Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Reprod Biol Endocrinol ; 22(1): 5, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38169395

RESUMEN

BACKGROUND: Neuroepithelial transforming gene 1 (NET1) is a RhoA subfamily guanine nucleotide exchange factor that governs a wide array of biological processes. However, its roles in meiotic oocyte remain unclear. We herein demonstrated that the NET1-HACE1-RAC1 pathway mediates meiotic defects in the progression of oocyte maturation. METHODS: NET1 was reduced using a specific small interfering RNA in mouse oocytes. Spindle assembly, chromosomal alignment, the actin cap, and chromosomal spreads were visualized by immunostaining and analyzed under confocal microscopy. We also applied mass spectroscopy, and western blot analysis for this investigation. RESULTS: Our results revealed that NET1 was localized to the nucleus at the GV stage, and that after GVBD, NET1 was localized to the cytoplasm and predominantly distributed around the chromosomes, commensurate with meiotic progression. NET1 resided in the cytoplasm and significantly accumulated on the spindle at the MI and MII stages. Mouse oocytes depleted of Net1 exhibited aberrant first polar body extrusion and asymmetric division defects. We also determined that Net1 depletion resulted in reduced RAC1 protein expression in mouse oocytes, and that NET1 protected RAC1 from degradation by HACE1, and it was essential for actin dynamics and meiotic spindle formation. Importantly, exogenous RAC1 expression in Net1-depleted oocytes significantly rescued these defects. CONCLUSIONS: Our results suggest that NET1 exhibits multiple roles in spindle stability and actin dynamics during mouse oocyte meiosis.


Asunto(s)
Actinas , Huso Acromático , Animales , Ratones , Actinas/metabolismo , Meiosis , Oncogenes , Oocitos/metabolismo , Huso Acromático/metabolismo
2.
Reprod Domest Anim ; 58(1): 168-175, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36214091

RESUMEN

Embryo production in donkeys is inefficient compared with that in other livestock. Obtaining a sufficient number of MII oocytes is the first step to solving this problem. In this study, the number, morphology and maturation rates of cumulus-oocyte complexes (COCs) obtained from abattoir-derived ovaries or live jennies were compared. The diameter of follicles from abattoir-derived ovaries was measured and divided into group 1 (2-6 mm), group 2 (6-10 mm), group 3 (10-20 mm), group 4 (20-28 mm) and group 5 (>28 mm). The results showed that the number of follicles per ovary in group 2 (3.6 ± 0.28) and 3 (4.2 ± 0.90) was higher than that in the other groups (p < .05). The recovery rate in group 3 was higher than group 1 (48.8% vs. 26.8%, p = .00), but lower than group 5 (48.8% vs. 76.5%, p = .025). The percentage of grade A COCs in group 3 was higher than group 2 (59.3% vs. 39.5%, p = .00) and group 1 (59.3% vs. 26.7%, p = .00). Moreover, the percentage of grade A COCs in group 4 (55.0%, p = .710) and group 5 (46.2%, p = .351) was reduced compared with that in group 3. From the above results, the developing follicles (group ovum pick-up [OPU], 10-20 mm) and preovulation follicles (group OPU-Preov, >35 mm) were aspirated from live jennies using OPU. Although there was no difference in the recovery rates of COCs between group 3 and OPU (48.8% vs. 43.0%, p = .184), the percentage of grades A COCs in group OPU was higher than group 3 (72.5% vs. 59.3%, p = .036). There was no difference in the maturation rate between group 3 and OPU (60.3% vs. 69.3%, p = .171) after the COCs matured in vitro. The rates of recovery (72.2%) and maturation (92.3%) in group OPU-Preov were higher than those in other groups (p < .05). Moreover, the effects of maturation time and serum type on maturation rates were evaluated in groups B44 (44 h, FBS), B36 (36 h, FBS) and D44 (44 h, foetal donkey serum, FDS). These results indicated that the maturation rate in group B36 was lower than group B44 (13.1% vs. 47.0%, p = .00) and group D44 (13.1% vs. 53.3%, p = .00). In conclusion, the quality of donkey COCs from OPU was higher than that from abattoir-derived ovaries, the suitable time of donkey in vitro maturation (IVM) was 44 h, and FBS could be replaced with FDS in donkey IVM medium.


Asunto(s)
Equidae , Oocitos , Animales , Femenino , Ovario , Embrión de Mamíferos , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Técnicas de Maduración In Vitro de los Oocitos/métodos
3.
Front Genet ; 14: 1112377, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36926587

RESUMEN

The Yangyuan donkey is a domestic animal breed mainly distributed in the northwest region of Hebei Province. Donkey body shape is the most direct production index, can fully reflect the donkey's growth status, and is closely related to important economic traits. As one of the main breeding selection criteria, body size traits have been widely used to monitor animal growth and evaluate the selection response. Molecular markers genetically linked to body size traits have the potential to accelerate the breeding process of animals via marker-assisted selection. However, the molecular markers of body size in Yangyuan donkeys have yet to be explored. In this study, we performed a genome-wide association study to identify the genomic variations associated with body size traits in a population of 120 Yangyuan donkeys. We screened 16 single nucleotide polymorphisms that were significantly associated with body size traits. Some genes distributed around these significant SNPs were considered candidates for body size traits, including SMPD4, RPS6KA6, LPAR4, GLP2R, BRWD3, MAGT1, ZDHHC15, and CYSLTR1. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that these genes were mainly involved in the P13K-Akt signaling pathway, Rap1 signaling pathway, regulation of actin cytoskeleton, calcium signaling pathway, phospholipase D signaling pathway, and neuroactive ligand-receptor interactions. Collectively, our study reported on a list of novel markers and candidate genes associated with body size traits in donkeys, providing useful information for functional gene studies and offering great potential for accelerating Yangyuan donkey breeding.

4.
Biology (Basel) ; 11(6)2022 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-35741354

RESUMEN

Insulin-like growth factor-1 (IGF-1) plays a crucial role during folliculogenesis, which has been demonstrated by previous research. However, the optimal IGF-1 dosage in the three-dimensional (3D) culture system is unknown. Mouse secondary follicles (140−150 µm) were cultured for 6 days within an alginate bead in a medium supplemented with 0 (G0), 5 ng/mL (G5), 10 ng/mL (G10), or 50 ng/mL IGF-1 (G50). Secretions of 17ß-estradiol and progesterone were significantly increased in G10 and G50 (p < 0.05). However, G50 significantly inhibited follicular growth (p < 0.05), while G10 showed a higher oocyte maturation rate. Thus, the 10 ng/mL IGF-1 was used in subsequent experiments. IGF-1 enhanced the function of granulosa cells (GCs) by upregulating expressions of Star, Cyp19a1, Hsd3b1, Fshr, and Lhcgr. Oocyte secretory function was promoted by upregulating expressions of Bmp-15, Gdf-9, and Fgf-8. Addition of IGF-1 showed anti-apoptotic effect. However, G10 did not improve fertilization rate of MII oocytes compared to G0. In an intraperitoneal injection experiment in mice, IGF-1 significantly increased the number of ovulated oocytes (p < 0.05). In conclusion, 10 ng/mL IGF-1 can promote the production of mature oocytes in the 3D culture medium and injection of IGF-1 before superovulation increases the number of ovulated oocytes.

5.
Front Vet Sci ; 9: 993426, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36387403

RESUMEN

Vitamins and microelements play essential roles in mammalian ovarian physiology, including follicle development, ovulation, and synthesis and secretion of hormones and growth factors. However, it is nevertheless elusive to what extent exogenous supplementation with mixtures of vitamins ADE, zinc (Zn), and selenium (Se) affects follicular growth and granulosa cells (GCs) molecular function. We herein investigated their effect on follicular growth and GCs physiological function. We showed that follicular growth and ovulation time was accelerated and shortened with the increases of vitamins ADE, Zn, and Se doses by continually monitoring and recording (one estrus cycle of about 21 days) with an ultrasound scanner. Integrated omics analysis showed that there was a sophisticated network relationship, correlation expression, and enrichment pathways of the genes and metabolites highly related to organic acids and their derivatives and lipid-like molecules. Quantitative real-time PCR (qPCR) results showed that vitamin D receptor (VDR), transient receptor potential cation channel subfamily m member 6 (TRPM6), transient receptor potential cation channel subfamily v member 6 (TRPV6), solute carrier family 5 member 1 (SLC5A1), arachidonate 5-lipoxygenase (ALOX5), steroidogenic acute regulatory protein (STAR), prostaglandin-endoperoxide synthase 2 (PTGS2), and insulin like growth factor 1 (IGF-1) had a strong correlation between the transcriptome data. Combined multi-omics analysis revealed that the protein digestion and absorption, ABC transporters, biosynthesis of amino acids, aminoacyl-tRNA biosynthesis, mineral absorption, alanine, aspartate and glutamate metabolism, glycine, serine and threonine metabolism, arginine biosynthesis, and ovarian steroidogenesis were significantly enriched. We focused on the gene-metabolite interactions in ovarian steroidogenesis, founding that insulin receptor (INSR), phospholipase a2 group IVA (PLA2G4A), adenylate cyclase 6 (ADCY6), cytochrome p450 family 1 subfamily b member 1 (CYP1B1), protein kinase camp-activated catalytic subunit beta (PRKACB), cytochrome p450 family 17 subfamily a member 1 (CYP17A1), and phospholipase a2 group IVF (PLA2G4F) were negatively correlated with ß-estradiol (E2), progesterone (P4), and testosterone (T) (P < 0.05). while ALOX5 was a positive correlation with E2, P4, and T (P < 0.05); cytochrome p450 family 19 subfamily a member 1 (CYP19A1) was a negative correlation with cholesterol (P < 0.01). In mineral absorption, our findings further demonstrated that there was a positive correlation between solute carrier family 26 member 6 (SLC26A6), SLC5A1, and solute carrier family 6 member 19 (SLC6A19) with Glycine and L-methionine. Solute carrier family 40 member 1 (SLC40A1) was a negative correlation with Glycine and L-methionine (P < 0.01). TRPV6 and ATPase Na+/K+ transporting subunit alpha 1 (ATP1A1) were positively associated with Glycine (P < 0.05); while ATPase Na+/K+ transporting subunit beta 3 (ATP1B3) and cytochrome b reductase 1 (CYBRD1) were negatively related to L-methionine (P < 0.05). These outcomes suggested that the vitamins ADE, Zn, and Se of mixtures play an important role in the synthesis and secretion of steroid hormones and mineral absorption metabolism pathway through effects on the expression of the key genes and metabolites in GCs. Meanwhile, these also are required for physiological function and metabolism of GCs. Collectively, our outcomes shed new light on the underlying mechanisms of their effect on follicular growth and GCs molecular physiological function, helping explore valuable biomarkers.

