Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Physiol Rev ; 100(4): 1621-1705, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32191559

RESUMEN

The urothelium, which lines the renal pelvis, ureters, urinary bladder, and proximal urethra, forms a high-resistance but adaptable barrier that surveils its mechanochemical environment and communicates changes to underlying tissues including afferent nerve fibers and the smooth muscle. The goal of this review is to summarize new insights into urothelial biology and function that have occurred in the past decade. After familiarizing the reader with key aspects of urothelial histology, we describe new insights into urothelial development and regeneration. This is followed by an extended discussion of urothelial barrier function, including information about the roles of the glycocalyx, ion and water transport, tight junctions, and the cellular and tissue shape changes and other adaptations that accompany expansion and contraction of the lower urinary tract. We also explore evidence that the urothelium can alter the water and solute composition of urine during normal physiology and in response to overdistension. We complete the review by providing an overview of our current knowledge about the urothelial environment, discussing the sensor and transducer functions of the urothelium, exploring the role of circadian rhythms in urothelial gene expression, and describing novel research tools that are likely to further advance our understanding of urothelial biology.


Asunto(s)
Urotelio/crecimiento & desarrollo , Animales , Fenómenos Biomecánicos , Ritmo Circadiano , Humanos , Orina/química , Orina/fisiología , Urotelio/citología , Urotelio/metabolismo
2.
Am J Physiol Renal Physiol ; 325(6): F779-F791, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37823199

RESUMEN

Patients with urinary tract infections (UTIs) suffer from urinary frequency, urgency, dysuria, and suprapubic pain, but the mechanisms by which bladder afferents sense the presence of uropathogens and encode this information is not well understood. Calcitonin gene-related peptide (CGRP) is a 37-mer neuropeptide found in a subset of bladder afferents that terminate primarily in the lamina propria. Here, we report that the CGRP receptor antagonist BIBN4096BS lessens lower urinary tract symptoms and prevents the development of pelvic allodynia in mice inoculated with uropathogenic Escherichia coli (UPEC) without altering urine bacterial loads or the host immune response to the infection. These findings indicate that CGRP facilitates the processing of noxious/inflammatory stimuli during UPEC infection. Using fluorescent in situ hybridization, we identified a population of suburothelial fibroblasts in the lamina propria, a region where afferent fibers containing CGRP terminate, that expresses the canonical CGRP receptor components Calcrl and Ramp1. We propose that these fibroblasts, in conjunction with CGRP+ afferents, form a circuit that senses substances released during the infection and transmit this noxious information to the central nervous system.NEW & NOTEWORTHY Afferent C fibers release neuropeptides including calcitonin gene-related peptide (CGRP). Here, we show that the specific CGRP receptor antagonist, BIBN409BS, ameliorates lower urinary tract symptoms and pelvic allodynia in mice inoculated with uropathogenic E. coli. Using fluorescent in situ hybridization, we identified a population of suburothelial fibroblasts in the lamina propria that expresses the canonical CGRP receptor. Our findings indicate that CGRP contributes to the transmission of nociceptive information arising from the bladder.


Asunto(s)
Cistitis , Síntomas del Sistema Urinario Inferior , Ratones , Humanos , Animales , Receptores de Péptido Relacionado con el Gen de Calcitonina/fisiología , Péptido Relacionado con Gen de Calcitonina , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina/farmacología , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina/uso terapéutico , Hiperalgesia , Escherichia coli , Hibridación Fluorescente in Situ
3.
Am J Physiol Renal Physiol ; 323(3): F299-F321, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35834272

RESUMEN

Fibroblasts are crucial to normal and abnormal organ and tissue biology, yet we lack basic insights into the fibroblasts that populate the bladder wall. Candidates may include bladder interstitial cells (also referred to as myofibroblasts, telocytes, and interstitial cells of Cajal-like cells), which express the fibroblast-associated marker PDGFRA along with VIM and CD34 but whose form and function remain enigmatic. By applying the latest insights in fibroblast transcriptomics, coupled with studies of gene expression, ultrastructure, and marker analysis, we observe the following: 1) that mouse bladder PDGFRA+ cells exhibit all of the ultrastructural hallmarks of fibroblasts including spindle shape, lack of basement membrane, abundant endoplasmic reticulum and Golgi, and formation of homotypic cell-cell contacts (but not heterotypic ones); 2) that they express multiple canonical fibroblast markers (including Col1a2, CD34, LY6A, and PDGFRA) along with the universal fibroblast genes Col15a1 and Pi16 but they do not express Kit; and 3) that PDGFRA+ fibroblasts include suburothelial ones (which express ACTA2, CAR3, LY6A, MYH10, TNC, VIM, Col1a2, and Col15a1), outer lamina propria ones (which express CD34, LY6A, PI16, VIM, Col1a2, Col15a1, and Pi16), intermuscular ones (which express CD34, VIM, Col1a2, Col15a1, and Pi16), and serosal ones (which express CD34, PI16, VIM, Col1a2, Col15a1, and Pi16). Collectively, our study revealed that the ultrastructure of PDFRA+ interstitial cells combined with their expression of multiple canonical and universal fibroblast-associated gene products indicates that they are fibroblasts. We further propose that there are four regionally distinct populations of fibroblasts in the bladder wall, which likely contribute to bladder function and dysfunction.NEW & NOTEWORTHY We currently lack basic insights into the fibroblasts that populate the bladder wall. By exploring the ultrastructure of mouse bladder connective tissue cells, combined with analyses of their gene and protein expression, our study revealed that PDGRA+ interstitial cells (also referred to as myofibroblasts, telocytes, and interstitial cells of Cajal-like cells) are fibroblasts and that the bladder wall contains multiple, regionally distinct populations of these cells.


Asunto(s)
Células Intersticiales de Cajal , Animales , Antígenos CD34/metabolismo , Fibroblastos/ultraestructura , Expresión Génica , Células Intersticiales de Cajal/metabolismo , Ratones , Membrana Mucosa , Proteínas Tirosina Quinasas Receptoras/metabolismo , Vejiga Urinaria/metabolismo
4.
Am J Physiol Renal Physiol ; 322(1): F1-F13, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34779263

RESUMEN

Urinary tract infections (UTIs) cause bladder hyperactivity and pelvic pain, but the underlying causes of these symptoms remain unknown. We investigated whether afferent sensitization contributes to the bladder overactivity and pain observed in mice suffering from experimentally induced bacterial cystitis. Inoculation of mouse bladders with the uropathogenic Escherichia coli strain UTI89 caused pelvic allodynia, increased voiding frequency, and prompted an acute inflammatory process marked by leukocytic infiltration and edema of the mucosa. Compared with controls, isolated bladder sensory neurons from UTI-treated mice exhibited a depolarized resting membrane potential, lower action potential threshold and rheobase, and increased firing in response to suprathreshold stimulation. To determine whether bacterial virulence factors can contribute to the sensitization of bladder afferents, neurons isolated from naïve mice were incubated with supernatants collected from bacterial cultures with or depleted of lipopolysaccharide (LPS). Supernatants containing LPS prompted the sensitization of bladder sensory neurons with both tetrodotoxin (TTX)-resistant and TTX-sensitive action potentials. However, bladder sensory neurons with TTX-sensitive action potentials were not affected by bacterial supernatants depleted of LPS. Unexpectedly, ultrapure LPS increased the excitability only of bladder sensory neurons with TTX-resistant action potentials, but the supplementation of supernatants depleted of LPS with ultrapure LPS resulted in the sensitization of both population of bladder sensory neurons. In summary, the results of our study indicate that multiple virulence factors released from UTI89 act on bladder sensory neurons to prompt their sensitization. These sensitized bladder sensory neurons mediate, at least in part, the bladder hyperactivity and pelvic pain seen in mice inoculated with UTI89.NEW & NOTEWORTHY Urinary tract infection (UTI) produced by uropathogenic Escherichia coli (UPEC) promotes sensitization of bladder afferent sensory neurons with tetrodotoxin-resistant and tetrodotoxin-sensitive action potentials. Lipopolysaccharide and other virulence factors produced by UPEC contribute to the sensitization of bladder afferents in UTI. In conclusion, sensitized afferents contribute to the voiding symptoms and pelvic pain present in mice bladder inoculated with UPEC.


Asunto(s)
Cistitis Intersticial/microbiología , Infecciones por Escherichia coli/microbiología , Neuronas Aferentes/metabolismo , Vejiga Urinaria/microbiología , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/patogenicidad , Factores de Virulencia/metabolismo , Potenciales de Acción , Animales , Cistitis Intersticial/fisiopatología , Modelos Animales de Enfermedad , Infecciones por Escherichia coli/fisiopatología , Femenino , Ratones Endogámicos C57BL , Vejiga Urinaria/inervación , Infecciones Urinarias/fisiopatología , Urodinámica , Escherichia coli Uropatógena/metabolismo , Virulencia
5.
Am J Physiol Renal Physiol ; 317(2): F303-F321, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31166705

RESUMEN

The proper function of the organs that make up the urinary tract (kidneys, ureters, bladder, and urethra) depends on their ability to sense and respond to mechanical forces, including shear stress and wall tension. However, we have limited understanding of the mechanosensors that function in these organs and the tissue sites in which these molecules are expressed. Possible candidates include stretch-activated PIEZO channels (PIEZO1 and PIEZO2), which have been implicated in mechanically regulated body functions including touch sensation, proprioception, lung inflation, and blood pressure regulation. Using reporter mice expressing a COOH-terminal fusion of Piezo1 with the sequence for the tandem-dimer Tomato gene, we found that PIEZO1 is expressed in the kidneys, ureters, bladder, and urethra as well as organs in close proximity, including the prostate, seminal vesicles and ducts, ejaculatory ducts, and the vagina. We further found that PIEZO1 expression is not limited to one cell type; it is observed in the endothelial and parietal cells of the renal corpuscle, the basolateral surfaces of many of the epithelial cells that line the urinary tract, the interstitial cells of the bladder and ureters, and populations of smooth and striated muscle cells. We propose that in the urinary tract, PIEZO1 likely functions as a mechanosensor that triggers responses to wall tension.


Asunto(s)
Canales Iónicos/metabolismo , Sistema Urinario/metabolismo , Animales , Femenino , Regulación de la Expresión Génica , Genes Reporteros , Canales Iónicos/genética , Masculino , Mecanotransducción Celular , Ratones Endogámicos C57BL , Ratones Transgénicos , Presión , Estrés Mecánico , Distribución Tisular , Sistema Urinario/citología
6.
Biochim Biophys Acta Mol Cell Res ; 1864(8): 1413-1424, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28527708

RESUMEN

We have previously shown that purified actin can directly bind to human plasma membrane Ca2+ ATPase 4b (hPMCA4b) and exert a dual modulation on its Ca2+-ATPase activity: F-actin inhibits PMCA while short actin oligomers may contribute to PMCA activation. These studies had to be performed with purified proteins given the nature of the biophysical and biochemical approaches used. To assess whether a functional interaction between the PMCAs and the cortical cytoskeleton is of physiological relevance, we characterized this phenomenon in the context of a living cell by monitoring in real-time the changes in the cytosolic calcium levels ([Ca2+]CYT). In this study, we tested the influence of drugs that change the actin and microtubule polymerization state on the activity and membrane expression of the PMCA transiently expressed in human embryonic kidney (HEK293) cells, which allowed us to observe and quantify these relationships in a live cell, for the first time. We found that disrupting the actin cytoskeleton with cytochalasin D significantly increased PMCA-mediated Ca2+ extrusion (~50-100%) whereas pre-treatment with the F-actin stabilizing agent jasplakinolide caused its full inhibition. When the microtubule network was disrupted by pretreatment of the cells with colchicine, we observed a significant decrease in PMCA activity (~40-60% inhibition) in agreement with the previously reported role of acetylated tubulin on the calcium pump. In none of these cases was there a difference in the level of expression of the pump at the cell surface, thus suggesting that the specific activity of the pump was the regulated parameter. Our results indicate that PMCA activity is profoundly affected by the polymerization state of the cortical cytoskeleton in living cells.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Señalización del Calcio/efectos de los fármacos , Calcio/metabolismo , Membrana Celular/metabolismo , Microtúbulos/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/ultraestructura , Actinas/genética , Actinas/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/ultraestructura , Colchicina/farmacología , Citocalasina D/farmacología , Depsipéptidos/farmacología , Regulación de la Expresión Génica , Células HEK293 , Humanos , Microtúbulos/efectos de los fármacos , Microtúbulos/ultraestructura , ATPasas Transportadoras de Calcio de la Membrana Plasmática/antagonistas & inhibidores , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , Imagen de Lapso de Tiempo
7.
Am J Physiol Cell Physiol ; 314(3): C349-C365, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29167152

RESUMEN

Umbrella cells, which must maintain a tight barrier, modulate their apical surface area during bladder filling by exocytosis of an abundant, subapical pool of discoidal- and/or fusiform-shaped vesicles (DFVs). Despite the importance of this trafficking event for bladder function, the pathways that promote DFV exocytosis remain to be identified. We previously showed that DFV exocytosis depends in part on a RAB11A-RAB8A-MYO5B network, but RAB27B is also reported to be associated with DFVs, and knockout mice lacking RAB27B have fewer DFVs. However, the RAB27B requirements for DFV exocytosis and the relationship between RAB27B and the other umbrella cell-expressed RABs remains unclear. Using a whole bladder preparation, we observed that filling-induced exocytosis of human growth hormone-loaded DFVs was significantly inhibited when RAB27B expression was downregulated using shRNA. RAB27A was also expressed in rat urothelium; however, RAB27A-specific shRNAs did not inhibit exocytosis, and the combination of RAB27A and RAB27B shRNAs did not significantly affect DFV exocytosis more than treatment with RAB27B shRNA alone. RAB27B and RAB11A showed a small degree of overlap when quantified using Squassh segmentation software, and expression of dominant-active or dominant-negative mutants of RAB11A or RAB8A, or expression of a RAB11A-specific shRNA, had no significant effect on the size, number, or intensity of RAB27B-positive DFVs. Likewise, treatment with RAB27B-specific shRNA had no effect on RAB11A-positive DFV parameters. We conclude that RAB27B, but not RAB27A, regulates DFV exocytosis in bladder umbrella cells in a manner that may be parallel to the previously described RAB11A-RAB8A-MYO5B pathway.


Asunto(s)
Células Epiteliales/enzimología , Exocitosis , Mecanorreceptores/metabolismo , Mecanotransducción Celular , Vesículas Transportadoras/enzimología , Vejiga Urinaria/enzimología , Urotelio/enzimología , Proteínas de Unión al GTP rab/metabolismo , Animales , Femenino , Regulación de la Expresión Génica , Células HEK293 , Humanos , Ratas Sprague-Dawley , Vejiga Urinaria/citología , Urotelio/citología , Proteínas de Unión al GTP rab/genética
8.
Biochem Biophys Res Commun ; 506(2): 347-354, 2018 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-29180009

RESUMEN

Associations between the cortical cytoskeleton and the components of the plasma membrane are no longer considered to be merely of structural and mechanical nature but are nowadays recognized as dynamic interactions that modulate a plethora of cellular responses. Reorganization of actin filaments upon diverse stimuli - among which is the rise in cytosolic Ca2+ - is involved in cell motility and adhesion, phagocytosis, cytokinesis, and secretion. Actin dynamics also participates in the regulation of ion transport across the membranes where it not only plays a key role in the delivery and stabilization of channels and transporters in the plasma membrane but also in the regulation of their activity. The recently described functional interaction between actin and the Plasma Membrane Ca2+-ATPase (PMCA) represents a novel regulatory mechanism of the pump at the time that unveils a new pathway by which the cortical actin cytoskeleton participates in the regulation of cytosolic Ca2+ homeostasis. In this review, we summarize the current knowledge on the interaction between the cortical actin cytoskeleton and the PMCA and discuss the possible mechanisms that may explain the pump's modulation.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Calcio/metabolismo , Calmodulina/metabolismo , Proteínas de Microfilamentos/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/ultraestructura , Actinas/química , Actinas/genética , Animales , Calmodulina/genética , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Citocinesis/genética , Regulación de la Expresión Génica , Células HEK293 , Homeostasis/genética , Humanos , Transporte Iónico , Proteínas de Microfilamentos/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , Transducción de Señal
9.
J Mammary Gland Biol Neoplasia ; 19(1): 73-90, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24567109

RESUMEN

Milk nutrients are secreted by epithelial cells in the alveoli of the mammary gland by several complex and highly coordinated systems. Many of these nutrients are transported from the blood to the milk via transcellular pathways that involve the concerted activity of transport proteins on the apical and basolateral membranes of mammary epithelial cells. In this review, we focus on transport mechanisms that contribute to the secretion of calcium, trace minerals and water soluble vitamins into milk with particular focus on the role of transporters of the SLC series as well as calcium transport proteins (ion channels and pumps). Numerous members of the SLC family are involved in the regulation of essential nutrients in the milk, such as the divalent metal transporter-1 (SLC11A2), ferroportin-1 (SLC40A1) and the copper transporter CTR1 (SLC31A1). A deeper understanding of the physiology and pathophysiology of these transporters will be of great value for drug discovery and treatment of breast diseases.


Asunto(s)
Calcio/metabolismo , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Humanas/metabolismo , Minerales/metabolismo , Oligoelementos/metabolismo , Vitaminas/metabolismo , Animales , Transporte Biológico , Femenino , Humanos
10.
J Biol Chem ; 288(32): 23380-93, 2013 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-23803603

RESUMEN

As recently described by our group, plasma membrane calcium ATPase (PMCA) activity can be regulated by the actin cytoskeleton. In this study, we characterize the interaction of purified G-actin with isolated PMCA and examine the effect of G-actin during the first polymerization steps. As measured by surface plasmon resonance, G-actin directly interacts with PMCA with an apparent 1:1 stoichiometry in the presence of Ca(2+) with an apparent affinity in the micromolar range. As assessed by the photoactivatable probe 1-O-hexadecanoyl-2-O-[9-[[[2-[(125)I]iodo-4-(trifluoromethyl-3H-diazirin-3-yl)benzyl]oxy]carbonyl]nonanoyl]-sn-glycero-3-phosphocholine, the association of PMCA to actin produced a shift in the distribution of the conformers of the pump toward a calmodulin-activated conformation. G-actin stimulates Ca(2+)-ATPase activity of the enzyme when incubated under polymerizing conditions, displaying a cooperative behavior. The increase in the Ca(2+)-ATPase activity was related to an increase in the apparent affinity for Ca(2+) and an increase in the phosphoenzyme levels at steady state. Although surface plasmon resonance experiments revealed only one binding site for G-actin, results clearly indicate that more than one molecule of G-actin was needed for a regulatory effect on the pump. Polymerization studies showed that the experimental conditions are compatible with the presence of actin in the first stages of assembly. Altogether, these observations suggest that the stimulatory effect is exerted by short oligomers of actin. The functional interaction between actin oligomers and PMCA represents a novel regulatory pathway by which the cortical actin cytoskeleton participates in the regulation of cytosolic Ca(2+) homeostasis.


Asunto(s)
Actinas/química , Calcio/química , Membrana Eritrocítica/química , Homeostasis/fisiología , ATPasas Transportadoras de Calcio de la Membrana Plasmática/química , Multimerización de Proteína/fisiología , Actinas/aislamiento & purificación , Actinas/metabolismo , Animales , Calcio/metabolismo , Membrana Eritrocítica/metabolismo , Humanos , Transporte Iónico/fisiología , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Conejos
11.
bioRxiv ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38915686

RESUMEN

The keratin cytoskeleton and associated desmosomes contribute to the mechanical stability of epithelial tissues, but their organization in bladder umbrella cells and their responses to bladder filling are poorly understood. Using super-resolution confocal microscopy, along with 3D image reconstruction and platinum replica electron microscopy, we observed that the apical keratin network of umbrella cells was organized as a dense tile-like mesh comprised of tesserae bordered on their edges by cortical actin filaments, filled with woven keratin filaments, and crosslinked by plectin. A band of keratin was also observed at the cell periphery that was linked to the junction-associated actin ring by plectin. During bladder filling, the junction-localized desmosomal necklace expanded, and a subjacent girded layer was formed that linked the keratin network to desmosomes, including those at the umbrella cell-intermediate cell interface. Disruption of plectin led to focal keratin network dissolution, loss of the junction-associated band of keratin, perturbation of tight junction continuity, and loss of cell-cell cohesion. Our studies reveal a novel tile-like organization of the umbrella cell keratin cytoskeleton that is dependent on plectin, that reorganizes in response to bladder filling, and that likely serves to maintain umbrella cell continuity in the face of mechanical distension.

12.
J Clin Invest ; 134(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38426496

RESUMEN

Ca2+-activated BK channels in renal intercalated cells (ICs) mediate luminal flow-induced K+ secretion (FIKS), but how ICs sense increased flow remains uncertain. We examined whether PIEZO1, a mechanosensitive Ca2+-permeable channel expressed in the basolateral membranes of ICs, is required for FIKS. In isolated cortical collecting ducts (CCDs), the mechanosensitive cation-selective channel inhibitor GsMTx4 dampened flow-induced increases in intracellular Ca2+ concentration ([Ca2+]i), whereas the PIEZO1 activator Yoda1 increased [Ca2+]i and BK channel activity. CCDs from mice fed a high-K+ (HK) diet exhibited a greater Yoda1-dependent increase in [Ca2+]i than CCDs from mice fed a control K+ diet. ICs in CCDs isolated from mice with a targeted gene deletion of Piezo1 in ICs (IC-Piezo1-KO) exhibited a blunted [Ca2+]i response to Yoda1 or increased flow, with an associated loss of FIKS in CCDs. Male IC-Piezo1-KO mice selectively exhibited an increased blood [K+] in response to an oral K+ bolus and blunted urinary K+ excretion following a volume challenge. Whole-cell expression of BKα subunit was reduced in ICs of IC-Piezo1-KO mice fed an HK diet. We conclude that PIEZO1 mediates flow-induced basolateral Ca2+ entry into ICs, is upregulated in the CCD in response to an HK diet, and is necessary for FIKS.


Asunto(s)
Túbulos Renales Colectores , Masculino , Ratones , Animales , Túbulos Renales Colectores/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Calcio/metabolismo , Nefronas/metabolismo , Riñón/metabolismo , Canales Iónicos/genética , Canales Iónicos/metabolismo
13.
Physiol Rep ; 12(9): e16043, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38724885

RESUMEN

The epithelial cells that line the kidneys and lower urinary tract are exposed to mechanical forces including shear stress and wall tension; however, the mechanosensors that detect and respond to these stimuli remain obscure. Candidates include the OSCA/TMEM63 family of ion channels, which can function as mechanosensors and osmosensors. Using Tmem63bHA-fl/HA-fl reporter mice, we assessed the localization of HA-tagged-TMEM63B within the urinary tract by immunofluorescence coupled with confocal microscopy. In the kidneys, HA-TMEM63B was expressed by proximal tubule epithelial cells, by the intercalated cells of the collecting duct, and by the epithelial cells lining the thick ascending limb of the medulla. In the urinary tract, HA-TMEM63B was expressed by the urothelium lining the renal pelvis, ureters, bladder, and urethra. HA-TMEM63B was also expressed in closely allied organs including the epithelial cells lining the seminal vesicles, vas deferens, and lateral prostate glands of male mice and the vaginal epithelium of female mice. Our studies reveal that TMEM63B is expressed by subsets of kidney and lower urinary tract epithelial cells, which we hypothesize are sites of TMEM63B mechanosensation or osmosensation, or both.


Asunto(s)
Canales de Calcio , Sistema Urinario , Animales , Femenino , Masculino , Ratones , Canales de Calcio/genética , Canales de Calcio/metabolismo , Células Epiteliales/metabolismo , Mecanotransducción Celular/fisiología , Ratones Endogámicos C57BL , Sistema Urinario/metabolismo , Urotelio/metabolismo , Urotelio/citología
14.
J Vis Exp ; (192)2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36847378

RESUMEN

Normal voiding behavior is the result of the coordinated function of the bladder, the urethra, and the urethral sphincters under the proper control of the nervous system. To study voluntary voiding behavior in mouse models, researchers have developed the void spot assay (VSA), a method that measures the number and area of urine spots deposited on a filter paper lining the floor of an animal's cage. Although technically simple and inexpensive, this assay has limitations when used as an end-point assay, including a lack of temporal resolution of voiding events and difficulties quantifying overlapping urine spots. To overcome these limitations, we developed a video-monitored VSA, which we call real-time VSA (RT-VSA), and which allows us to determine voiding frequency, assess voided volume and voiding patterns, and make measurements over 6 h time windows during both the dark and light phases of the day. The method described in this report can be applied to a wide variety of mouse-based studies that explore the physiological and neurobehavioral aspects of voluntary micturition in health and disease states.


Asunto(s)
Vejiga Urinaria , Micción , Ratones , Animales , Micción/fisiología , Vejiga Urinaria/fisiología , Uretra , Modelos Animales de Enfermedad , Bioensayo
15.
J Vis Exp ; (188)2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36282713

RESUMEN

In addition to forming a high-resistance barrier, the urothelium lining the renal pelvis, ureters, bladder, and proximal urethra is hypothesized to sense and transmit information about its environment to the underlying tissues, promoting voiding function and behavior. Disruption of the urothelial barrier, or its sensory/transducer function, can lead to disease. Studying these complex events is hampered by lack of simple strategies to alter gene and protein expression in the urothelium. Methods are described here that allow investigators to generate large amounts of high-titer adenovirus, which can then be used to transduce rodent urothelium with high efficiency, and in a relatively straightforward manner. Both cDNAs and small interfering RNAs can be expressed using adenoviral transduction, and the impact of transgene expression on urothelial function can be assessed 12 h to several days later. These methods have broad applicability to studies of normal and abnormal urothelial biology using mouse or rat animal models.


Asunto(s)
Vejiga Urinaria , Urotelio , Ratas , Ratones , Animales , Adenoviridae/genética , Músculo Liso , Transgenes
16.
JCI Insight ; 6(19)2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34464353

RESUMEN

The mechanisms that link visceral mechanosensation to the perception of internal organ status (i.e., interoception) remain elusive. In response to bladder filling, the urothelium releases ATP, which is hypothesized to stimulate voiding function by communicating the degree of bladder fullness to subjacent tissues, including afferent nerve fibers. To determine if PIEZO channels function as mechanosensors in these events, we generated conditional urothelial Piezo1-, Piezo2-, and dual Piezo1/2-knockout (KO) mice. While functional PIEZO1 channels were expressed in all urothelial cell layers, Piezo1-KO mice had a limited phenotype. Piezo2 expression was limited to a small subset of superficial umbrella cells, yet male Piezo2-KO mice exhibited incontinence (i.e., leakage) when their voiding behavior was monitored during their active dark phase. Dual Piezo1/2-KO mice had the most affected phenotype, characterized by decreased urothelial responses to mechanical stimulation, diminished ATP release, bladder hypoactivity in anesthetized Piezo1/2-KO females but not males, and urinary incontinence in both male and female Piezo1/2-KO mice during their dark phase but not inactive light one. Our studies reveal that the urothelium functions in a sex- and circadian rhythm-dependent manner to link urothelial PIEZO1/2 channel-driven mechanotransduction to normal voiding function and behavior, and in the absence of these signals, bladder dysfunction ensues.


Asunto(s)
Interocepción/fisiología , Canales Iónicos/genética , Mecanotransducción Celular/genética , Vejiga Urinaria/metabolismo , Urotelio/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Ritmo Circadiano , Ratones , Ratones Noqueados , Factores Sexuales , Vejiga Urinaria/fisiopatología , Incontinencia Urinaria/genética , Incontinencia Urinaria/fisiopatología , Urotelio/fisiopatología
18.
J Biomol Screen ; 19(6): 900-8, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24505080

RESUMEN

Divalent metal ion transporter 1 (DMT1) is a proton-coupled Fe(2+)transporter that is essential for iron uptake in enterocytes and for transferrin-associated endosomal iron transport in many other cell types. DMT1 dysfunction is associated with several diseases such as iron overload disorders and neurodegenerative diseases. The main objective of the present work is to develop and validate a fluorescence-based screening assay for DMT1 modulators. We found that Fe(2+)or Cd(2+)influx could be reliably monitored in calcium 5-loaded DMT1-expressing HEK293 cells using the FLIPR Tetra fluorescence microplate reader. DMT1-mediated metal transport shows saturation kinetics depending on the extracellular substrate concentration, with a K0.5value of 1.4 µM and 3.5 µM for Fe(2+)and Cd(2+), respectively. In addition, Cd(2+)was used as a substrate for DMT1, and we find a Kivalue of 2.1 µM for a compound (2-(3-carbamimidoylsulfanylmethyl-benzyl)-isothiourea) belonging to the benzylisothioureas family, which has been identified as a DMT1 inhibitor. The optimized screening method using this compound as a reference demonstrated a Z' factor of 0.51. In summary, we developed and validated a sensitive and reproducible cell-based fluorescence assay suitable for the identification of compounds that specifically modulate DMT1 transport activity.


Asunto(s)
Hierro/química , Metales/química , Espectrometría de Fluorescencia/métodos , Factores de Transcripción/química , Unión Competitiva , Transporte Biológico , Biotinilación , Cadmio/química , Calcio/química , Endosomas/metabolismo , Fluorescencia , Células HEK293 , Humanos , Proteínas de Unión a Hierro/química , Cinética , Reproducibilidad de los Resultados , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA