Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Insect Mol Biol ; 33(3): 246-258, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38323672

RESUMEN

Molybdenum cofactor sulfurase (MoCoS) is a key gene involved in the uric acid metabolic pathway that activates xanthine dehydrogenase to synthesise uric acid. Uric acid is harmful to mammals but plays crucial roles in insects, one of which is the immune responses. However, the function of Bombyx mori MoCoS in response to BmNPV remains unclear. In this study, BmMoCoS was found to be relatively highly expressed in embryonic development, gonads and the Malpighian tubules. In addition, the expression levels of BmMoCoS were significantly upregulated in three silkworm strains with different levels of resistance after virus infection, suggesting a close link between them. Furthermore, RNAi and overexpression studies showed that BmMoCoS was involved in resistance to BmNPV infection, and its antivirus effects were found to be related to the regulation of uric acid metabolism, which was uncovered by inosine- and febuxostat-coupled RNAi and overexpression. Finally, the BmMoCoS-mediated uric acid pathway was preliminarily confirmed to be a potential target to protect silkworms from BmNPV infection. Overall, this study provides new evidence for elucidating the molecular mechanism of silkworms in response to BmNPV infection and new strategies for the prevention of viral infections in sericulture.


Asunto(s)
Bombyx , Proteínas de Insectos , Nucleopoliedrovirus , Animales , Bombyx/enzimología , Bombyx/genética , Bombyx/virología , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Larva/metabolismo , Larva/crecimiento & desarrollo , Larva/virología , Metaloproteínas/metabolismo , Metaloproteínas/genética , Cofactores de Molibdeno , Nucleopoliedrovirus/fisiología , Interferencia de ARN , Ácido Úrico/metabolismo
2.
Insect Mol Biol ; 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613398

RESUMEN

The silkworm (Bombyx mori) is an important model lepidopteran insect and can be used to identify pesticide resistance-related genes of great significance for biological control of pests. Uridine diphosphate glucosyltransferases (UGTs), found in all organisms, are the main secondary enzymes involved in the metabolism of heterologous substances. However, it remains uncertain if silkworm resistance to fenpropathrin involves UGT. This study observes significant variations in BmUGT expression among B. mori strains with variable fenpropathrin resistance post-feeding, indicating BmUGT's role in fenpropathrin detoxification. Knockdown of BmUGT with RNA interference and overexpression of BmUGT significantly decreased and increased BmN cell activity, respectively, indicating that BmUGT plays an important role in the resistance of silkworms to fenpropathrin. In addition, fenpropathrin residues were significantly reduced after incubation for 12 h with different concentrations of a recombinant BmUGT fusion protein. Finally, we verified the conservation of UGT to detoxify fenpropathrin in Spodoptera exigua: Its resistance to fenpropathrin decreased significantly after knocking down SeUGT. In a word, UGT plays an important role in silkworm resistance to fenpropathrin by directly degrading the compound, a function seen across other insects. The results of this study are of great significance for breeding silkworm varieties with high resistance and for biological control of pests.

3.
Fish Shellfish Immunol ; 138: 108828, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37201734

RESUMEN

Members of the peroxiredoxin family are involved in a wide variety of physiological processes, including the ability to combat the effects of oxidative stress and immune responses, among others. Here, we cloned the cDNA of Procambarus clarkii Peroxiredoxin 1 (designated as PcPrx-1) and investigated its biological role in immune system functions in relation to microbial pathogens. The PcPrx-1 cDNA had 744 base pairs in an open reading frame that encoded 247 amino acid residues and contained a PRX_Typ2cys domain. The analysis of tissue specific expression patterns revealed that PcPrx-1 expression was ubiquitous in all tissues. In addition, the mRNA transcript of PcPrx-1 was found to be highest in the hepatopancreas. There was a significant upregulation of PcPrx-1 gene transcripts after exposure to LPS, PGN, and Poly I:C, but the transcription patterns were different after pathogen challenge. Double-stranded RNA was used to knockdown PcPrx-1, which resulted in a striking change in the expression of all the tested P. clarkii immune-associated genes, including lectin, Toll, cactus, chitinase, phospholipase, and sptzale. On the whole, these results suggest that PcPrx-1 is important to confer innate immunity against pathogens by governing the expression of critical transcripts that encode immune-associated genes.


Asunto(s)
Astacoidea , Peroxirredoxinas , Animales , Astacoidea/genética , ADN Complementario/genética , Inmunidad Innata/genética , Estrés Oxidativo , Proteínas de Artrópodos
4.
Fish Shellfish Immunol ; 143: 109206, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37923184

RESUMEN

Peroxinectin, which has both peroxidase and cell adhesion activities, is crucial for invertebrate innate immune responses. In this study, we first cloned the full-length cDNA of Procambarus clarkii Peroxinectin (denoted as Pc-Px) and evaluated its immune roles. The Pc-Px cDNA had 2460 base pairs (bp) and 819 amino acid residues, including peroxidase domain and a putative integrin-binding motif. Pc-Px tissue expression was found to be ubiquitous in all examined tissues under normal physiological conditions. Pc-Px mRNA levels were highest in hemocytes, followed by gills and heart, and were lowest in the gut. The LPS, PGN, and Poly I:C treatment significantly up-regulated the transcript level of Pc-Px gene, but the expression trends were different after the microbials component treatments. Pc-Px knockdown using double-stranded RNA altered the transcription profiles of various immune-related genes in hepatopancreas of P. clarkii. Taken together, Pc-Px is an important component of immune system that likely to modulate immune function of P. clarkii via regulating immune-associated genes.


Asunto(s)
Astacoidea , Inmunidad Innata , Animales , Astacoidea/genética , Secuencia de Aminoácidos , ADN Complementario/genética , Inmunidad Innata/genética , Clonación Molecular , Peroxidasas , Proteínas de Artrópodos
5.
Genomics ; 113(1 Pt 2): 1257-1264, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32949684

RESUMEN

This study isolated CFI gene from Pelteobagrus fulvidraco and named it PfCFI. The cDNA of PfCFI is 2374 bp long, including a 52 bp 5' untranslated sequence, a 222 bp 3' untranslated sequence, and an open reading frame (ORF) of 2100 bp encoding polypeptide consisting of 699 amino acids. Phylogenetic analysis revealed that the PfCFI was closely related to CFI of Ictalurus punctatus. Real-time quantitative reverse transcription-PCR (qRT-PCR) analysis indicate that there is the PfCFI gene which expressed in all the rest of tested tissues in varied levels, and mainly distributed in liver and least in heart. The reseachers induce the expressions level of PfCFI gene in liver, spleen, head kidney and blood at different points in time after challenged with lipopolysaccharide (LPS), and polyriboinosinic polyribocytidylic acid (poly I:C), respectively. Together these results suggested that CFI gene plays an important role in resistance to pathogens in yellow catfish immunity.


Asunto(s)
Bagres/genética , Factor I de Complemento/genética , Proteínas de Peces/genética , Inmunidad Innata , Animales , Bagres/inmunología , Factor I de Complemento/metabolismo , Proteínas de Peces/metabolismo , Riñón/metabolismo , Lipopolisacáridos/toxicidad , Hígado/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Bazo/metabolismo
6.
Fish Shellfish Immunol ; 110: 67-74, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33383178

RESUMEN

Chitinase can degrade chitin and play an essential role in animal immunity and plant defense. The immune functions of Chitinase in Procambarus clarkii (P. clarkii) remain to elucidate. Here, we identified PcChitinase 2 gene sequence from P. clarkii and studied its spatial and temporal expression profiles. The PcChitinase 2 transcribed unequally in different tissues; however, its expression was highest in those of stomach, gut, and hepatopancreas. The challenge with lipolysaccharide or peptidoglycan significantly up-regulated the expression of PcChitinase 2 in hepatopancreas. The knockdown of the PcChitinase 2 gene by double-stranded RNA suppressed most of the Toll-pathway-related immune genes (phospholipase, lectin, sptazle Cactus, serine proteikinase, anti-lipopolysaccharide factor, and Toll) production were significantly increased. Our results suggest PcChitinase 2 may be involved in the innate immune responses of P. clarkii by modulating the toll pathway.


Asunto(s)
Astacoidea/inmunología , Quitinasas/genética , Quitinasas/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Receptores Toll-Like/genética , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Astacoidea/enzimología , Astacoidea/genética , Secuencia de Bases , Quitinasas/química , Perfilación de la Expresión Génica , Filogenia , Alineación de Secuencia
7.
J Nat Prod ; 84(4): 1306-1315, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33724827

RESUMEN

Five new diterpenes, including four new hydroazulenes, (8R,11R)-8,11-diacetoxypachydictyol A (1), (8R*,11R*)-6-O-acetyl-8-acetoxy-11-hydroxypachydictyol A (2), (8R*,11S*)-8-acetoxy-11-hydroxypachydictyol A (3), and (8R*,11S*)-6-O-acetyl-8,11-dihydroxypachydictyol A (4), and a secohydroazulene derivative, named 7Z-7,8-seco-7,11-didehydro-8- acetoxypachydictyol A (5), were isolated from a South China Sea collection of a Dictyota sp. nov. brown alga, together with five known analogues (6-10). Structure elucidation was achieved by extensive spectroscopic analysis and comparison with reported data. All compounds showed potent antioxidant effects against H2O2-induced oxidative damage in neuron-like PC12 cells at a low concentration of 2 µM. The antioxidant property of dictyol C (9) was associated with activation of the Nrf2/ARE signaling pathway; it also showed neuroprotective effects against cerebral ischemia-reperfusion injury (CIRI) in a rat model of transient middle cerebral artery occlusion. As such, hydroazulene diterpenes could serve as lead structures for the development of novel neuroprotective agents against CIRI.


Asunto(s)
Antioxidantes/farmacología , Diterpenos/farmacología , Fármacos Neuroprotectores/farmacología , Phaeophyceae/química , Daño por Reperfusión/tratamiento farmacológico , Animales , China , Masculino , Estructura Molecular , Estrés Oxidativo/efectos de los fármacos , Células PC12 , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
8.
Fish Shellfish Immunol ; 100: 436-444, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32200070

RESUMEN

The cathepsin C, a lysosomal cysteine protease, involves the modulation of immune and inflammatory responses in living organisms. However, the knowledge on cathepsin C in red swamp crayfish (Procambarus clarkii), a freshwater crustacean with economic values, remained unclear. In the present study, we provide identification and molecular characterization of cathepsin C from P. clarkii. (Hereafter Pc-cathepsin C). The Pc-cathepsin C cDNA contained a 1356 bp open reading frame that encoded a protein of 451 amino acid residues. The deduced amino acid sequence comprised of cathepsin C exclusion domain and pept_C1 domain, and also catalytic residues (Cys248, His395 and Asn417). Analysis of the transcriptional patterns of the Pc-cathepsin C gene revealed that it was broadly distributed in various tissues of P. clarkii, and it was more abundant in the hepatopancreas and gut. Following a challenge with viral and bacterial pathogen-associated molecular patterns, the expression of Pc-cathepsin C was strongly enhanced at different time points. The knockdown of Pc-cathepsin C, altered the expression of immune-responsive genes, suggesting its immunoregulatory role in P. clarkii. This study has identified and provided the immunoregulatory function of Pc-cathepsin C, which will contribute to further investigation of the molecular mechanism of cathepsin C in crustaceans.


Asunto(s)
Proteínas de Artrópodos/inmunología , Astacoidea/inmunología , Infecciones Bacterianas/veterinaria , Catepsina C/inmunología , Inmunidad Innata , Virosis/veterinaria , Animales , Astacoidea/microbiología , Astacoidea/virología , Bacterias/patogenicidad , Infecciones Bacterianas/inmunología , ADN Complementario , Perfilación de la Expresión Génica , Hepatopáncreas/inmunología , Hepatopáncreas/virología , Lipopolisacáridos , Filogenia , Poli I-C , Virosis/inmunología , Virus/patogenicidad
9.
Fish Shellfish Immunol ; 98: 318-323, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31972292

RESUMEN

Procambarus clarkii is one of the most important aquatic invertebrates in China and has high commercial value. However, aquaculture has suffered great economic loss due to outbreaks of infectious diseases in P. clarkii. To identify red swamp crayfish related proteins involved in the response to bacterial infection, we analysed immune-related proteins following lipopolysaccharide (LPS) stimulation by quantitative proteomics. The proteome of the hepatopancreas of P. clarkii challenged with LPS and phosphate-buffered saline was analysed to evaluate the immune response. Based on liquid chromatography coupled with tandem mass spectrometry, 16 upregulated and 29 downregulated proteins were identified. A Gene Ontology analysis demonstrated 5 biological process, 11 cellular component, and 6 molecular function subcategories. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated that the identified proteins were mainly involved in metabolism, phagosome, and ribosome. Real-time quantitative reverse transcription-PCR revealed that eight immune-related genes were upregulated after LPS stimulation compared to the control. Taken together, the data enhance our understanding of the immune response of crayfish to LPS.


Asunto(s)
Astacoidea/inmunología , Hepatopáncreas/inmunología , Lipopolisacáridos/inmunología , Animales , Acuicultura , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Astacoidea/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/inmunología , Hepatopáncreas/metabolismo , Proteómica
10.
Genomics ; 111(6): 1258-1265, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30118781

RESUMEN

The mitochondrial genome (mitogenome) can provide important information for understanding phylogenetic analysis and molecular evolution. Herein, we amplified the complete mitogenome sequence of Pelteobagrus fulvidraco. The mitogenome was 16,526 bp in length and included 13 protein-coding genes (PCGs), 22 transfer RNA genes, two ribosomal RNA genes and a non-coding control region (D-loop). Both the organization and location of genes in the mitogenome were consistent with those from Siluriformes fishes previously published in GenBank. The phylogenetic relationships based on Bayesian inference (BI) and Maximum likelihood (ML) methods showed that P. fulvidraco has close relationships with Pelteobagrus eupogon and Tachysurus intermedius, suggesting that P. fulvidraco belongs to Tachysurus. This study provides evidence that Tachysurus, Pseudobagrus and Leiocassis do not form monophyly, but that these three genera form a monophyletic group. Our results provide reference for further phylogenetic research of the Bagridae species.


Asunto(s)
Bagres/genética , Genoma Mitocondrial , Animales , Bagres/clasificación , Proteínas de Peces/genética , Filogenia , ARN Ribosómico/genética , ARN de Transferencia/genética
11.
Fish Shellfish Immunol ; 95: 491-497, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31689551

RESUMEN

In this study, we identified a fish-specific Toll-like receptor (TLR) in Pelteobagrus fulvidraco, an economically important freshwater fish in China. This TLR, PfTLR26, was shown to be encoded by a 3084 bp open reading frame (ORF), producing a polypeptide 1027 amino acids in length. The PfTLR26 protein contains a signal peptide, eight leucine-rich repeat (LRR) domains, two LRR_TYP domains in the extracellular region, and a Toll/interleukin (IL)-1 receptor (TIR) domain in the cytoplasmic region, consistent with the characteristic TLR domain architecture. This predicted 117.1 kDa protein was highly homologous to those of other fish, with phylogenetic analysis revealing the closest relation to TLR26 of Ictalurus punctatus. Real-time quantitative reverse transcription-PCR (qRT-PCR) analysis showed that the PfTLR26 gene was expressed in all tissues tested, with the highest expression levels seen in the head kidney and blood, and the lowest seen in muscle. PfTLR26 exhibited significant upregulation in liver, spleen, head kidney, and blood at different time points following challenge with the common TLR agonists lipopolysaccharide (LPS) and polyriboinosinic polyribocytidylic acid (Poly I:C). Taken together, these results suggest that PfTLR26 may be an important component of the P. fulvidraco innate immune system, participating in the transduction of TLR signaling under pathogen stimulation.


Asunto(s)
Bagres/inmunología , Inmunidad Innata , Receptores Toll-Like/genética , Receptores Toll-Like/inmunología , Animales , Bagres/genética , Clonación Molecular , Enfermedades de los Peces/inmunología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Lipopolisacáridos/farmacología , Poli I-C/farmacología , ARN Mensajero
12.
Fish Shellfish Immunol ; 95: 140-150, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31629063

RESUMEN

To learn more about red swamp crayfish related genes in response to bacterial infections, we investigated immune-related genes induced by lipopolysaccharide (LPS) in the hepatopancreas using high-throughput sequencing method. In present the study, a total of 55,107 unigenes were identified, with an average length of 678 bp. A total of 2215 differentially expressed genes (DEGs) were found, including 669 up-regulated genes and 1546 down-regulated genes. The result of Gene ontology (GO) analysis revealed that 3017 DEGs were enriched in 19 biological process subcategories, 17 cellular component subcategories and 15 molecular function subcategories. The top 20 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways showed that "ribosome" was the most abundant group, which had 34 DEGs. KEGG enrichment analysis identified several immune response pathways. Real-time quantitative reverse transcription-PCR (qRT-PCR) results exhibited that several immune responsive genes were greatly up-regulated following LPS stimulation as observed in the results of high-throughput sequencing. Overall, this study provides new insight into the immune defense mechanisms of P. clarkii against LPS infection.


Asunto(s)
Astacoidea/genética , Astacoidea/inmunología , Lipopolisacáridos/administración & dosificación , Transcriptoma , Animales , Astacoidea/efectos de los fármacos , Perfilación de la Expresión Génica , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento
13.
Fish Shellfish Immunol ; 89: 170-178, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30928663

RESUMEN

Peroxiredoxin 6 (Prx6) is an important member of the peroxiredoxin family that plays critical roles in protecting host against the toxicity of oxidative stress and participates in cell signaling. Herein, we report Prx6 gene from red swamp crayfish, Procambarus clarkii. The cDNA fragment of PcPrx6 was 660 bp, encoding a 219 amino acid residues protein. The quantitative real time PCR analysis showed ubiquitous expression of PcPrx6 mRNA in the tested tissues. The challenge with peptidoglycan and Poly I:C remarkably suppressed the mRNA level of PcPrx6 in hepatopancreas at 3, 12, 48 h compared with the PBS control. However, the expression level significantly increased after 36 h of their treatment. The knockdown of PcPrx6 by small interference RNA significantly enhanced the transcript levels of Toll pathway-responsive genes at 24 h. Recombinant PcPrx6 protein was purified using affinity chromatography and analyzed for its biological role. The results revealed that the recombinant PcPrx6 protein manifested the ability to protect supercoiled DNA damage from oxidative stress elicited by mixed function oxidative assay. Altogether, PcPrx6 may have multiple functional roles in the physiology of P. clarkii, since it negatively regulates the Toll signaling transduction and protects supercoiled DNA damage from oxidative stress.


Asunto(s)
Astacoidea/genética , Astacoidea/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Peroxiredoxina VI/genética , Peroxiredoxina VI/inmunología , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Secuencia de Bases , Cromatografía de Afinidad , Daño del ADN , ADN Superhelicoidal/fisiología , Perfilación de la Expresión Génica , Estrés Oxidativo , Peptidoglicano/farmacología , Peroxiredoxina VI/química , Filogenia , Poli I-C/farmacología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Alineación de Secuencia
14.
J Nat Prod ; 82(6): 1714-1718, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31095383

RESUMEN

Five new diterpenes, including an unprecedented 5,5,6,6,5-pentacyclic diterpene, sponalactone (1), two new spongian diterpenes, 17- O-acetylepispongiatriol (2) and 17- O-acetylspongiatriol (3), and two new spongian diterpene artifacts, 15α,16α-dimethoxy-15,16-dihydroepispongiatriol (4) and 15α-ethoxyepispongiatriol-16(15 H)-one (5), were isolated from a South China Sea collection of the marine sponge Spongia officinalis, together with three known analogues (6-8). The structures of the new diterpenes were elucidated by extensive spectroscopic analysis. The absolute configurations were established on the basis of ECD data. Compounds 1-5 and 7 exhibited moderate inhibition against LPS-induced NO production in RAW264.7 macrophages with IC50 values of 12-32 µM.


Asunto(s)
Diterpenos/farmacología , Macrófagos/efectos de los fármacos , Poríferos/química , Animales , China , Diterpenos/química , Diterpenos/aislamiento & purificación , Espectroscopía de Resonancia Magnética , Estructura Molecular
15.
Ecotoxicol Environ Saf ; 182: 109388, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31299477

RESUMEN

Iron in excess can have toxic effects on living organisms. In China, the freshwater crayfish Procambarus clarkii is a source of aquatic food with high-quality protein and has significant commercial value. P. clarkii shows oxidative stress on exposure to heavy metals, and antioxidant enzymes, such as ubiquitination enzymes and proteasomes, play important roles in oxidative stress. To understand the antioxidant defense system of P. clarkii, we analyzed the hepatopancreas transcriptomes of P. clarkii after stimulation with FeCl3. In total, 5199 differentially expressed genes (DEGs) were identified (2747 upregulated and 2452 downregulated). GO analysis revealed that these DEGs belonged to 16 cellular component, 16 molecular function, and 19 biological process subcategories. A total of 1069 DEGs were classified into 25 categories by using COG. Some antioxidant defense pathways, such as "Ubiquitin mediated proteolysis" and "Glutathione metabolism," were identified using KEGG. In addition, quantitative real time-PCR (qRT-PCR) substantiated the up-regulation of a random selection of DEGs including antioxidant and immune defense genes. We obtained information for P. clarkii transcriptome databases and new insights into the responses of P. clarkii hepatopancreas to heavy metals.


Asunto(s)
Antioxidantes/metabolismo , Astacoidea/efectos de los fármacos , Compuestos Férricos/toxicidad , Hepatopáncreas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Animales , Astacoidea/genética , China , Perfilación de la Expresión Génica , Hepatopáncreas/metabolismo , Estrés Oxidativo/genética , Distribución Aleatoria , Reacción en Cadena en Tiempo Real de la Polimerasa
16.
Fish Shellfish Immunol ; 75: 216-222, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29408672

RESUMEN

Peroxiredoxin (Prx) family members play a key role in host defense against oxidative stress, and modulate immune responses following microbial infection. Here, we cloned and characterized Procambarus clarkii Prx4 (Peroxiredoxin 4) cDNA, a regulator of oxidative stress and its expression analysis upon lipopolysaccharide (LPS) and polyriboinosinic polyribocytidylic acid (Poly I:C) infection. The cDNA fragment of PcPrx4 was 744 bp in length, encoding a putative protein of 248 amino acid residues. Real-time quantitative reverse transcription-PCR (qRT-PCR) analysis showed that the PcPrx4 was expressed in all the examined tissues, and it was highest in the hepatopancreas followed by the hemocytes and gill. The challenge with LPS and Poly I:C significantly up-regulated the expression of PcPrx4 in hepatopancreas, hemocytes and gill when compared with the control. Recombinant PcPrx4 protein was used to investigate the antioxidant function in vitro by mixed-function oxidase assay. The results demonstrated a dose-dependent inhibition of DNA damage by rPcPrx4 protein. Altogether, our results imply that PcPrx4 is implicated in defense against microbial pathogens and oxidants in P. clarkii.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Penaeidae/genética , Penaeidae/inmunología , Peroxirredoxinas/genética , Peroxirredoxinas/inmunología , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Secuencia de Bases , Perfilación de la Expresión Génica , Lipopolisacáridos/farmacología , Peroxirredoxinas/química , Filogenia , Poli I-C/farmacología , Distribución Aleatoria , Proteínas Recombinantes/genética , Alineación de Secuencia
17.
Genome ; 60(2): 128-138, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28084809

RESUMEN

In the present study, we sequenced the complete mitochondrial genome (mitogenome) of Agrius convolvuli (Lepidoptera: Sphingidae) and compared it with previously sequenced mitogenomes of lepidopteran species. The mitogenome was a circular molecule, 15 349 base pairs (bp) long, containing 37 genes. The order and orientation of genes in the A. convolvuli mitogenome were similar to those in sequenced mitogenomes of other lepidopterans. All 13 protein-coding genes (PCGs) were initiated by ATN codons, except for the cytochrome c oxidase subunit 1 (cox1) gene, which seemed to be initiated by the codon CGA, as observed in other lepidopterans. Three of the 13 PCGs had the incomplete termination codon T, while the remainder terminated with TAA. Additionally, the codon distributions of the 13 PCGs revealed that Asn, Ile, Leu2, Lys, Phe, and Tyr were the most frequently used codon families. All transfer RNAs were folded into the expected cloverleaf structure except for tRNASer(AGN), which lacked a stable dihydrouridine arm. The length of the adenine (A) + thymine (T)-rich region was 331 bp. This region included the motif ATAGA followed by a 19-bp poly-T stretch and a microsatellite-like (TA)8 element next to the motif ATTTA. Phylogenetic analyses (maximum likelihood and Bayesian methods) showed that A. convolvuli belongs to the family Sphingidae.


Asunto(s)
Genoma Mitocondrial , Ipomoea batatas/parasitología , Lepidópteros/genética , Animales , Composición de Base , Biología Computacional/métodos , ADN Intergénico , Orden Génico , Secuenciación de Nucleótidos de Alto Rendimiento , Lepidópteros/clasificación , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta , Filogenia
18.
Fish Shellfish Immunol ; 71: 144-150, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29017948

RESUMEN

Crustacean hepatopancreas regulates metabolic processes, biogenesis and innate immune processes, and the knowledge on its immune genes are crucial to understand antimicrobial mechanisms. In this study, we reported the transcriptomic profile of Procambarus clarkii hepatopancreas after poly I:C administration using high-throughput sequencing. Following de novo assembly 56,716 unigene sequences with an average length of 810 bp was obtained. The unigene sequences were annotated to three ontologies including cellular components, biological processes and molecular functions, further 56,716 unigene sequences were mapped to 25 COG categories. A total of 2497 differentially expressed genes (DEGs) were identified following the comparative analysis between poly I:C treated and control group, and then KEGG enrichment analysis were performed to detect immune related pathways. Quantitative real time polymerase chain reaction showed that the selected DEGs significantly up-regulated following poly I:C administration in comparison to control group. The transcriptomic sequence information will improve the knowledge of this economically important crustacean, and will shed light on its antiviral immune mechanisms.


Asunto(s)
Proteínas de Artrópodos/genética , Astacoidea/genética , Astacoidea/inmunología , Hepatopáncreas/inmunología , Poli I-C/farmacología , Transcriptoma , Animales , Proteínas de Artrópodos/metabolismo , Perfilación de la Expresión Génica
19.
Fish Shellfish Immunol ; 71: 423-433, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29056487

RESUMEN

The RNA-sequencing followed by de novo assembly generated 61,912 unigene sequences of P. clarkii hepatopancreas. Comparison of gene expression between LPS challenged and PBS control samples revealed 2552 differentially expressed genes (DEGs). Of these sequences, 1162 DEGs were differentially up-regulated and 1360 DEGs differentially down-regulated. The DEGs were then annotated against gene ontology (GO) database and Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Some immune-related pathways such as PPAR signaling pathway, lysosome, Chemical carcinogenesis, Peroxisome were predicted by canonical pathways analysis. The reliability of transcriptome data was validated by quantitative real time polymerase chain reaction (qRT-PCR) for the selected genes. The data presented here shed light into antibacterial immune responses of crayfish. In addition, these results suggest that transcriptomic data provides valuable sequence resource for immune-related gene identification and helps to understand P. clarkii immune functions.


Asunto(s)
Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Astacoidea/genética , Astacoidea/inmunología , Inmunidad Innata , Transcriptoma/inmunología , Animales , Perfilación de la Expresión Génica , Ontología de Genes , Hepatopáncreas/inmunología , Lipopolisacáridos/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados
20.
Fish Shellfish Immunol ; 71: 246-254, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29032038

RESUMEN

Cathepsin L is one of the crucial enzyme superfamilies and involved in the immune responses. In the present study, cathepsin L gene from the red crayfish Procambarus clarkii, named PcCTSL, was cloned and characterized. The cDNA fragment of PcCTSL was 1026 bp in length, which encoded a putative protein of 341 amino acid residues with a molecular weight of 37.884 kDa. The theoretical isoelectric point was 5.218. The prepro-cathepsin L was comprised of a typical signal peptide (Met1-Ala18), a prodomain proregion peptide (Trp29-Phe89) and a mature peptide (Leu124-Leu340). Homology analysis indicated that PcCTSL exhibited 53.2%-87.1% identity to other selected species. The recombinant protein of PcCTSL was successfully expressed in Escherichia coli and rabbit anti-PcCTSL polyclonal antibodies were prepared. Real-time quantitative reverse transcription-PCR (qPCR) analysis revealed that the PcCTSL was expressed in all examined tissues, while the greatest mRNA level was observed in hepatopancreas. The expression of PcCTSL mRNA was clearly up regulated in hepatopancreas after challenge by lipopolysaccharide (LPS) and polyriboinosinic polyribocytidylic acid (Poly I:C). RNA interference of PcCTSL affected the gene expression of members of the Toll pathway. Our results suggest that the PcCTSL may play an important role to defend P. clarkii against the pathogens infection.


Asunto(s)
Astacoidea/genética , Astacoidea/inmunología , Catepsina L/genética , Catepsina L/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Secuencia de Bases , Catepsina L/química , Perfilación de la Expresión Génica , Hepatopáncreas/inmunología , Lipopolisacáridos/farmacología , Filogenia , Poli I-C/farmacología , Reacción en Cadena de la Polimerasa , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA