RESUMEN
Many genome-processing reactions, including transcription, replication and repair, generate DNA rotation. Methods that directly measure DNA rotation, such as rotor bead tracking1-3, angular optical trapping4 and magnetic tweezers5, have helped to unravel the action mechanisms of a range of genome-processing enzymes that includes RNA polymerase (RNAP)6, gyrase2, a viral DNA packaging motor7 and DNA recombination enzymes8. Despite the potential of rotation measurements to transform our understanding of genome-processing reactions, measuring DNA rotation remains a difficult task. The time resolution of existing methods is insufficient for tracking the rotation induced by many enzymes under physiological conditions, and the measurement throughput is typically low. Here we introduce origami-rotor-based imaging and tracking (ORBIT), a method that uses fluorescently labelled DNA origami rotors to track DNA rotation at the single-molecule level with a time resolution of milliseconds. We used ORBIT to track the DNA rotations that result from unwinding by the RecBCD complex, a helicase that is involved in DNA repair9, as well as from transcription by RNAP. We characterized a series of events that occur during RecBCD-induced DNA unwinding-including initiation, processive translocation, pausing and backtracking-and revealed an initiation mechanism that involves reversible ATP-independent DNA unwinding and engagement of the RecB motor. During transcription by RNAP, we directly observed rotational steps that correspond to the unwinding of single base pairs. We envisage that ORBIT will enable studies of a wide range of interactions between proteins and DNA.
Asunto(s)
ADN/análisis , ADN/metabolismo , Exodesoxirribonucleasa V/metabolismo , Genoma/genética , Conformación de Ácido Nucleico , Rotación , Emparejamiento Base , ADN/química , Roturas del ADN de Doble Cadena , ADN Helicasas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Transcripción GenéticaRESUMEN
Single-cell profiling methods have had a profound impact on the understanding of cellular heterogeneity. While genomes and transcriptomes can be explored at the single-cell level, single-cell profiling of proteomes is not yet established. Here we describe new single-molecule protein sequencing and identification technologies alongside innovations in mass spectrometry that will eventually enable broad sequence coverage in single-cell profiling. These technologies will in turn facilitate biological discovery and open new avenues for ultrasensitive disease diagnostics.
Asunto(s)
Análisis de Secuencia de Proteína/métodos , Imagen Individual de Molécula/métodos , Espectrometría de Masas/métodos , Nanotecnología , Proteínas/química , Proteómica/métodos , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodosRESUMEN
Mulberry (Morus spp., Moraceae) is an important economic crop plant and is rich in flavonoids and anthocyanidins in ripe fruits. Anthocyanins are glycosides of anthocyanidins. Flavanone 3-hydroxylase (F3H) catalyzes the conversion of naringenin into dihydroflavonols and is responsible for the biosynthesis of flavonols and anthocyanidins. In this study, MazsF3H was cloned and characterized from Morus atropurpurea var. Zhongshen 1. Conserved motif analysis based on alignment and phylogenetic analysis indicated that MazsF3H belonged to 2-oxoglutarate-dependent dioxygenase and MazsF3H clustered with F3Hs from other plants. MazsF3H was located in both nucleus and cytosol. MazsF3H was expressed in stems, leaves, stigmas and ovaries, except buds. F3H expression levels showed a positive and close relationship with anthocyanin content during the anthocyanin-rich fruit ripening process, while it showed a negative correlation with anthocyanin content in LvShenZi, whose fruits are white and would not experience anthocyanin accumulation during fruit ripening. Significantly different F3H expression levels were also found in different mulberry varieties that have quite different anthocyanin contents in ripe fruits. Overexpression MazsF3H in tobacco showed unexpected results, including decreased anthocyanin content. Down-regulation of F3H expression levels resulted in co-expression of the genes involved in anthocyanin biosynthesis and a significant decrease in anthocyanin content, but the change in total flavonoid content was subtle. Our results indicated that F3H may play quite different roles in different varieties that have quite different fruit colors. In addition, possible complex regulation of flavonoid biosynthesis should be further explored in some of the featured plant species.
Asunto(s)
Antocianinas , Morus , Antocianinas/metabolismo , Flavonoides/metabolismo , Frutas/genética , Frutas/metabolismo , Oxigenasas de Función Mixta , Morus/genética , Morus/metabolismo , FilogeniaRESUMEN
Counting molecules in complexes is challenging, even with super-resolution microscopy. Here, we use the programmable and specific binding of dye-labeled DNA probes to count integer numbers of targets. This method, called quantitative points accumulation in nanoscale topography (qPAINT), works independently of dye photophysics for robust counting with high precision and accuracy over a wide dynamic range. qPAINT was benchmarked on DNA nanostructures and demonstrated for cellular applications by quantifying proteins in situ and the number of single-molecule FISH probes bound to an mRNA target.
Asunto(s)
ADN/química , ADN/ultraestructura , Aumento de la Imagen/métodos , Hibridación Fluorescente in Situ/métodos , Microscopía Fluorescente/métodos , Animales , Colorantes Fluorescentes/química , Humanos , Microscopía Confocal/métodos , Simulación del Acoplamiento Molecular , Análisis de Secuencia de ADN , Programas InformáticosRESUMEN
Programmed self-assembly of strands of nucleic acid has proved highly effective for creating a wide range of structures with desired shapes. A particularly successful implementation is DNA origami, in which a long scaffold strand is folded by hundreds of short auxiliary strands into a complex shape. Modular strategies are in principle simpler and more versatile and have been used to assemble DNA or RNA tiles into periodic and algorithmic two-dimensional lattices, extended ribbons and tubes, three-dimensional crystals, polyhedra and simple finite two-dimensional shapes. But creating finite yet complex shapes from a large number of uniquely addressable tiles remains challenging. Here we solve this problem with the simplest tile form, a 'single-stranded tile' (SST) that consists of a 42-base strand of DNA composed entirely of concatenated sticky ends and that binds to four local neighbours during self-assembly. Although ribbons and tubes with controlled circumferences have been created using the SST approach, we extend it to assemble complex two-dimensional shapes and tubes from hundreds (in some cases more than one thousand) distinct tiles. Our main design feature is a self-assembled rectangle that serves as a molecular canvas, with each of its constituent SST strands--folded into a 3 nm-by-7 nm tile and attached to four neighbouring tiles--acting as a pixel. A desired shape, drawn on the canvas, is then produced by one-pot annealing of all those strands that correspond to pixels covered by the target shape; the remaining strands are excluded. We implement the strategy with a master strand collection that corresponds to a 310-pixel canvas, and then use appropriate strand subsets to construct 107 distinct and complex two-dimensional shapes, thereby establishing SST assembly as a simple, modular and robust framework for constructing nanostructures with prescribed shapes from short synthetic DNA strands.
Asunto(s)
ADN de Cadena Simple/química , ADN de Cadena Simple/síntesis química , Nanoestructuras/química , Conformación de Ácido Nucleico , Programas InformáticosRESUMEN
To decipher the molecular mechanisms of biological function, it is critical to map the molecular composition of individual cells or even more importantly tissue samples in the context of their biological environment in situ. Immunofluorescence (IF) provides specific labeling for molecular profiling. However, conventional IF methods have finite multiplexing capabilities due to spectral overlap of the fluorophores. Various sequential imaging methods have been developed to circumvent this spectral limit but are not widely adopted due to the common limitation of requiring multirounds of slow (typically over 2 h at room temperature to overnight at 4 °C in practice) immunostaining. We present here a practical and robust method, which we call DNA Exchange Imaging (DEI), for rapid in situ spectrally unlimited multiplexing. This technique overcomes speed restrictions by allowing for single-round immunostaining with DNA-barcoded antibodies, followed by rapid (less than 10 min) buffer exchange of fluorophore-bearing DNA imager strands. The programmability of DEI allows us to apply it to diverse microscopy platforms (with Exchange Confocal, Exchange-SIM, Exchange-STED, and Exchange-PAINT demonstrated here) at multiple desired resolution scales (from â¼300 nm down to sub-20 nm). We optimized and validated the use of DEI in complex biological samples, including primary neuron cultures and tissue sections. These results collectively suggest DNA exchange as a versatile, practical platform for rapid, highly multiplexed in situ imaging, potentially enabling new applications ranging from basic science, to drug discovery, and to clinical pathology.
Asunto(s)
ADN/química , Hipocampo/citología , Inmunoconjugados/química , Microscopía Confocal/métodos , Neuronas/ultraestructura , Imagen Óptica/métodos , Mapeo de Interacción de Proteínas/métodos , Animales , Encéfalo/ultraestructura , Células Cultivadas , Colorantes Fluorescentes/química , Hipocampo/ultraestructura , Ratones , Microscopía Fluorescente/métodos , Neuronas/citología , Retina/citología , Retina/ultraestructura , Coloración y Etiquetado/métodos , Sinapsinas/análisis , Sinaptofisina/análisisRESUMEN
MicroRNA (miRNA) expression profiles hold promise as biomarkers for diagnostics and prognosis of complex diseases. Herein, we report a super-resolution fluorescence imaging-based digital profiling method for specific, sensitive, and multiplexed detection of miRNAs. In particular, we applied the DNA-PAINT (point accumulation for imaging in nanoscale topography) method to implement a super-resolution geometric barcoding scheme for multiplexed single-molecule miRNA capture and digital counting. Using synthetic DNA nanostructures as a programmable miRNA capture nano-array, we demonstrated high-specificity (single nucleotide mismatch discrimination), multiplexed (8-plex, 2 panels), and sensitive measurements on synthetic miRNA samples, as well as applied one 8-plex panel to measure endogenous miRNAs levels in total RNA extract from HeLa cells.
Asunto(s)
MicroARNs/análisis , Tipificación Molecular , Células HeLa , Humanos , MicroARNs/química , Imagen Óptica , Sondas ARN/químicaRESUMEN
Super-resolution fluorescence microscopy is a powerful tool for biological research, but obtaining multiplexed images for a large number of distinct target species remains challenging. Here we use the transient binding of short fluorescently labeled oligonucleotides (DNA-PAINT, a variation of point accumulation for imaging in nanoscale topography) for simple and easy-to-implement multiplexed super-resolution imaging that achieves sub-10-nm spatial resolution in vitro on synthetic DNA structures. We also report a multiplexing approach (Exchange-PAINT) that allows sequential imaging of multiple targets using only a single dye and a single laser source. We experimentally demonstrate ten-color super-resolution imaging in vitro on synthetic DNA structures as well as four-color two-dimensional (2D) imaging and three-color 3D imaging of proteins in fixed cells.
Asunto(s)
Técnicas Citológicas/métodos , Imagenología Tridimensional , Microscopía Fluorescente/tendencias , Color , ADN/químicaRESUMEN
Nucleic acid nanotechnology has enabled researchers to construct a wide range of multidimensional structures in vitro. Until recently, most DNA-based structures were assembled by thermal annealing using high magnesium concentrations and nonphysiological environments. Here, we describe a DNA self-assembly system that can be tuned to form a complex target structure isothermally at any prescribed temperature or homogeneous condition within a wide range. We were able to achieve isothermal assembly between 15 and 69 °C in a predictable fashion by altering the strength of strand-strand interactions in several different ways, for example, domain length, GC content, and linker regions between domains. We also observed the assembly of certain structures under biocompatible conditions, that is, at physiological pH, temperature, and salinity in the presence of the molecular crowding agent polyethylene glycol (PEG) mimicking the cellular environment. This represents an important step toward the self-assembly of geometrically precise DNA or RNA structures in vivo.
Asunto(s)
ADN/química , Nanotecnología , Conformación de Ácido Nucleico , Polietilenglicoles/química , Temperatura , TermodinámicaRESUMEN
Nucleic acids have emerged as effective materials for assembling complex nanoscale structures. To tailor the structures to function optimally for particular applications, a broad structural design space is desired. Despite the many discrete and extended structures demonstrated in the past few decades, the design space remains to be fully explored. In particular, the complex finite-sized structures produced to date have been typically based on a small number of structural motifs. Here, we perform a comprehensive study of the design space for complex DNA structures, using more than 30 distinct motifs derived from single-stranded tiles. These motifs self-assemble to form structures with diverse strand weaving patterns and specific geometric properties, such as curvature and twist. We performed a systematic study to control and characterize the curvature of the structures, and constructed a flat structure with a corrugated strand pattern. The work here reveals the broadness of the design space for complex DNA nanostructures.
Asunto(s)
ADN/química , Nanoestructuras/química , ADN de Cadena Simple/química , Nanoestructuras/ultraestructura , Conformación de Ácido NucleicoRESUMEN
Mulberry (Morus) is used as a feed additive and biofuel materials. Cinnamyl alcohol dehydrogenase (CAD; EC 1.1.1.95) catalyzes the final step of monolignol biosynthesis and is responsible for various monolignols. Five MaCADs from Morus alba were cloned and functionally characterized in the present study. These MaCADs encoded proteins with 357-364 amino acids, and the putative protein sequences conservatively possessed two Zn2+ binding motifs and an NADP(H) cofactor binding motif. However, MaCAD1, 2, and 5 shared similar amino acids at substrate binding positions that differed from those possessed by bona fide CADs. MaCAD3 and 4 had conservative substrate binding sites, and both phylogenetic and expression profile analysis indicated they were bona fide CADs involved in lignin biosynthesis. The enzymatic assay showed that MaCAD1 and 5 had a high affinity to p-coumaryl aldehyde. MaCAD4 preferentially used coniferyl aldehyde and sinapyl aldehyde as substrates. His-72 and Tyr-124 in MaCAD1 stabilized p-coumaryl aldehyde, and may have resulted in the substrate preference for p-coumaryl aldehyde. Down-regulation of MaCADs in mulberry showed that MaCAD3/4 were dominant CADs that functioned in monolignol biosynthesis, and decreased MaCAD3/4 resulted in significant decreases of lignin content in both stems and leaves. MaCADs exhibited different expression patterns in response to various stresses, indicating their possible diverse roles. MaCAD2 and MaCAD5 may play positive roles in response to drought and cold stresses, respectively. These results provide a systematic functional analysis of MaCADs in mulberry and an important foundation for the genetic modification of the monolignol pathway in mulberry.
Asunto(s)
Morus , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Aldehídos , Aminoácidos , Lignina/metabolismo , Morus/genética , Morus/metabolismo , FilogeniaRESUMEN
Recent advances in localization-based super-resolution microscopy have enabled researchers to visualize single molecular features down to individual molecular components (~5 nm), but do not yet allow manipulation of single-molecule targets in a user-prescribed, context-dependent manner. Here we report an 'Action-PAINT' (PAINT, point accumulation for imaging in nanoscale topography) strategy for super-resolution labelling upon visualization on single molecules. This approach monitors and localizes DNA binding events in real time with DNA-PAINT, and upon visualization of binding to a desired location, photo-crosslinks the DNA to affix the molecular label. We showed the efficiency of 3-cyanovinylcarbazole nucleoside photo-inducible crosslinking on single molecular targets and developed a software package for real-time super-resolution imaging and crosslinking control. We then benchmarked our super-resolution labelling method on synthetic DNA nanostructures and demonstrated targeted multipoint labelling on various complex patterns with 30 nm selectivity. Finally, we performed targeted in situ labelling on fixed microtubule samples with a 40 nm target size and custom-controlled, subdiffraction spacing.
Asunto(s)
Carbazoles/química , ADN/química , Nanoestructuras/química , Nanotecnología , Nucleósidos/químicaRESUMEN
Far-field super-resolution fluorescence microscopy has allowed observation of biomolecular and synthetic nanoscale systems with features on the nanometre scale, with chemical specificity and multiplexing capability. DNA-PAINT (DNA-based point accumulation for imaging in nanoscale topography) is a super-resolution method that exploits programmable transient hybridization between short oligonucleotide strands, and allows multiplexed, single-molecule, single-label visualization with down to ~5-10 nm resolution. DNA-PAINT provides a method for structural characterisation of nucleic acid nanostructures with high spatial resolution and single-strand visibility.
Asunto(s)
ADN/química , Nanoestructuras/química , Nanotecnología/métodos , Ácidos Nucleicos/química , Microscopía Fluorescente/métodos , Oligonucleótidos/químicaRESUMEN
Distinct electromagnetic properties can emerge from the three-dimensional (3D) configuration of a plasmonic nanostructure. Furthermore, the reconfiguration of a dynamic plasmonic nanostructure, driven by physical or chemical stimuli, may generate a tailored plasmonic response. In this work, we constructed a 3D reconfigurable plasmonic nanostructure with controllable, reversible conformational transformation using bottom-up DNA self-assembly. Three gold nanorods (AuNRs) were positioned onto a reconfigurable DNA origami tripod. The internanorod angle and distance were precisely tuned through operating the origami tripod by toehold-mediated strand displacement. The transduction of conformational change manifested into a controlled shift of the plasmonic resonance peak, which was studied by dark-field microscopy, and agrees well with electrodynamic calculations. This new 3D plasmonic nanostructure not only provides a method to study the plasmonic resonance of AuNRs at prescribed 3D conformations but also demonstrates that DNA origami can serve as a general self-assembly platform for constructing various 3D reconfigurable plasmonic nanostructures with customized optical properties.
Asunto(s)
ADN/química , Oro/química , Nanoestructuras/química , Nanotecnología , Silicio/química , Propiedades de SuperficieRESUMEN
Self-folding of an information-carrying polymer into a defined structure is foundational to biology and offers attractive potential as a synthetic strategy. Although multicomponent self-assembly has produced complex synthetic nanostructures, unimolecular folding has seen limited progress. We describe a framework to design and synthesize a single DNA or RNA strand to self-fold into a complex yet unknotted structure that approximates an arbitrary user-prescribed shape. We experimentally construct diverse multikilobase single-stranded structures, including a ~10,000-nucleotide (nt) DNA structure and a ~6000-nt RNA structure. We demonstrate facile replication of the strand in vitro and in living cells. The work here thus establishes unimolecular folding as a general strategy for constructing complex and replicable nucleic acid nanostructures, and expands the design space and material scalability for bottom-up nanotechnology.
Asunto(s)
ADN de Cadena Simple/química , Nanoestructuras/química , Nanotecnología/métodos , Pliegue del ARN , ARN/química , Replicación del ADN , ADN de Cadena Simple/genética , Escherichia coli , Nucleótidos/químicaRESUMEN
Recent advances in fluorescence super-resolution microscopy have allowed subcellular features and synthetic nanostructures down to 10-20 nm in size to be imaged. However, the direct optical observation of individual molecular targets (â¼5â nm) in a densely packed biomolecular cluster remains a challenge. Here, we show that such discrete molecular imaging is possible using DNA-PAINT (points accumulation for imaging in nanoscale topography)-a super-resolution fluorescence microscopy technique that exploits programmable transient oligonucleotide hybridization-on synthetic DNA nanostructures. We examined the effects of a high photon count, high blinking statistics and an appropriate blinking duty cycle on imaging quality, and developed a software-based drift correction method that achieves <1â nm residual drift (root mean squared) over hours. This allowed us to image a densely packed triangular lattice pattern with â¼5â nm point-to-point distance and to analyse the DNA origami structural offset with ångström-level precision (2â Å) from single-molecule studies. By combining the approach with multiplexed exchange-PAINT imaging, we further demonstrated an optical nanodisplay with 5 × 5â nm pixel size and three distinct colours with <1â nm cross-channel registration accuracy.
Asunto(s)
ADN/química , Imagen Molecular/métodos , Nanoestructuras/química , Imagen Óptica/métodos , ADN/ultraestructura , Microscopía Fluorescente , Nanoestructuras/ultraestructuraRESUMEN
The courtship behavior of Drosophilid flies has served as a long-standing model for studying the bases of animal communication. During courtship, male flies flap their wings to send a complex pattern of airborne vibrations to the antennal ears of the females. These "courtship songs" differ in their spectrotemporal composition across species and are considered a crucial component of the flies' premating barrier. However, whether the species-specific differences in song structure are also reflected in the receivers of this communication system, i.e., the flies' antennal ears, has remained unexplored. Here we show for seven members of the melanogaster species group that (1) their ears are mechanically tuned to different best frequencies, (2) the ears' best frequencies correlate with high-frequency pulses of the conspecific courtship songs, and (3) the species-specific tuning relies on amplificatory mechanical feedback from the flies' auditory neurons. As a result of its level-dependent nature, the active mechanical feedback amplification is particularly useful for the detection of small stimuli, such as conspecific song pulses, and becomes negligible for sensing larger stimuli, such as the flies' own wingbeat during flight.