6.
Cells ; 9(2)2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-32050589

RESUMEN

BimEL protein is involved in follicular atresia by regulating granulosa cell apoptosis, but the dynamic changes of BimEL phosphorylation during follicular atresia are poorly understood. The aim of this study was to explore the changes of key BimEL phosphorylation sites and their upstream regulatory pathways. First, the levels of BimEL-Ser65 and BimEL-Thr112 phosphorylation (p-BimEL-S65, p-BimEL-T112) in granulosa cells (GC) from healthy (H), slightly-atretic (SA), and atretic (A) follicles and in cultured GC after different treatments were detected by Western blotting. Next, the effects of the corresponding site mutations of BIM on apoptosis of GC were investigated. Finally, the pathways of two phosphorylation sites were investigated by kinase inhibitors. The results revealed that p-BimEL-S65 levels were higher in GC from H than SA and A, whereas p-BimEL-T112 was reversed. The prosurvival factors like FSH and IGF-1 upregulated the level of p-BimEL-S65, while the proapoptotic factor, heat stress, increased the level of p-BimEL-T112 in cultured GC. Compared with the overexpression of wild BimEL, the apoptotic rate of the GC overexpressed BimEL-S65A (replace Ser65 with Ala) mutant was significantly higher, but the apoptotic rate of the cells overexpressing BimEL-T112A did not differ. In addition, inhibition of the ERK1/2 or JNK pathway by specific inhibitors reduced the levels of p-BimEL-S65 and p-BimEL-T112. In conclusion, the levels of p-BimEL-S65 and p-BimEL-T112 were reversed during follicular atresia. Prosurvival factors promote p-BimEL-S65 levels via ERK1/2 to inhibit GC apoptosis, whereas proapoptotic factor upregulates the level of p-BimEL-T112 via JNK to induce GC apoptosis.


Asunto(s)
Proteína 11 Similar a Bcl2/metabolismo , Atresia Folicular/metabolismo , Células de la Granulosa/metabolismo , Fosfoserina/metabolismo , Fosfotreonina/metabolismo , Animales , Apoptosis , Supervivencia Celular , Células Cultivadas , Femenino , Modelos Biológicos , Mutación/genética , Fosforilación , Porcinos
7.
Biosens Bioelectron ; 71: 158-163, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25897885

RESUMEN

In this paper, we develop a novel dual-signaling amplified aptasensor for protein detection via target-catalyzed hairpin assembly. Thrombin was chosen as a model target. This aptasensor contains two DNA hairpins termed as H1 and H2. H1, which is modified at its 3' ends with a methylene blue (MB), consists of the aptamer sequence of human thrombin. Meanwhile, H2 which is modified at its 3' ends with a ferrocene (Fc), is partially complementary to H1. Upon the addition of target protein, it can facilitate the opening of the hairpin structure of H1 and thus accelerate the hybridization between H1 and H2, the target protein can be displaced from hairpin H1 by hairpin H2 through a process similar to DNA branch migration. The released target found another H1 to trigger the cycle, resulting in the multiplication of the Fc confined near the GE surface and MB away from the GE surface. When IFc/IMB is used as the response signal for quantitative determination of thrombin, the detection limit (41 fM) is much lower than that by using either MB or Fc alone. This new dual-signaling aptasensor is readily regenerated and shows good response toward the target. Furthermore, this amplified aptasensor shows high selectivity toward its target protein. The clever combination of the functional DNA hairpin and the novel device achieved a ratiometric electrochemical aptasensor, which could be used as a simple, sensitive high repeatability and selective platform for target protein detection.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles/instrumentación , Técnicas Electroquímicas/instrumentación , Trombina/análisis , Diseño de Equipo , Humanos , Límite de Detección , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA