promote Na(+)/K(+)-ATPase translocation to the plasma membrane. Phosphorylation of AS160 by Akt is also required in this process, whereas inactivation of the Rab GTPase-activating protein domain of AS160 promotes partial Na(+)/K(+)-ATPase translocation in the absence of insulin. We found that Rab10 functions as a downstream target of AS160 in insulin-induced Na(+)/K(+)-ATPase translocation. Collectively, these results suggest that Akt plays a major role in Na(+)/K(+)-ATPase intracellular translocation and thus in alveolar fluid reabsorption.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/enzimología , Membrana Celular/efectos de los fármacos , Membrana Celular/enzimología , Insulina/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Líquidos Corporales/efectos de los fármacos , Líquidos Corporales/enzimología , Bovinos , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/enzimología , Proteínas de Unión al GTP rab/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA