Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 183(3): 771-785.e12, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33125892

RESUMEN

Trained innate immunity, induced via modulation of mature myeloid cells or their bone marrow progenitors, mediates sustained increased responsiveness to secondary challenges. Here, we investigated whether anti-tumor immunity can be enhanced through induction of trained immunity. Pre-treatment of mice with ß-glucan, a fungal-derived prototypical agonist of trained immunity, resulted in diminished tumor growth. The anti-tumor effect of ß-glucan-induced trained immunity was associated with transcriptomic and epigenetic rewiring of granulopoiesis and neutrophil reprogramming toward an anti-tumor phenotype; this process required type I interferon signaling irrespective of adaptive immunity in the host. Adoptive transfer of neutrophils from ß-glucan-trained mice to naive recipients suppressed tumor growth in the latter in a ROS-dependent manner. Moreover, the anti-tumor effect of ß-glucan-induced trained granulopoiesis was transmissible by bone marrow transplantation to recipient naive mice. Our findings identify a novel and therapeutically relevant anti-tumor facet of trained immunity involving appropriate rewiring of granulopoiesis.


Asunto(s)
Granulocitos/inmunología , Inmunidad Innata , Neoplasias/inmunología , Inmunidad Adaptativa , Traslado Adoptivo , Animales , Epigénesis Genética , Interferón Tipo I/metabolismo , Ratones Endogámicos C57BL , Monocitos/metabolismo , Neoplasias/patología , Neutrófilos/metabolismo , Fenotipo , Receptor de Interferón alfa y beta/deficiencia , Receptor de Interferón alfa y beta/metabolismo , Transcripción Genética , Transcriptoma/genética , beta-Glucanos/metabolismo
2.
Cell ; 172(1-2): 147-161.e12, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29328910

RESUMEN

Trained innate immunity fosters a sustained favorable response of myeloid cells to a secondary challenge, despite their short lifespan in circulation. We thus hypothesized that trained immunity acts via modulation of hematopoietic stem and progenitor cells (HSPCs). Administration of ß-glucan (prototypical trained-immunity-inducing agonist) to mice induced expansion of progenitors of the myeloid lineage, which was associated with elevated signaling by innate immune mediators, such as IL-1ß and granulocyte-macrophage colony-stimulating factor (GM-CSF), and with adaptations in glucose metabolism and cholesterol biosynthesis. The trained-immunity-related increase in myelopoiesis resulted in a beneficial response to secondary LPS challenge and protection from chemotherapy-induced myelosuppression in mice. Therefore, modulation of myeloid progenitors in the bone marrow is an integral component of trained immunity, which to date, was considered to involve functional changes of mature myeloid cells in the periphery.


Asunto(s)
Inmunidad Innata , Memoria Inmunológica , Células Progenitoras Mieloides/inmunología , Animales , Células Cultivadas , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Interleucina-1beta/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Células Progenitoras Mieloides/efectos de los fármacos , Mielopoyesis/inmunología , beta-Glucanos/farmacología
3.
PLoS Biol ; 22(2): e3002517, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38422172

RESUMEN

A subpopulation of deeply quiescent, so-called dormant hematopoietic stem cells (dHSCs) resides at the top of the hematopoietic hierarchy and serves as a reserve pool for HSCs. The state of dormancy protects the HSC pool from exhaustion throughout life; however, excessive dormancy may prevent an efficient response to hematological stresses. Despite the significance of dHSCs, the mechanisms maintaining their dormancy remain elusive. Here, we identify CD38 as a novel and broadly applicable surface marker for the enrichment of murine dHSCs. We demonstrate that cyclic adenosine diphosphate ribose (cADPR), the product of CD38 cyclase activity, regulates the expression of the transcription factor c-Fos by increasing the release of Ca2+ from the endoplasmic reticulum (ER). Subsequently, we uncover that c-Fos induces the expression of the cell cycle inhibitor p57Kip2 to drive HSC dormancy. Moreover, we found that CD38 ecto-enzymatic activity at the neighboring CD38-positive cells can promote human HSC quiescence. Together, CD38/cADPR/Ca2+/c-Fos/p57Kip2 axis maintains HSC dormancy. Pharmacological manipulations of this pathway can provide new strategies to improve the success of stem cell transplantation and blood regeneration after injury or disease.


Asunto(s)
ADP-Ribosil Ciclasa 1 , ADP-Ribosa Cíclica , Animales , Humanos , Ratones , Calcio/metabolismo , ADP-Ribosa Cíclica/metabolismo , Células Madre Hematopoyéticas , ADP-Ribosil Ciclasa 1/metabolismo , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(14): e2213880120, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36976765

RESUMEN

Left-right asymmetry is an important organizing feature of the healthy brain that may be altered in schizophrenia, but most studies have used relatively small samples and heterogeneous approaches, resulting in equivocal findings. We carried out the largest case-control study of structural brain asymmetries in schizophrenia, with MRI data from 5,080 affected individuals and 6,015 controls across 46 datasets, using a single image analysis protocol. Asymmetry indexes were calculated for global and regional cortical thickness, surface area, and subcortical volume measures. Differences of asymmetry were calculated between affected individuals and controls per dataset, and effect sizes were meta-analyzed across datasets. Small average case-control differences were observed for thickness asymmetries of the rostral anterior cingulate and the middle temporal gyrus, both driven by thinner left-hemispheric cortices in schizophrenia. Analyses of these asymmetries with respect to the use of antipsychotic medication and other clinical variables did not show any significant associations. Assessment of age- and sex-specific effects revealed a stronger average leftward asymmetry of pallidum volume between older cases and controls. Case-control differences in a multivariate context were assessed in a subset of the data (N = 2,029), which revealed that 7% of the variance across all structural asymmetries was explained by case-control status. Subtle case-control differences of brain macrostructural asymmetry may reflect differences at the molecular, cytoarchitectonic, or circuit levels that have functional relevance for the disorder. Reduced left middle temporal cortical thickness is consistent with altered left-hemisphere language network organization in schizophrenia.


Asunto(s)
Esquizofrenia , Masculino , Femenino , Humanos , Esquizofrenia/diagnóstico por imagen , Estudios de Casos y Controles , Encéfalo/diagnóstico por imagen , Corteza Cerebral , Imagen por Resonancia Magnética/métodos , Lateralidad Funcional
5.
Plant Physiol ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743690

RESUMEN

Veraison marks the transition from berry growth to berry ripening and is a crucial phenological stage in grapevine (Vitis vinifera): the berries become soft and begin to accumulate sugars, aromatic substances, and, in red cultivars, anthocyanins for pigmentation, while the organic acid levels begin to decrease. These changes determine the potential quality of wine. However, rising global temperatures lead to earlier flowering and ripening, which strongly influence wine quality. Here, we combined genotyping-by-sequencing with a bioinformatics pipeline on ∼150 F1 genotypes derived from a cross between the early ripening variety 'Calardis Musqué' and the late-ripening variety 'Villard Blanc'. Starting from 20,410 haplotype-based markers, we generated a high-density genetic map and performed a quantitative trait locus analysis based on phenotypic datasets evaluated over 20 years. Through locus-specific-marker-enrichment and recombinant screening of ∼1000 additional genotypes, we refined the originally postulated 5 Mb veraison locus, Ver1, on chromosome 16 to only 112 kb, allowing us to pinpoint the ethylene response factor (ERF) VviERF027 (VCost.v3 gene ID: Vitvi16g00942, CRIBIv1 gene ID: VIT_16s0100g00400) as veraison candidate gene. Furthermore, the early veraison allele could be traced back to a clonal 'Pinot' variant first mentioned in the 17th century. 'Pinot Precoce Noir' passed this allele over 'Madeleine Royale' to the maternal grandparent 'Bacchus Weiss' and, ultimately, to the maternal parent 'Calardis Musqué'. Our findings are crucial for ripening time control, thereby improving wine quality, and for breeding grapevines adjusted to climate change scenarios that have a major impact on agro-ecosystems in altering crop plant phenology.

6.
Mol Cancer ; 23(1): 39, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38378518

RESUMEN

BACKGROUND: Focal adhesion signaling involving receptor tyrosine kinases (RTK) and integrins co-controls cancer cell survival and therapy resistance. However, co-dependencies between these receptors and therapeutically exploitable vulnerabilities remain largely elusive in HPV-negative head and neck squamous cell carcinoma (HNSCC). METHODS: The cytotoxic and radiochemosensitizing potential of targeting 10 RTK and ß1 integrin was determined in up to 20 3D matrix-grown HNSCC cell models followed by drug screening and patient-derived organoid validation. RNA sequencing and protein-based biochemical assays were performed for molecular characterization. Bioinformatically identified transcriptomic signatures were applied to patient cohorts. RESULTS: Fibroblast growth factor receptor (FGFR 1-4) targeting exhibited the strongest cytotoxic and radiosensitizing effects as monotherapy and combined with ß1 integrin inhibition, exceeding the efficacy of the other RTK studied. Pharmacological pan-FGFR inhibition elicited responses ranging from cytotoxicity/radiochemosensitization to resistance/radiation protection. RNA sequence analysis revealed a mesenchymal-to-epithelial transition (MET) in sensitive cell models, whereas resistant cell models exhibited a partial epithelial-to-mesenchymal transition (EMT). Accordingly, inhibition of EMT-associated kinases such as EGFR caused reduced adaptive resistance and enhanced (radio)sensitization to FGFR inhibition cell model- and organoid-dependently. Transferring the EMT-associated transcriptomic profiles to HNSCC patient cohorts not only demonstrated their prognostic value but also provided a conclusive validation of the presence of EGFR-related vulnerabilities that can be strategically exploited for therapeutic interventions. CONCLUSIONS: This study demonstrates that pan-FGFR inhibition elicits a beneficial radiochemosensitizing and a detrimental radioprotective potential in HNSCC cell models. Adaptive EMT-associated resistance appears to be of clinical importance, and we provide effective molecular approaches to exploit this therapeutically.


Asunto(s)
Antineoplásicos , Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética , Integrina beta1/genética , Línea Celular Tumoral , Proteínas Tirosina Quinasas Receptoras/genética , Antineoplásicos/uso terapéutico , Receptores ErbB/metabolismo , Fenotipo , Transición Epitelial-Mesenquimal/genética
7.
Int J Cancer ; 154(6): 1057-1072, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38078628

RESUMEN

About 25% of melanoma harbor activating NRAS mutations, which are associated with aggressive disease therefore requiring a rapid antitumor intervention. However, no efficient targeted therapy options are currently available for patients with NRAS-mutant melanoma. MEK inhibitors (MEKi) appear to display a moderate antitumor activity and also immunological effects in NRAS-mutant melanoma, providing an ideal backbone for combination treatments. In our study, the MEKi binimetinib, cobimetinib and trametinib combined with the BRAF inhibitors (BRAFi) encorafenib, vemurafenib and dabrafenib were investigated for their ability to inhibit proliferation, induce apoptosis and alter the expression of immune modulatory molecules in sensitive NRAS-mutant melanoma cells using two- and three-dimensional cell culture models as well as RNA sequencing analyses. Furthermore, NRAS-mutant melanoma cells resistant to the three BRAFi/MEKi combinations were established to characterize the mechanisms contributing to their resistance. All BRAFi induced a stress response in the sensitive NRAS-mutant melanoma cells thereby significantly enhancing the antiproliferative and proapoptotic activity of the MEKi analyzed. Furthermore, BRAFi/MEKi combinations upregulated immune relevant molecules, such as ICOS-L, components of antigen-presenting machinery and the "don't eat me signal" molecule CD47 in the melanoma cells. The BRAFi/MEKi-resistant, NRAS-mutant melanoma cells counteracted the molecular and immunological effects of BRAFi/MEKi by upregulating downstream mitogen-activated protein kinase pathway molecules, inhibiting apoptosis and promoting immune escape mechanisms. Together, our study reveals potent molecular and immunological effects of BRAFi/MEKi in sensitive NRAS-mutant melanoma cells that may be exploited in new combinational treatment strategies for patients with NRAS-mutant melanoma.


Asunto(s)
Melanoma , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Proteínas Proto-Oncogénicas B-raf , Vemurafenib , Inhibidores de Proteínas Quinasas/efectos adversos , Quinasas de Proteína Quinasa Activadas por Mitógenos , Mutación , Resistencia a Antineoplásicos/genética , Proteínas de la Membrana/genética , GTP Fosfohidrolasas/genética
8.
Mol Phylogenet Evol ; 198: 108135, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38925425

RESUMEN

Historical specimens from museum collections provide a valuable source of material also from remote areas or regions of conflict that are not easily accessible to scientists today. With this study, we are providing a taxon-complete phylogeny of snowfinches using historical DNA from whole skins of an endemic species from Afghanistan, the Afghan snowfinch, Pyrgilauda theresae. To resolve the strong conflict between previous phylogenetic hypotheses, we generated novel mitogenome sequences for selected taxa and genome-wide SNP data using ddRAD sequencing for all extant snowfinch species endemic to the Qinghai-Tibet Plateau (QTP) and for an extended intraspecific sampling of the sole Central and Western Palearctic snowfinch species (Montifringilla nivalis). Our phylogenetic reconstructions unanimously refuted the previously suggested paraphyly of genus Pyrgilauda. Misplacement of one species-level taxon (Onychostruthus tazcanowskii) in previous snowfinch phylogenies was undoubtedly inferred from chimeric mitogenomes that included heterospecific sequence information. Furthermore, comparison of novel and previously generated sequence data showed that the presumed sister-group relationship between M. nivalis and the QTP endemic M. henrici was suggested based on flawed taxonomy. Our phylogenetic reconstructions based on genome-wide SNP data and on mitogenomes were largely congruent and supported reciprocal monophyly of genera Montifringilla and Pyrgilauda with monotypic Onychostruthus being sister to the latter. The Afghan endemic P. theresae likely originated from a rather ancient Pliocene out-of-Tibet dispersal probably from a common ancestor with P. ruficollis. Our extended trans-Palearctic sampling for the white-winged snowfinch, M. nivalis, confirmed strong lineage divergence between an Asian and a European clade dated to 1.5 - 2.7 million years ago (mya). Genome-wide SNP data suggested subtle divergence among European samples from the Alps and from the Cantabrian mountains.

9.
Epidemiol Infect ; 152: e87, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38751220

RESUMEN

It is so far unclear how the COVID-19 winter waves started and what should be done to prevent possible future waves. In this study, we deciphered the dynamic course of a winter wave in 2021 in Saxony, a state in Eastern Germany neighbouring the Czech Republic and Poland. The study was carried out through the integration of multiple virus genomic epidemiology approaches to track transmission chains, identify emerging variants and investigate dynamic changes in transmission clusters. For identified local variants of interest, functional evaluations were performed. Multiple long-lasting community transmission clusters have been identified acting as driving force for the winter wave 2021. Analysis of the dynamic courses of two representative clusters indicated a similar transmission pattern. However, the transmission cluster caused by a locally occurring new Delta variant AY.36.1 showed a distinct transmission pattern, and functional analyses revealed a replication advantage of it. This study indicated that long-lasting community transmission clusters starting since early autumn caused by imported or locally occurring variants all contributed to the development of the 2021 winter wave. The information we achieved might help future pandemic prevention.


Asunto(s)
COVID-19 , SARS-CoV-2 , Estaciones del Año , COVID-19/epidemiología , COVID-19/transmisión , COVID-19/virología , Alemania/epidemiología , Humanos , SARS-CoV-2/genética
10.
Dev Sci ; : e13537, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874007

RESUMEN

The brain undergoes extensive development during late childhood and early adolescence. Cortical thinning is a prominent feature of this development, and some researchers have suggested that differences in cortical thickness may be related to internalizing symptoms, which typically increase during the same period. However, research has yielded inconclusive results. We utilized a new method that estimates the combined effect of individual differences in vertex-wise cortical thickness on internalizing symptoms. This approach allows for many small effects to be distributed across the cortex and avoids the necessity of correcting for multiple tests. Using a sample of 8763 children aged 8.9 to 11.1 from the ABCD study, we decomposed the total variation in caregiver-reported internalizing symptoms into differences in cortical thickness, additive genetics, and shared family environmental factors and unique environmental factors. Our results indicated that individual differences in cortical thickness accounted for less than 0.5% of the variation in internalizing symptoms. In contrast, the analysis revealed a substantial effect of additive genetics and family environmental factors on the different components of internalizing symptoms, ranging from 06% to 48% and from 0% to 34%, respectively. Overall, while this study found a minimal association between cortical thickness and internalizing symptoms, additive genetics, and familial environmental factors appear to be of importance for describing differences in internalizing symptoms in late childhood. RESEARCH HIGHLIGHTS: We utilized a new method for modelling the total contribution of vertex-wise individual differences in cortical thickness to internalizing symptoms in late childhood. The total contribution of individual differences in cortical thickness accounted for <0.5% of the variance in internalizing symptoms. Additive genetics and shared family environmental variation accounted for 17% and 34% of the variance in internalizing symptoms, respectively. Our results suggest that cortical thickness is not an important indicator for internalizing symptoms in childhood, whereas genetic and environmental differences have a substantial impact.

11.
Nature ; 554(7690): 56-61, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29364871

RESUMEN

The planarian Schmidtea mediterranea is an important model for stem cell research and regeneration, but adequate genome resources for this species have been lacking. Here we report a highly contiguous genome assembly of S. mediterranea, using long-read sequencing and a de novo assembler (MARVEL) enhanced for low-complexity reads. The S. mediterranea genome is highly polymorphic and repetitive, and harbours a novel class of giant retroelements. Furthermore, the genome assembly lacks a number of highly conserved genes, including critical components of the mitotic spindle assembly checkpoint, but planarians maintain checkpoint function. Our genome assembly provides a key model system resource that will be useful for studying regeneration and the evolutionary plasticity of core cell biological mechanisms.


Asunto(s)
Evolución Molecular , Genoma/genética , Planarias/citología , Planarias/genética , Animales , Proteínas de Ciclo Celular/deficiencia , Genómica , Puntos de Control de la Fase M del Ciclo Celular/genética , Puntos de Control de la Fase M del Ciclo Celular/fisiología , Proteínas Mad2/deficiencia , Planarias/fisiología , Regeneración/genética , Reproducción Asexuada/genética , Retroelementos/genética
12.
Nature ; 554(7690): 50-55, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29364872

RESUMEN

Salamanders serve as important tetrapod models for developmental, regeneration and evolutionary studies. An extensive molecular toolkit makes the Mexican axolotl (Ambystoma mexicanum) a key representative salamander for molecular investigations. Here we report the sequencing and assembly of the 32-gigabase-pair axolotl genome using an approach that combined long-read sequencing, optical mapping and development of a new genome assembler (MARVEL). We observed a size expansion of introns and intergenic regions, largely attributable to multiplication of long terminal repeat retroelements. We provide evidence that intron size in developmental genes is under constraint and that species-restricted genes may contribute to limb regeneration. The axolotl genome assembly does not contain the essential developmental gene Pax3. However, mutation of the axolotl Pax3 paralogue Pax7 resulted in an axolotl phenotype that was similar to those seen in Pax3-/- and Pax7-/- mutant mice. The axolotl genome provides a rich biological resource for developmental and evolutionary studies.


Asunto(s)
Ambystoma mexicanum/genética , Evolución Molecular , Genoma/genética , Genómica , Animales , ADN Intergénico/genética , Genes Esenciales/genética , Proteínas de Homeodominio/genética , Intrones/genética , Masculino , Ratones , Factor de Transcripción PAX3/genética , Factor de Transcripción PAX7/genética , Picea/genética , Pinus/genética , Regeneración/genética , Retroelementos/genética , Secuencias Repetidas Terminales/genética
13.
Nature ; 559(7712): E2, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29795340

RESUMEN

In the originally published version of this Article, the sequenced axolotl strain (the homozygous white mutant) was denoted as 'D/D' rather than 'd/d' in Fig. 1a and the accompanying legend, the main text and the Methods section. The original Article has been corrected online.

14.
Nucleic Acids Res ; 50(4): 1993-2004, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35137160

RESUMEN

Histone 3 lysine 4 trimethylation (H3K4me3) is an epigenetic mark found at gene promoters and CpG islands. H3K4me3 is essential for mammalian development, yet mechanisms underlying its genomic targeting are poorly understood. H3K4me3 methyltransferases SETD1B and MLL2 (KMT2B) are essential for oogenesis. We investigated changes in H3K4me3 in Setd1b conditional knockout (cKO) oocytes using ultra-low input ChIP-seq, with comparisons to DNA methylation and gene expression analyses. H3K4me3 was redistributed in Setd1b cKO oocytes showing losses at active gene promoters associated with downregulated gene expression. Remarkably, many regions also gained H3K4me3, in particular those that were DNA hypomethylated, transcriptionally inactive and CpG-rich, which are hallmarks of MLL2 targets. Consequently, loss of SETD1B disrupts the balance between MLL2 and de novo DNA methyltransferases in determining the epigenetic landscape during oogenesis. Our work reveals two distinct, complementary mechanisms of genomic targeting of H3K4me3 in oogenesis, with SETD1B linked to gene expression and MLL2 to CpG content.


Asunto(s)
Histonas , Lisina , Animales , Islas de CpG/genética , Metilación de ADN , Histona Metiltransferasas/genética , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Mamíferos/genética , Oogénesis/genética
15.
PLoS Genet ; 17(12): e1009250, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34860830

RESUMEN

Epigenetic mechanisms are gatekeepers for the gene expression patterns that establish and maintain cellular identity in mammalian development, stem cells and adult homeostasis. Amongst many epigenetic marks, methylation of histone 3 lysine 4 (H3K4) is one of the most widely conserved and occupies a central position in gene expression. Mixed lineage leukemia 1 (MLL1/KMT2A) is the founding mammalian H3K4 methyltransferase. It was discovered as the causative mutation in early onset leukemia and subsequently found to be required for the establishment of definitive hematopoiesis and the maintenance of adult hematopoietic stem cells. Despite wide expression, the roles of MLL1 in non-hematopoietic tissues remain largely unexplored. To bypass hematopoietic lethality, we used bone marrow transplantation and conditional mutagenesis to discover that the most overt phenotype in adult Mll1-mutant mice is intestinal failure. MLL1 is expressed in intestinal stem cells (ISCs) and transit amplifying (TA) cells but not in the villus. Loss of MLL1 is accompanied by loss of ISCs and a differentiation bias towards the secretory lineage with increased numbers and enlargement of goblet cells. Expression profiling of sorted ISCs revealed that MLL1 is required to promote expression of several definitive intestinal transcription factors including Pitx1, Pitx2, Foxa1, Gata4, Zfp503 and Onecut2, as well as the H3K27me3 binder, Bahcc1. These results were recapitulated using conditional mutagenesis in intestinal organoids. The stem cell niche in the crypt includes ISCs in close association with Paneth cells. Loss of MLL1 from ISCs promoted transcriptional changes in Paneth cells involving metabolic and stress responses. Here we add ISCs to the MLL1 repertoire and observe that all known functions of MLL1 relate to the properties of somatic stem cells, thereby highlighting the suggestion that MLL1 is a master somatic stem cell regulator.


Asunto(s)
Células Madre Adultas/fisiología , Diferenciación Celular/genética , N-Metiltransferasa de Histona-Lisina/genética , Insuficiencia Intestinal/genética , Mucosa Intestinal/patología , Proteína de la Leucemia Mieloide-Linfoide/genética , Animales , Trasplante de Médula Ósea , Metilación de ADN , Modelos Animales de Enfermedad , Epigénesis Genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Insuficiencia Intestinal/patología , Mucosa Intestinal/citología , Yeyuno/citología , Yeyuno/patología , Ratones , Ratones Transgénicos , Mutagénesis , Mutación , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Nicho de Células Madre
16.
Am J Physiol Endocrinol Metab ; 324(6): E514-E530, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37126848

RESUMEN

Elevated serum concentrations of glucocorticoids (GCs) result in excessive lipid accumulation in white adipose tissue (WAT) as well as dysfunction of thermogenic brown adipose tissue (BAT), ultimately leading to the development of obesity and metabolic disease. Here, we hypothesized that activation of the sympathetic nervous system either via cold exposure or the use of a selective ß3-adrenergic receptor (ß3-AR) agonist alleviates the adverse metabolic effects of chronic GC exposure in rodents. To this end, male 10-wk-old C57BL/6NRj mice were treated with corticosterone via drinking water or placebo for 4 wk while being maintained at 29°C (thermoneutrality), 22°C (room temperature), or 13°C (cold temperature); in a follow-up study mice received a selective ß3-AR agonist or placebo with and without corticosterone while being maintained at room temperature. Body weight and food intake were monitored throughout the study. Histological and molecular analyses were performed on white and brown adipose depots. Cold exposure not only preserved the thermogenic function of brown adipose tissue but also reversed GC-induced lipid accumulation in white adipose tissue and corrected GC-driven obesity, hyperinsulinemia, and hyperglycemia. The metabolic benefits of cold exposure were associated with enhanced sympathetic activity in adipose tissue, thus potentially linking an increase in sympathetic signaling to the observed metabolic benefits. In line with this concept, chronic administration of a selective ß3-AR agonist reproduced the beneficial metabolic effects of cold adaption during exposure to exogenous GCs. This preclinical study demonstrates the potential of ß3-AR as a therapeutic target in the management and prevention of GC-induced metabolic disease.NEW & NOTEWORTHY This preclinical study in mice shows that the ß3-adrenergic receptor can be a potential therapeutic approach to counteracting glucocorticoid (GC)-induced obesity and metabolic dysfunction. Both cold acclimation and ß3-adrenergic receptor stimulation in a mouse model of excess glucocorticoids were adequate in not only preventing obesity, adiposity, and adipose tissue dysfunction but also correcting hyperinsulinemia, hyperleptinemia, and dyslipidemia.


Asunto(s)
Glucocorticoides , Receptores Adrenérgicos beta , Masculino , Animales , Ratones , Glucocorticoides/farmacología , Glucocorticoides/metabolismo , Receptores Adrenérgicos beta/metabolismo , Corticosterona/metabolismo , Estudios de Seguimiento , Ratones Endogámicos C57BL , Tejido Adiposo/metabolismo , Obesidad/inducido químicamente , Obesidad/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Lípidos , Termogénesis
17.
Development ; 147(9)2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32273274

RESUMEN

MicroRNAs (miRNAs) are short (∼22 nt) single-stranded non-coding RNAs that regulate gene expression at the post-transcriptional level. Over recent years, many studies have extensively characterized the involvement of miRNA-mediated regulation in neurogenesis and brain development. However, a comprehensive catalog of cortical miRNAs expressed in a cell-specific manner in progenitor types of the developing mammalian cortex is still missing. Overcoming this limitation, here we exploited a double reporter mouse line previously validated by our group to allow the identification of the transcriptional signature of neurogenic commitment and provide the field with the complete atlas of miRNA expression in proliferating neural stem cells, neurogenic progenitors and newborn neurons during corticogenesis. By extending the currently known list of miRNAs expressed in the mouse brain by over twofold, our study highlights the power of cell type-specific analyses for the detection of transcripts that would otherwise be diluted out when studying bulk tissues. We further exploited our data by predicting putative miRNAs and validated the power of our approach by providing evidence for the involvement of miR-486 in brain development.


Asunto(s)
MicroARNs/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/metabolismo , Animales , Northern Blotting , Biología Computacional/métodos , Electroporación , Femenino , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Neurogénesis/genética , Neurogénesis/fisiología
18.
Development ; 147(1)2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31908317

RESUMEN

Zebrafish display widespread and pronounced adult neurogenesis, which is fundamental for their regeneration capability after central nervous system injury. However, the cellular identity and the biological properties of adult newborn neurons are elusive for most brain areas. Here, we have used short-term lineage tracing of radial glia progeny to prospectively isolate newborn neurons from the her4.1+ radial glia lineage in the homeostatic adult forebrain. Transcriptome analysis of radial glia, newborn neurons and mature neurons using single cell sequencing identified distinct transcriptional profiles, including novel markers for each population. Specifically, we detected two separate newborn neuron types, which showed diversity of cell fate commitment and location. Further analyses showed that these cell types are homologous to neurogenic cells in the mammalian brain, identified neurogenic commitment in proliferating radial glia and indicated that glutamatergic projection neurons are generated in the adult zebrafish telencephalon. Thus, we prospectively isolated adult newborn neurons from the adult zebrafish forebrain, identified markers for newborn and mature neurons in the adult brain, and revealed intrinsic heterogeneity among adult newborn neurons and their homology with mammalian adult neurogenic cell types.


Asunto(s)
Encéfalo/citología , Linaje de la Célula , Células Ependimogliales/citología , Neurogénesis , Neuronas/citología , Pez Cebra/anatomía & histología , Animales , Animales Modificados Genéticamente , Animales Recién Nacidos/anatomía & histología , Diencéfalo/citología , Perfilación de la Expresión Génica , Ratones , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Telencéfalo/citología , Pez Cebra/crecimiento & desarrollo
19.
Development ; 147(24)2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33158923

RESUMEN

Spinal cord injury (SCI) results in loss of neurons, oligodendrocytes and myelin sheaths, all of which are not efficiently restored. The scarcity of oligodendrocytes in the lesion site impairs re-myelination of spared fibres, which leaves axons denuded, impedes signal transduction and contributes to permanent functional deficits. In contrast to mammals, zebrafish can functionally regenerate the spinal cord. Yet, little is known about oligodendroglial lineage biology and re-myelination capacity after SCI in a regeneration-permissive context. Here, we report that, in adult zebrafish, SCI results in axonal, oligodendrocyte and myelin sheath loss. We find that OPCs, the oligodendrocyte progenitor cells, survive the injury, enter a reactive state, proliferate and differentiate into oligodendrocytes. Concomitantly, the oligodendrocyte population is re-established to pre-injury levels within 2 weeks. Transcriptional profiling revealed that reactive OPCs upregulate the expression of several myelination-related genes. Interestingly, global reduction of axonal tracts and partial re-myelination, relative to pre-injury levels, persist at later stages of regeneration, yet are sufficient for functional recovery. Taken together, these findings imply that, in the zebrafish spinal cord, OPCs replace lost oligodendrocytes and, thus, re-establish myelination during regeneration.


Asunto(s)
Células Precursoras de Oligodendrocitos/citología , Remielinización/genética , Traumatismos de la Médula Espinal/genética , Médula Espinal/crecimiento & desarrollo , Animales , Modelos Animales de Enfermedad , Humanos , Células Precursoras de Oligodendrocitos/trasplante , Oligodendroglía/trasplante , Regeneración/genética , Médula Espinal/trasplante , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/terapia , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
20.
Development ; 147(12)2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32439762

RESUMEN

Methylation of histone 3 lysine 4 (H3K4) is a major epigenetic system associated with gene expression. In mammals there are six H3K4 methyltransferases related to yeast Set1 and fly Trithorax, including two orthologs of fly Trithorax-related: MLL3 and MLL4. Exome sequencing has documented high frequencies of MLL3 and MLL4 mutations in many types of human cancer. Despite this emerging importance, the requirements of these paralogs in mammalian development have only been incompletely reported. Here, we examined the null phenotypes to establish that MLL3 is first required for lung maturation, whereas MLL4 is first required for migration of the anterior visceral endoderm that initiates gastrulation in the mouse. This collective cell migration is preceded by a columnar-to-squamous transition in visceral endoderm cells that depends on MLL4. Furthermore, Mll4 mutants display incompletely penetrant, sex-distorted, embryonic haploinsufficiency and adult heterozygous mutants show aspects of Kabuki syndrome, indicating that MLL4 action, unlike MLL3, is dosage dependent. The highly specific and discordant functions of these paralogs in mouse development argues against their action as general enhancer factors.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Anomalías Múltiples/veterinaria , Alelos , Animales , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Cara/anomalías , Cara/patología , Femenino , Genotipo , Enfermedades Hematológicas/genética , Enfermedades Hematológicas/patología , Enfermedades Hematológicas/veterinaria , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/genética , Pulmón/crecimiento & desarrollo , Pulmón/metabolismo , Masculino , Ratones , Ratones Noqueados , Mutagénesis , Embarazo , Insuficiencia Respiratoria/etiología , Factores de Tiempo , Enfermedades Vestibulares/genética , Enfermedades Vestibulares/patología , Enfermedades Vestibulares/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA