Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Biomacromolecules ; 25(5): 2852-2862, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38574372

RESUMEN

Albumin nanoparticles are widely used in biomedicine due to their safety, low immunogenicity, and prolonged circulation. However, incorporating therapeutic molecules into these carriers faces challenges due to limited binding sites, restricting drug conjugation efficiency. We introduce a universal nanocarrier platform (X-UNP) using polyphenol-based engineering to incorporate phenolic moieties into albumin nanoparticles. Integration of catechol or galloyl groups significantly enhances drug binding and broadens the drug conjugation possibilities. Our study presents a library of X-UNP nanoparticles with improved drug-loading efficiency, achieving up to 96% across 10 clinically used drugs, surpassing conventional methods. Notably, ibuprofen-UNP nanoparticles exhibit a 5-fold increase in half-life compared with free ibuprofen, enhancing in vivo analgesic and anti-inflammatory effectiveness. This research establishes a versatile platform for protein-based nanosized materials accommodating various therapeutic agents in biotechnological applications.


Asunto(s)
Nanopartículas , Polifenoles , Polifenoles/química , Nanopartículas/química , Animales , Ratones , Ibuprofeno/química , Portadores de Fármacos/química , Humanos , Albúminas/química , Albúmina Sérica Bovina/química
2.
IUBMB Life ; 75(7): 609-623, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36809563

RESUMEN

Cervical cancer is one of the most common female malignant tumors, with typical cancer metabolism characteristics of increased glycolysis flux and lactate accumulation. 2-Deoxy-D-glucose (2-DG) is a glycolysis inhibitor that acts on hexokinase, the first rate-limiting enzyme in the glycolysis pathway. In this research, we demonstrated that 2-DG effectively reduced glycolysis and impaired mitochondrial function in cervical cancer cell lines HeLa and SiHa. Cell function experiments revealed that 2-DG significantly inhibited cell growth, migration, and invasion, and induced G0/G1 phase arrest at non-cytotoxic concentrations. In addition, we found that 2-DG down-regulated Wingless-type (Wnt)/ß-catenin signaling. Mechanistically, 2-DG accelerated the degradation of ß-catenin protein, which resulted in the decrease of ß-catenin expression in both nucleus and cytoplasm. The Wnt agonist lithium chloride and ß-catenin overexpression vector could partially reverse the inhibition of malignant phenotype by 2-DG. These data suggested that 2-DG exerted its anti-cancer effects on cervical cancer by co-targeting glycolysis and Wnt/ß-catenin signaling. As expected, the combination of 2-DG and Wnt inhibitor synergistically inhibited cell growth. It is noteworthy that, down-regulation of Wnt/ß-catenin signaling also inhibited glycolysis, indicating a similar positive feedback regulation between glycolysis and Wnt/ß-catenin signaling. In conclusion, we investigated the molecular mechanism by which 2-DG inhibits the progression of cervical cancer in vitro, elucidated the interregulation between glycolysis and Wnt/ß-catenin signaling, and preliminarily explored the effect of combined targeting of glycolysis and Wnt/ß-catenin signaling on cell proliferation, which provides more possibilities for the formulation of subsequent clinical treatment strategies.


Asunto(s)
Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Línea Celular Tumoral , Glucosa/farmacología , Vía de Señalización Wnt/genética , Glucólisis , Desoxiglucosa/farmacología , Proliferación Celular , Movimiento Celular , Regulación Neoplásica de la Expresión Génica
3.
J Med Virol ; 95(1): e28283, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36333280

RESUMEN

We agree that smoking might be a risk factor for the severity of COVID-19, but in our previous study, smoking was not so robust compared with our conclusion. Also, we strongly agreed that COVID-19 patients with diabetes or other chronic diseases might worsen the situation of the disease. But these factors were out of the scope of our study and we had published other research on this topic related to diabetes. Because of the limited sample size and original medical records, our study could not cover many factors. But we wish our study will be a useful and meaningful pilot study for future studies.

4.
Cell Mol Biol (Noisy-le-grand) ; 69(13): 112-119, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38158679

RESUMEN

We aimed to explore microRNA (miR)-320's impacts on learning and memory in mice with vascular cognitive impairment induced via cerebral ischemia. After establishment of a cerebral small vessel disease (CSVD) cognitive impairment model, application of corresponding treatment methods was in the model mice to inject miR-320 antagomir/agomir and their negative controls to the lateral ventricles: Test of the learning and memory abilities of mice was conducted; Detection of oxidative stress, inflammation, miR-320, Vascular endothelial growth factor (VEGF) and endostatin (ES) was implemented; Taking mouse hippocampal neuron cells was to detect the cell advancement. MiR-320 was elevated in the CSVD model; MiR-320 was negatively linked with the learning and memory abilities of mice; Repressing miR-320 was available to memorably elevate the learning and memory abilities of CSVD mice; Depressing miR-320 clearly drove CSVD mouse neovascular protein VEGF, but reduced inflammation, oxidative stress response and ES; Restraining miR-320 was available to contribute to mouse neuronal cell advancement. MiR-320 mitigates the learning and memory abilities of cerebral ischemia-induced vascular cognitive dysfunction mice to a certain extent.


Asunto(s)
Disfunción Cognitiva , MicroARNs , Animales , Ratones , Infarto Cerebral , Disfunción Cognitiva/genética , Inflamación/complicaciones , MicroARNs/genética , MicroARNs/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética
5.
Chem Biodivers ; 20(6): e202300373, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37162003

RESUMEN

Chemical investigation of medicinal plant Glycosmis lucida Wall. ex C. C. Huang leaves led to the production of ten compounds (1-10), including two previously unreported geranylated sulfur-containing amides (1 and 2) and eight known ones (3-10). Structural characterization was carried out using comprehensive spectroscopic methods including NMR, MS and CD. The inhibitory effects of all isolates on Th17 differentiation were evaluated, of which compounds 1 and 6 significantly inhibited Th17 differentiation with IC50 values of 0.36 and 1.30 µM, respectively, while both 1 and 6 failed to bind to retinoic acid-related orphan receptor gamma t (RORγt), suggesting that their inhibition of Th17 differentiation is independent of RORγt.


Asunto(s)
Amidas , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Amidas/farmacología , Amidas/química , Azufre , Diferenciación Celular
6.
Molecules ; 28(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36770884

RESUMEN

The epigenetic regulation of gene functions has been proven to be strongly associated with the development and progression of cancer. Reprogramming the cancer epigenome landscape is one of the most promising target therapies in both treatments and in reversing drug resistance. Proteolytic targeted chimeras (PROTACs) are an emerging therapeutic modality for selective degradation via the native ubiquitin-proteasome system. Rapid advances in PROTACs have facilitated the exploration of targeting epigenetic proteins, a lot of PROTAC degraders have already been designed in the field of epigenetic cancer therapy, and PROTACs targeting epigenetic proteins can better exploit target druggability and improve the mechanistic understanding of the epigenetic regulation of cancer. Thus, this review focuses on the progress made in the development of PROTAC degraders and PROTAC drugs targeting epigenetics in cancer and discusses challenges and future opportunities for the field.


Asunto(s)
Epigénesis Genética , Neoplasias , Proteolisis , Complejo de la Endopetidasa Proteasomal , Citoplasma , Epigenoma , Neoplasias/tratamiento farmacológico , Neoplasias/genética
7.
J Med Virol ; 94(10): 4727-4734, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35656698

RESUMEN

Comorbidities such as hypertension could exacerbate symptoms of coronaviral disease 2019 (COVID)-19 infection. Patients with hypertension may receive both anti-COVID-19 and antihypertension therapies when infected with COVID-19. However, it is not clear how different classes of anti-hypertension drugs impact the outcome of COVID-19 treatment. Herein, we explore the association between the inpatient use of different classes of anti-hypertension drugs and mortality among patients with hypertension hospitalized with COVID-19. We totally collected data from 278 patients with hypertension diagnosed with COVID-19 admitted to hospitals in Wuhan from February 1 to April 1, 2020. A retrospective study was conducted and single-cell RNA-sequencing (RNA-Seq) analysis of treatment-related genes was performed. The results showed that Angiotensin II receptor blocker (ARB) and calcium channel blocker (CCB) drugs significantly increased the survival rate but the use of angiotensin-converting enzyme inhibitor/ß-block/diuretic drugs did not affect the mortality caused by COVID-19. Based on the analysis of four public data sets of single-cell RNA-Seq on COVID-19 patients, we concluded that JUN, LST1 genes may play a role in the effect of ARB on COVID-19-related mortality, whereas CALM1 gene may contribute to the effect of CCB on COVID-19-related mortality. Our results provide guidance on the selection of antihypertension drugs for hypertensive patients infected with COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Hipertensión , Antagonistas de Receptores de Angiotensina/uso terapéutico , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Antihipertensivos/uso terapéutico , COVID-19/complicaciones , Bloqueadores de los Canales de Calcio/uso terapéutico , Biología Computacional , Humanos , Hipertensión/complicaciones , Hipertensión/tratamiento farmacológico , Estudios Retrospectivos , SARS-CoV-2
8.
FASEB J ; 35(9): e21789, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34383983

RESUMEN

Normal pregnancy is essential for human reproduction. However, BaP (benzo(a)pyrene) and its metabolite BPDE (benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide) could cause dysfunctions of human trophoblast cells and might further induce miscarriage. Yet, the underlying mechanisms remain largely unknown. Herein, we identified a novel upregulated lnc-HZ04 and a novel downregulated miR-hz04 in villous tissues of unexplained recurrent miscarriage (RM) relative to those in healthy control tissues and also in BPDE-treated human trophoblast cells. Lnc-HZ04 directly and specifically bound with miR-hz04, diminished the reduction effects of miR-hz04 on IP3 R1 mRNA expression level and on IP3 R1 mRNA stability, and then activated the Ca2+ -mediated IP3 R1 /p-CaMKII/SGCB pathway, which further promoted trophoblast cell apoptosis. The miR-hz04 target site on lnc-HZ04 played crucial roles in these regulations. In normal trophoblast, relatively less lnc-HZ04 and more miR-hz04 suppressed this apoptosis pathway and gave normal pregnancy. After exposure to BPDE or in RM tissues, p53 was upregulated, which might promote p53-mediated lnc-HZ04 transcription. Relatively more lnc-HZ04 and less miR-hz04 activated this apoptosis pathway and might further induce miscarriage. BaP could also induce mice miscarriage by upregulating its corresponding murine apoptosis pathway. Therefore, BPDE-induced apoptosis of human trophoblast cells was associated with the occurrence of miscarriage. This work discovered the regulation roles of lnc-HZ04 and miR-hz04 and provided scientific and clinical understanding of the occurrence of unexplained miscarriage.


Asunto(s)
Aborto Habitual/genética , Apoptosis/genética , MicroARNs/genética , ARN Largo no Codificante/genética , Transducción de Señal/genética , Trofoblastos/metabolismo , Regulación hacia Arriba/genética , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido/farmacología , Aborto Habitual/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Línea Celular , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Femenino , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Ratones , Ratones Endogámicos C57BL , Embarazo , Sarcoglicanos/genética , Transducción de Señal/efectos de los fármacos , Trofoblastos/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
9.
Cell Biol Toxicol ; 38(6): 1137-1157, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35038060

RESUMEN

Approximately 15-25% pregnant women end with miscarriage in the world. Environmental BaP (benzo(a)pyrene) and its terminal metabolite BPDE (benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide) may result in the dysfunctions of trophoblast cells, which might further lead to RM (recurrent miscarriage). However, potential mechanisms remain unelucidated. In this work, we identified a novel lnc-HZ05 highly expressed and a novel miR-hz05 lowly expressed in both trophoblast cells exposed to BPDE and human RM tissues. MiR-hz05 reduces FOXO3a mRNA level by weakening its mRNA stability. Lnc-HZ05 increases the expression of FOXO3a by acting as a ceRNA for miR-hz05, and then increases P21 level and reduces CDK2 level. Thus, cell cycle is arrested at G0/G1 phase and trophoblast proliferation is inhibited. Lnc-HZ05 harboring wild-type binding site for miR-hz05, but not its mutant site, could upregulate FOXO3a expression. In normal trophoblast cells, relatively less lnc-HZ05 and more miR-hz05 activate FOXO3a/P21/CDK2 pathway and promote trophoblast proliferation, giving normal pregnancy. In RM tissues and BPDE-treated human trophoblast cells, lnc-HZ05 is increased and miR-hz05 is reduced, both of which suppress this pathway and inhibit cell proliferation, and finally lead to miscarriage. Thus, lnc-HZ05 and miR-hz05 simultaneously regulate cell cycle and proliferation of BPDE-exposed trophoblast cells and miscarriage, providing new perspectives and clinical understandings in the occurrence of unexplained miscarriage.


Asunto(s)
7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido , Aborto Espontáneo , MicroARNs , ARN Largo no Codificante , Femenino , Humanos , Embarazo , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido/toxicidad , Aborto Espontáneo/genética , Aborto Espontáneo/metabolismo , Benzo(a)pireno/toxicidad , Línea Celular , Movimiento Celular , Proliferación Celular/genética , MicroARNs/genética , MicroARNs/metabolismo , Trofoblastos/metabolismo , ARN Largo no Codificante/genética
10.
Ecotoxicol Environ Saf ; 237: 113564, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35483139

RESUMEN

Human trophoblast cell apoptosis may induce miscarriage. Trophoblast cells are sensitive to environmental BaP-7,8-dihydrodiol-9,10-epoxide (BPDE). However, how BPDE induces human trophoblast cell apoptosis is still largely elusive. In this work, we used BPDE-treated human trophoblast cells and villous tissues collected from recurrent miscarriage and health control groups to explore the underlying mechanism of BPDE-induced human trophoblast cell apoptosis. Continued with our recent work, we found that lncRNA HZ01 (lnc-HZ01) could induce human trophoblast cell apoptosis. In mechanism, lnc-HZ01 up-regulated p53 expression level by suppressing its MDM2-mediated proteasomal degradation. Meanwhile, we found that p53 acted as lnc-HZ01 transcription factor and promoted lnc-HZ01 transcription. Thus, lnc-HZ01 and p53 composed a positive feedback loop in human trophoblast cells. In normal trophoblast cells, relatively low levels of lnc-HZ01 and p53 suppressed p53/caspase-3 apoptosis pathway, giving normal pregnancy. Upon BPDE exposure, BPDE up-regulated the expression levels of lnc-HZ01 and p53, triggered this positive feedback loop, activated the p53/caspase-3 apoptosis pathway, and then induced miscarriage. Collectively, we discovered new mechanism by which lnc-HZ01 regulated BPDE-induced human trophoblast cell apoptosis, providing scientific basis for the diagnosis and treatment of unexplained recurrent miscarriage.


Asunto(s)
Aborto Habitual , ARN Largo no Codificante , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido/metabolismo , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido/toxicidad , Aborto Habitual/inducido químicamente , Aborto Habitual/metabolismo , Apoptosis , Caspasa 3/metabolismo , Retroalimentación , Femenino , Humanos , Embarazo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Trofoblastos/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
11.
J Environ Manage ; 322: 116075, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36055097

RESUMEN

As a momentous policy tool for spatial management, urban administrative boundary expansion (UABE) significantly impacts resource reorganization and development modes. However, the environmental effects of UABE are easily ignored. Whether UABE can also impove the environmental quality in addition to its economic effects remains to be answered. To fill this gap, we took the city-county merger policy (CCMP) in China as quasi-experimental evidence and empirically investigated the impacts of CCMP on air pollution based on the difference-in-difference method. The impact mechanisms were also analyzed from a whole-process perspective. The results demonstrate that, apart from expanding the urban scale, UABE can improve urban air quality as well. Further analysis shows that the positive effect is mainly realized by source control and process management, rather than end-of-pipe treatment. Besides, the impacts of UABE on air pollution exhibit obvious spatial heterogeneous characteristics. We also reported that the environmental effects of UABE are largely dependent on governmental control, rather than market factors. According to the results above, flexible administrative boundary adjustment, strict government regulations, and effective market systems are required to realize the dual goals of environmental improvement and space optimization.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , China , Ciudades , Monitoreo del Ambiente , Contaminación Ambiental , Material Particulado/análisis
12.
Bioconjug Chem ; 32(1): 73-81, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33393280

RESUMEN

Multidrug resistance (MDR) is the main obstacle in cancer chemotherapy. ATP-binding cassette (ABC) transporters can transport a wide range of antitumor drugs out of cells, which is the most common reason in the development of resistance to drugs. Currently, various therapeutic strategies are used to reverse MDR, among which CRISPR/Cas9 gene editing technique is expected to be an effective way. Here, we reviewed the research progress of reversing ABC-mediated drug resistance by CRISPR/Cas9 system.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/fisiología , Sistemas CRISPR-Cas , Resistencia a Múltiples Medicamentos/fisiología , Animales , Antineoplásicos/farmacología , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Múltiples Medicamentos/genética , Edición Génica , Humanos
13.
Cell Biol Toxicol ; 37(6): 951-970, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33566220

RESUMEN

Normal pregnancy is essential for human reproduction. However, environmental BaP (benzo(a)pyrene) and its metabolite BPDE (benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide) induce dysfunctions of human trophoblastic cells, which could further result in miscarriage. Yet, the molecular mechanisms remain poorly understood. In this work, a novel lnc-HZ03 and a novel miR-hz03 were identified. Both lnc-HZ03 and miR-hz03 were highly expressed in human recurrent miscarriage villous tissues and in BPDE-exposed trophoblastic cells. Lnc-HZ03 and miR-hz03 upregulated each other, forming a positive feedback loop. MiR-hz03 could also upregulate p53 level by enhancing its mRNA stability. Both lnc-HZ03 and p53 mRNA contained the target site for miR-hz03 and could directly interact with miR-hz03. It was this target site instead of its mutant on lnc-HZ03 that regulated p53 expression. Subsequently, the upregulated p53 facilitated SAT1 transcription and enhanced SAT1-catalyzed spermine metabolism, which further resulted in trophoblastic cell apoptosis and induced miscarriage. All together, the p53/SAT1 pathway upregulated by lnc-HZ03 and miR-hz03 could promote BPDE-induced human trophoblastic cell apoptosis and the occurrence of miscarriage, shedding novel light on the causes of miscarriage. Graphical abstract Lnc-HZ03 and miR-hz03 regulate the occurrence of recurrent miscarriage (RM). In human trophoblastic cells, lnc-HZ03 upregulates miR-hz03 level. MiR-hz03 increases the RNA stability of lnc-HZ03 and p53 mRNA. P53 promotes SAT1 transcription and reduces its cellular spermine content, resulting in cell apoptosis. Under normal conditions, lnc-HZ03/miR-hz03 and p53/SAT1 pathways are downregulated, maintaining normal pregnancy. After exposure to BPDE, lnc-HZ03/miR-hz03 and p53/SAT1 pathways are upregulated and finally induce miscarriage.


Asunto(s)
Aborto Espontáneo , MicroARNs , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido , Aborto Espontáneo/inducido químicamente , Aborto Espontáneo/genética , Apoptosis , Femenino , Humanos , MicroARNs/genética , Embarazo , Proteína p53 Supresora de Tumor/genética
14.
Transfusion ; 60(10): 2210-2216, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32770691

RESUMEN

BACKGROUND: The management of critically ill patients with coronavirus disease 2019 (COVID-19), caused by a new human virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is challenging. Recently, there have been several reports with inconsistent results after treatment with convalescent plasma (CP) on critically ill patients with COVID-19, which was produced with a neutralizing antibody titer and tested in a P3 or P4 laboratory. However, due to the limitation of the conditions on mass production of plasma, most producers hardly had the capability to isolate the neutralizing antibody. Here, we report the clinical courses of three critically ill patients with COVID-19 receiving CP treatments by total immunoglobulin G (IgG) titer collection. METHODS: Three patients with COVID-19 in this study were laboratory confirmed to be positive for SARS-CoV-2, with radiographic and clinical features of pneumonia. CP was collected by total IgG titer of 160 (range, 200-225 mL), and patients were transfused between 20 and 30 days after disease onset at the critical illness stage as a trial in addition to standard care. The clinical courses of these patients, including laboratory results and pulmonary functional and image studies after receiving convalescent plasma infusions, were reviewed. RESULTS: No therapeutic effect of CP was observed in any of the patients; instead, all three patients deteriorated and required extracorporeal membrane oxygenation treatment. A potential cytokine storm 4 hours after infusion of CP in Patient 2 was observed. No more patients were put on the trial of CP transfusion. CONCLUSIONS: We recommend extreme caution in using CP in critically ill patients more than 2 weeks after the onset of COVID-19 pneumonia.


Asunto(s)
COVID-19/terapia , SARS-CoV-2/patogenicidad , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Enfermedad Crítica , Humanos , Inmunización Pasiva/métodos , Inmunoglobulina G/inmunología , Neumonía/inmunología , Neumonía/virología , Sueroterapia para COVID-19
15.
Cancer Control ; 27(1): 1073274820960467, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32938231

RESUMEN

Patients with lung cancer are presumed to be at high risk from COVID-19 infection due to underlying malignancy. A total of 31 COVID-19 patients with pre-diagnosed lung cancer and 186 age and sex matched COVID-19 patients without cancer in 6 hospitals in Wuhan, China were identified in our study. There was a significantly higher level of IL-6 in lung cancer group showed by multifactorial analysis. The restricted mean survival time in 10, 20, and 53 days in COVID-19 patients with lung cancer were ealier than non-cancer COVID-19 patients in the same observation time (all P values < 0.05). Our results indicated that pre-diagnosed lung cancer was associated with higher morbidity and mortality in COVID-19 patients.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/epidemiología , Neoplasias Pulmonares/complicaciones , Pandemias , Neumonía Viral/epidemiología , COVID-19 , China/epidemiología , Infecciones por Coronavirus/complicaciones , Femenino , Hospitalización/tendencias , Humanos , Neoplasias Pulmonares/epidemiología , Masculino , Persona de Mediana Edad , Neumonía Viral/complicaciones , Estudios Retrospectivos , Factores de Riesgo , SARS-CoV-2 , Tasa de Supervivencia/tendencias
16.
Arch Biochem Biophys ; 675: 108120, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31563510

RESUMEN

Dpo4 is a representative model of Y-family DNA polymerase and is therefore one of the most intensively studied DNA polymerase. 6 mA, an epigenetic marker, plays important roles in regulation of various biological processes. However, its effects on DNA replication by Dpo4 is completely unknown. Here, we found that 6 mA and its intermediate Hyp inhibits primer extension by Dpo4, showing an obvious blockage just one nucleotide before 6 mA or Hyp. 6 mA reduces dTTP incorporation efficiency, next-base extension efficiency, binding affinity of DNA to Dpo4, binding affinity of dTTP to Dpo4-DNA complex, the fraction of productive Dpo4 or productive ternary complex, and the burst incorporation rate, explaining the inhibition effects of 6 mA on DNA replication by Dpo4. Hyp is similar to G and dCTP is preferentially incorporated opposite Hyp by Dpo4, resulting in A:T to G:C mutation. Relative to dTTP incorporation opposite unmodified A, Hyp reduces dCTP incorporation efficiency, next-base extension efficiency, the priority in extension beyond correct pair, binding affinity of Dpo4 to DNA, binding of dCTP to Dpo4-DNA complex, and the burst incorporation efficiency, explaining the inhibition effects of Hyp on DNA replication by Dpo4. This work provides insight in the effects of epigenetically modified 6 mA and Hyp on DNA replication by a representative Y-family DNA polymerase Dpo4.


Asunto(s)
Adenina/análogos & derivados , Replicación del ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , ADN/química , Epigénesis Genética , Sulfolobus solfataricus/enzimología , Adenina/química
18.
Nucleic Acids Res ; 42(11): 6987-98, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24799438

RESUMEN

Genomic imprinting often results in parent-of-origin specific differential expression of maternally and paternally inherited alleles. In plants, the triploid endosperm is where gene imprinting occurs most often, but aside from studies on Arabidopsis, little is known about gene imprinting in dicotyledons. In this study, we inspected genomic imprinting in castor bean (Ricinus communis) endosperm, which persists throughout seed development. After mapping out the polymorphic SNP loci between accessions ZB306 and ZB107, we generated deep sequencing RNA profiles of F1 hybrid seeds derived from reciprocal crosses. Using polymorphic SNP sites to quantify allele-specific expression levels, we identified 209 genes in reciprocal endosperms with potential parent-of-origin specific expression, including 200 maternally expressed genes and 9 paternally expressed genes. In total, 57 of the imprinted genes were validated via reverse transcriptase-polymerase chain reaction sequencing, and analysis of the genomic DNA methylation distribution between embryo and endosperm tissues showed significant hypomethylation in the endosperm and an enrichment of differentially methylated regions around the identified genes. Curiously, the expression of the imprinted genes was not tightly linked to DNA methylation. These results largely extended gene imprinting information existing in plants, providing potential directions for further research in gene imprinting.


Asunto(s)
Metilación de ADN , Endospermo/genética , Impresión Genómica , Ricinus communis/genética , Ricinus communis/embriología , Genes de Plantas , Polimorfismo de Nucleótido Simple
19.
J Hematol Oncol ; 17(1): 90, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39380046

RESUMEN

Since the United States Food and Drug Administration (FDA) approved the first chimeric antigen receptor T-cell (CAR-T) therapy in 2017, it has marked a major breakthrough in cancer treatment, leading to a surge in global research and applications in this field. In recent years, China has made rapid progress, quickly catching up through heavy investment in CAR-T construction, preparation processes, and treatment strategies. China's CAR-T therapy market is driven by substantial pharmaceutical investment targeting its vast population, yet high therapy costs remain uncovered by basic medical insurance. In November 2023, FDA issued a warning about the risk of secondary cancers in patients undergoing CAR-T therapy, sparking global concern. In fact, the China National Medical Products Administration (NMPA) preemptively implemented a series of measures to address the safety concerns of CAR-T therapy, emphasizing the risk of secondary cancers and advising lifelong monitoring as part of the approval process for CAR-T products. Nevertheless, additional regulatory measures are needed to address emerging risks, particularly the threat of secondary cancers. The authors believe that raising the standards for Investigational New Drug (IND) approval and establishing a dynamic reporting and feedback system based on real-world data will strengthen regulatory oversight and support the sustainable growth of the CAR-T industry in China.


Asunto(s)
Inmunoterapia Adoptiva , Neoplasias , Receptores Quiméricos de Antígenos , Humanos , China , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/legislación & jurisprudencia , Inmunoterapia Adoptiva/métodos , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias Primarias Secundarias/etiología , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/uso terapéutico
20.
PLoS One ; 19(3): e0298533, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38536776

RESUMEN

An important cellular barrier to maintain the stability of the brain's internal and external environment is the blood-brain barrier (BBB). It also prevents harmful substances from entering brain tissue through blood circulation while providing protection for the central nervous system. It should be noted, however, that the intact BBB can be a barrier to the transport of most drugs into the brain via the conventional route of administration, which can prevent them from reaching effective concentrations for the treatment of disorders affecting the central nervous system. Electroacupuncture stimulation has been shown to be effective at opening the BBB in a series of experimental studies. This study systematically analyzes the possibility and mechanism by which electroacupuncture opens the BBB. In PubMed, Web of Science, VIP Database, Wanfang Database, and the Chinese National Knowledge Infrastructure, papers have been published for nearly 22 years aimed at opening the BBB and its associated structures. A comparison of EB content between electroacupuncture and control was selected as the primary outcome. There were also results on vascular endothelial growth factor (VEGF), nerve growth factor (NGF), P-Glycoprotein (P-gp), Matrix Metalloproteinase 9 (MMP-9), and glial fibrillary acidic protein (GFAP). We utilized Review Manager software analysis to analyze correlations between studies with a view to exploring the mechanisms of similarity. Evans Blue infiltration forest plot: pooled effect size of 2.04, 95% CI: 1.21 to 2.87, P < 0.01. These results indicate that electroacupuncture significantly increases EB penetration across the BBB. Most studies have reported that GFAP, MMP-9, and VEGF were upregulated after treatment. P-gp expression decreased as well. Electroacupuncture can open the BBB, and the sparse-dense wave is currently the most effective electroacupuncture frequency for opening the BBB. VEGF plays an important role in opening the BBB. It is also important to regulate the expression of MMP-9 and GFAP and inhibit the expression of P-gp.


Asunto(s)
Barrera Hematoencefálica , Electroacupuntura , Ratas , Animales , Barrera Hematoencefálica/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratas Sprague-Dawley , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Permeabilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA