Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 183(3): 684-701.e14, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33058756

RESUMEN

Positive selection in Europeans at the 2q21.3 locus harboring the lactase gene has been attributed to selection for the ability of adults to digest milk to survive famine in ancient times. However, the 2q21.3 locus is also associated with obesity and type 2 diabetes in humans, raising the possibility that additional genetic elements in the locus may have contributed to evolutionary adaptation to famine by promoting energy storage, but which now confer susceptibility to metabolic diseases. We show here that the miR-128-1 microRNA, located at the center of the positively selected locus, represents a crucial metabolic regulator in mammals. Antisense targeting and genetic ablation of miR-128-1 in mouse metabolic disease models result in increased energy expenditure and amelioration of high-fat-diet-induced obesity and markedly improved glucose tolerance. A thrifty phenotype connected to miR-128-1-dependent energy storage may link ancient adaptation to famine and modern metabolic maladaptation associated with nutritional overabundance.


Asunto(s)
Enfermedades Metabólicas/genética , MicroARNs/genética , Adipocitos Marrones/patología , Adiposidad , Alelos , Animales , Diferenciación Celular , Línea Celular , Células Cultivadas , Dieta Alta en Grasa , Metabolismo Energético , Epigénesis Genética , Sitios Genéticos , Glucosa/metabolismo , Homeostasis , Humanos , Hipertrofia , Resistencia a la Insulina , Leptina/deficiencia , Leptina/metabolismo , Masculino , Mamíferos/genética , Ratones Endogámicos C57BL , Ratones Obesos , MicroARNs/metabolismo , Obesidad/genética , Oligonucleótidos/metabolismo , Especificidad de la Especie
2.
Cell ; 156(1-2): 343-58, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24439387

RESUMEN

Genome-wide association studies have revealed numerous risk loci associated with diverse diseases. However, identification of disease-causing variants within association loci remains a major challenge. Divergence in gene expression due to cis-regulatory variants in noncoding regions is central to disease susceptibility. We show that integrative computational analysis of phylogenetic conservation with a complexity assessment of co-occurring transcription factor binding sites (TFBS) can identify cis-regulatory variants and elucidate their mechanistic role in disease. Analysis of established type 2 diabetes risk loci revealed a striking clustering of distinct homeobox TFBS. We identified the PRRX1 homeobox factor as a repressor of PPARG2 expression in adipose cells and demonstrate its adverse effect on lipid metabolism and systemic insulin sensitivity, dependent on the rs4684847 risk allele that triggers PRRX1 binding. Thus, cross-species conservation analysis at the level of co-occurring TFBS provides a valuable contribution to the translation of genetic association signals to disease-related molecular mechanisms.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Polimorfismo de Nucleótido Simple , Animales , Línea Celular , Células Cultivadas , Secuencia Conservada , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Proteínas de Homeodominio/metabolismo , Humanos , Resistencia a la Insulina , PPAR gamma/genética , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo
3.
J Immunol ; 208(1): 121-132, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34872979

RESUMEN

Chronic local inflammation of adipose tissue is an important feature of obesity. Serglycin is a proteoglycan highly expressed by various immune cell types known to infiltrate adipose tissue under obese conditions. To investigate if serglycin expression has an impact on diet-induced adipose tissue inflammation, we subjected Srgn +/+ and Srgn -/- mice (C57BL/6J genetic background) to an 8-wk high-fat and high-sucrose diet. The total body weight was the same in Srgn +/+ and Srgn -/- mice after diet treatment. Expression of white adipose tissue genes linked to inflammatory pathways were lower in Srgn -/- mice. We also noted reduced total macrophage abundance, a reduced proportion of proinflammatory M1 macrophages, and reduced formation of crown-like structures in adipose tissue of Srgn -/- compared with Srgn +/+ mice. Further, Srgn -/- mice had more medium-sized adipocytes and fewer large adipocytes. Differentiation of preadipocytes into adipocytes (3T3-L1) was accompanied by reduced Srgn mRNA expression. In line with this, analysis of single-cell RNA sequencing data from mouse and human adipose tissue supports that Srgn mRNA is predominantly expressed by various immune cells, with low expression in adipocytes. Srgn mRNA expression was higher in obese compared with lean humans and mice, accompanied by an increased expression of immune cell gene markers. SRGN and inflammatory marker mRNA expression was reduced upon substantial weight loss in patients after bariatric surgery. Taken together, this study introduces a role for serglycin in the regulation of obesity-induced adipose inflammation.


Asunto(s)
Adipocitos/inmunología , Inflamación/metabolismo , Macrófagos/inmunología , Obesidad/metabolismo , Proteoglicanos/metabolismo , ARN Mensajero/genética , Proteínas de Transporte Vesicular/metabolismo , Animales , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Inflamación/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/inmunología , Proteoglicanos/genética , Proteínas de Transporte Vesicular/genética , Pérdida de Peso/inmunología
4.
J Nutr ; 153(2): 459-469, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36894239

RESUMEN

BACKGROUND: Low-carbohydrate high-fat (LCHF) diets may suppress the increase in appetite otherwise seen after diet-induced fat loss. However, studies of diets without severe energy restriction are lacking, and the effects of carbohydrate quality relative to quantity have not been directly compared. OBJECTIVES: To evaluated short- (3 mo) and long-term (12 mo) changes in fasting plasma concentrations of total ghrelin, ß-hydroxybutyrate (ßHB), and subjective feelings of appetite on 3 isocaloric eating patterns within a moderate caloric range (2000-2500 kcal/d) and with varying carbohydrate quality or quantity. METHODS: We performed a randomized controlled trial of 193 adults with obesity, comparing eating patterns based on "acellular" carbohydrate sources (e.g., flour-based whole-grain products; comparator arm), "cellular" carbohydrate sources (minimally processed foods with intact cellular structures), or LCHF principles. Outcomes were compared by an intention-to-treat analysis using constrained linear mixed modeling. This trial was registered at clinicaltrials.gov as NCT03401970. RESULTS: Of the 193 adults, 118 (61%) and 57 (30%) completed 3 and 12 mo of follow-up. Throughout the intervention, intakes of protein and energy were similar with all 3 eating patterns, with comparable reductions in body weight (5%-7%) and visceral fat volume (12%-17%) after 12 mo. After 3 mo, ghrelin increased significantly with the acellular (mean: 46 pg/mL; 95% CI: 11, 81) and cellular (mean: 54 pg/mL; 95% CI: 21, 88) diets but not with the LCHF diet (mean: 11 pg/mL; 95% CI: -16, 38). Although ßHB increased significantly more with the LCHF diet than with the acellular diet after 3 m (mean: 0.16 mmol/L; 95% CI: 0.09, 0.24), this did not correspond to a significant group difference in ghrelin (unless the 2 high-carbohydrate groups were combined [mean: -39.6 pg/mL; 95% CI: -76, -3.3]). No significant between-group differences were seen in feelings of hunger. CONCLUSIONS: Modestly energy-restricted isocaloric diets differing in carbohydrate cellularity and amount showed no significant differences in fasting total ghrelin or subjective hunger feelings. An increase in ketones with the LCHF diet to 0.3-0.4 mmol/L was insufficient to substantially curb increases in fasting ghrelin during fat loss.


Asunto(s)
Apetito , Ghrelina , Adulto , Humanos , Cetonas/farmacología , Carbohidratos de la Dieta/farmacología , Ingestión de Energía , Obesidad , Dieta con Restricción de Grasas
5.
Int J Mol Sci ; 24(8)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37108048

RESUMEN

Proteoglycans are central components of the extracellular matrix (ECM) and binding partners for inflammatory chemokines. Morphological differences in the ECM and increased inflammation are prominent features of the white adipose tissues in patients with obesity. The impact of obesity and weight loss on the expression of specific proteoglycans in adipose tissue is not well known. This study aimed to investigate the relationship between adiposity and proteoglycan expression. We analyzed transcriptomic data from two human bariatric surgery cohorts. In addition, RT-qPCR was performed on adipose tissues from female and male mice fed a high-fat diet. Both visceral and subcutaneous adipose tissue depots were analyzed. Adipose mRNA expression of specific proteoglycans, proteoglycan biosynthetic enzymes, proteoglycan partner molecules, and other ECM-related proteins were altered in both human cohorts. We consistently observed more profound alterations in gene expression of ECM targets in the visceral adipose tissues after surgery (among others VCAN (p = 0.000309), OGN (p = 0.000976), GPC4 (p = 0.00525), COL1A1 (p = 0.00221)). Further, gene analyses in mice revealed sex differences in these two tissue compartments in obese mice. We suggest that adipose tissue repair is still in progress long after surgery, which may reflect challenges in remodeling increased adipose tissues. This study can provide the basis for more mechanistic studies on the role of proteoglycans in adipose tissues in obesity.


Asunto(s)
Tejido Adiposo , Proteoglicanos , Femenino , Humanos , Masculino , Animales , Ratones , Proteoglicanos/genética , Proteoglicanos/metabolismo , Tejido Adiposo/metabolismo , Obesidad/genética , Obesidad/metabolismo , Grasa Subcutánea/metabolismo , Adiposidad , Proteínas de la Matriz Extracelular/metabolismo , Dieta Alta en Grasa/efectos adversos
6.
Arterioscler Thromb Vasc Biol ; 41(10): 2563-2574, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34348490

RESUMEN

Objective: The accumulation of inflammatory leukocytes is a prerequisite of adipose tissue inflammation during cardiometabolic disease. We previously reported that a genetic deficiency of the intracellular signaling adaptor TRAF5 (TNF [tumor necrosis factor] receptor-associated factor 5) accelerates atherosclerosis in mice by increasing inflammatory cell recruitment. Here, we tested the hypothesis that an impairment of TRAF5 signaling modulates adipose tissue inflammation and its metabolic complications in a model of diet-induced obesity in mice. Approach and Results: To induce diet-induced obesity and adipose tissue inflammation, wild-type or Traf5-/- mice consumed a high-fat diet for 18 weeks. Traf5-/- mice showed an increased weight gain, impaired insulin tolerance, and increased fasting blood glucose. Weight of livers and peripheral fat pads was increased in Traf5-/- mice, whereas lean tissue weight and growth were not affected. Flow cytometry of the stromal vascular fraction of visceral adipose tissue from Traf5-/- mice revealed an increase in cytotoxic T cells, CD11c+ macrophages, and increased gene expression of proinflammatory cytokines and chemokines. At the level of cell types, expression of TNF[alpha], MIP (macrophage inflammatory protein)-1[alpha], MCP (monocyte chemoattractant protein)-1, and RANTES (regulated on activation, normal T-cell expressed and secreted) was significantly upregulated in Traf5-deficient adipocytes but not in Traf5-deficient leukocytes from visceral adipose tissue. Finally, Traf5 expression was lower in adipocytes from obese patients and mice and recovered in adipose tissue of obese patients one year after bariatric surgery. Conclusions: We show that a genetic deficiency of TRAF5 in mice aggravates diet-induced obesity and its metabolic derangements by a proinflammatory response in adipocytes. Our data indicate that TRAF5 may promote anti-inflammatory and obesity-preventing signaling events in adipose tissue.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , Linfocitos/metabolismo , Obesidad/metabolismo , Paniculitis/metabolismo , Factor 5 Asociado a Receptor de TNF/deficiencia , Adipocitos/inmunología , Adipocitos/patología , Tejido Adiposo/inmunología , Tejido Adiposo/patología , Adiposidad , Adulto , Anciano , Animales , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Femenino , Humanos , Linfocitos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Obesidad/genética , Obesidad/inmunología , Obesidad/patología , Paniculitis/genética , Paniculitis/inmunología , Paniculitis/patología , Transducción de Señal , Factor 5 Asociado a Receptor de TNF/genética
7.
J Nutr ; 151(9): 2610-2621, 2021 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-34132338

RESUMEN

BACKGROUND: Low-carbohydrate diets are suggested to exert metabolic benefits by reducing circulating triacylglycerol (TG) concentrations, possibly by enhancing mitochondrial activity. OBJECTIVE: We aimed to elucidate mechanisms by which dietary carbohydrate and fat differentially affect hepatic and circulating TG, and how these mechanisms relate to fatty acid composition. METHODS: Six-week-old, ∼300 g male Wistar rats were fed a high-carbohydrate, low-fat [HC; 61.3% of energy (E%) carbohydrate] or a low-carbohydrate, high-fat (HF; 63.5 E% fat) diet for 4 wk. Parameters of lipid metabolism and mitochondrial function were measured in plasma and liver, with fatty acid composition (GC), high-energy phosphates (HPLC), carnitine metabolites (HPLC-MS/MS), and hepatic gene expression (qPCR) as main outcomes. RESULTS: In HC-fed rats, plasma TG was double and hepatic TG 27% of that in HF-fed rats. The proportion of oleic acid (18:1n-9) was 60% higher after HF vs. HC feeding while the proportion of palmitoleic acid (16:1n-7) and vaccenic acid (18:1n-7), and estimated activities of stearoyl-CoA desaturase, SCD-16 (16:1n-7/16:0), and de novo lipogenesis (16:0/18:2n-6) were 1.5-7.5-fold in HC vs. HF-fed rats. Accordingly, hepatic expression of fatty acid synthase (Fasn) and acetyl-CoA carboxylase (Acaca/Acc) was strongly upregulated after HC feeding, accompanied with 8-fold higher FAS activity and doubled ACC activity. There were no differences in expression of liver-specific biomarkers of mitochondrial biogenesis and activity (Cytc, Tfam, Cpt1, Cpt2, Ucp2, Hmgcs2); concentrations of ATP, AMP, and energy charge; plasma carnitine/acylcarnitine metabolites; or peroxisomal fatty acid oxidation. CONCLUSIONS: In male Wistar rats, dietary carbohydrate was converted into specific fatty acids via hepatic lipogenesis, contributing to higher plasma TG and total fatty acids compared with high-fat feeding. In contrast, the high-fat, low-carbohydrate feeding increased hepatic fatty acid content, without affecting hepatic mitochondrial fatty acid oxidation.


Asunto(s)
Dieta Alta en Grasa , Lipidómica , Animales , Carbohidratos de la Dieta/metabolismo , Metabolismo Energético , Ácidos Grasos/metabolismo , Lipogénesis , Hígado/metabolismo , Masculino , Ratas , Ratas Wistar , Espectrometría de Masas en Tándem , Triglicéridos/metabolismo
8.
Br J Nutr ; : 1-11, 2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34250884

RESUMEN

It is widely assumed that people with obesity have several common eating patterns, including breakfast skipping, eating during the night and high fast-food consumption. However, differences in individual meal and dietary patterns may be crucial to optimising obesity treatment. Therefore, we investigated the inter-individual variation in eating patterns, hypothesising that individuals with obesity show different dietary and meal patterns, and that these associate with self-reported energy intake (rEI) and/or anthropometric measures. Cross-sectional data from 192 participants (aged 20-55 years) with obesity, including 6 d of weighed food records, were analysed. Meal patterns and dietary patterns were derived using exploratory hierarchical cluster analysis and k-means cluster analysis, respectively. Five clear meal patterns were found based on the time-of-day with the highest mean rEI. The daily rEI was highest among 'midnight-eaters' (10 669 (sd 2301) kJ), and significantly (P < 0·05) higher than 'dinner-eaters' (8619 (sd 2301) kJ), 'lunch-eaters' (8703 (sd 2176) kJ) and 'supper-eaters' (8786 (sd 1925) kJ), but not 'regular-eaters' (9749 (sd 2720) kJ). Despite differences of up to 2050 kJ between meal patterns, there were no significant differences in anthropometric measures or physical activity level (PAL). Four dietary patterns were also found with significant differences in intake of specific food groups, but without significant differences in anthropometry, PAL or rEI. Our data highlight meal timing as a determinant of individual energy intake in people with obesity. The study supports the importance of considering a person's specific meal pattern, with possible implications for more person-focused guidelines and targeted advice.

9.
Int J Obes (Lond) ; 43(11): 2151-2162, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30538277

RESUMEN

OBJECTIVE: A causal obesity risk variant in the FTO locus was recently shown to inhibit adipocyte thermogenesis via increased adipose expression of the homeobox transcription factors IRX3 and IRX5. However, causal effects of IRX5 on fat storage remain to be shown in vivo, and discovery of downstream mediators may open new therapeutic avenues. METHODS: 17 WT and 13 Irx5 knockout (KO) mice were fed low-fat control (Ctr) or high-fat (HF) diet for 10 weeks. Body weight, energy intake and fat mass were measured. Irx5-dependent gene expression was explored by transcriptome analysis of epididymal white adipose tissue (eWAT), confirmatory obesity-dependent expression in human adipocytes in vivo, and in vitro knock-down, overexpression and transcriptional activation assays. RESULTS: Irx5 knock-out mice weighed less, had diminished fat mass, and were protected from diet-induced fat accumulation. Key adipose mitochondrial genes Pparγ coactivator 1-alpha (Pgc-1α) and uncoupling protein 1 (Ucp1) were upregulated, and a gene network centered on amyloid precursor protein (App) was downregulated in adipose tissue of knock-out mice and in isolated mouse adipocytes with stable Irx5 knock-down. An APP-centered network was also enriched in isolated adipocytes from obese compared to lean humans. IRX5 overexpression increased APP promoter activity and both IRX5 and APP inhibited transactivation of PGC-1α and UCP1. Knock-down of Irx5 or App increased mitochondrial respiration in adipocytes. CONCLUSION: Irx5-KO mice were protected from obesity and this can partially be attributed to reduced adipose App and improved mitochondrial respiration. This novel Irx5-App pathway in adipose tissue is a possible therapeutic entry point against obesity.


Asunto(s)
Adipocitos/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas de Homeodominio , Mitocondrias/metabolismo , Obesidad , Factores de Transcripción , Adulto , Animales , Células Cultivadas , Femenino , Redes Reguladoras de Genes , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Obesidad/genética , Obesidad/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología
10.
N Engl J Med ; 373(10): 895-907, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26287746

RESUMEN

BACKGROUND: Genomewide association studies can be used to identify disease-relevant genomic regions, but interpretation of the data is challenging. The FTO region harbors the strongest genetic association with obesity, yet the mechanistic basis of this association remains elusive. METHODS: We examined epigenomic data, allelic activity, motif conservation, regulator expression, and gene coexpression patterns, with the aim of dissecting the regulatory circuitry and mechanistic basis of the association between the FTO region and obesity. We validated our predictions with the use of directed perturbations in samples from patients and from mice and with endogenous CRISPR-Cas9 genome editing in samples from patients. RESULTS: Our data indicate that the FTO allele associated with obesity represses mitochondrial thermogenesis in adipocyte precursor cells in a tissue-autonomous manner. The rs1421085 T-to-C single-nucleotide variant disrupts a conserved motif for the ARID5B repressor, which leads to derepression of a potent preadipocyte enhancer and a doubling of IRX3 and IRX5 expression during early adipocyte differentiation. This results in a cell-autonomous developmental shift from energy-dissipating beige (brite) adipocytes to energy-storing white adipocytes, with a reduction in mitochondrial thermogenesis by a factor of 5, as well as an increase in lipid storage. Inhibition of Irx3 in adipose tissue in mice reduced body weight and increased energy dissipation without a change in physical activity or appetite. Knockdown of IRX3 or IRX5 in primary adipocytes from participants with the risk allele restored thermogenesis, increasing it by a factor of 7, and overexpression of these genes had the opposite effect in adipocytes from nonrisk-allele carriers. Repair of the ARID5B motif by CRISPR-Cas9 editing of rs1421085 in primary adipocytes from a patient with the risk allele restored IRX3 and IRX5 repression, activated browning expression programs, and restored thermogenesis, increasing it by a factor of 7. CONCLUSIONS: Our results point to a pathway for adipocyte thermogenesis regulation involving ARID5B, rs1421085, IRX3, and IRX5, which, when manipulated, had pronounced pro-obesity and anti-obesity effects. (Funded by the German Research Center for Environmental Health and others.).


Asunto(s)
Adipocitos/metabolismo , Obesidad/genética , Proteínas/genética , Termogénesis/genética , Alelos , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Animales , Secuencia de Bases , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Epigenómica , Expresión Génica , Ingeniería Genética , Humanos , Ratones , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Obesidad/metabolismo , Fenotipo , Edición de ARN , Riesgo , Termogénesis/fisiología
13.
Front Nutr ; 10: 1020678, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37404855

RESUMEN

Background: Clinical studies on effects of marine-derived omega-3 (n-3) polyunsaturated fatty acids (PUFAs), mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and the plant-derived omega-6 (n-6) PUFA linoleic acid (LA) on lipoprotein-lipid components and glucose-insulin homeostasis have shown conflicting results, which may partly be explained by differential responses in females and males. However, we have lacked data on sexual dimorphism in the response of cardiometabolic risk markers following increased consumption of n-3 or n-6 PUFAs. Objective: To explore sex-specific responses after n-3 (EPA + DHA) or n-6 (LA) PUFA supplementation on circulating lipoprotein subfractions, standard lipids, apolipoproteins, fatty acids in red blood cell membranes, and markers of glycemic control/insulin sensitivity among people with abdominal obesity. Methods: This was a randomized double-blind crossover study with two 7-week intervention periods separated by a 9-week washout phase. Females (n = 16) were supplemented with 3 g/d of EPA + DHA (fish oil) or 15 g/d of LA (safflower oil), while males (n = 23) received a dose of 4 g/d of EPA + DHA or 20 g/d of LA. In fasting blood samples, we measured lipoprotein particle subclasses, standard lipids, apolipoproteins, fatty acid profiles, and markers of glycemic control/insulin sensitivity. Results: The between-sex difference in relative change scores was significant after n-3 for total high-density lipoproteins (females/males: -11%*/-3.3%, p = 0.036; *: significant within-sex change), high-density lipoprotein particle size (+2.1%*/-0.1%, p = 0.045), and arachidonic acid (-8.3%*/-12%*, p = 0.012), and after n-6 for total (+37%*/+2.1%, p = 0.041) and small very-low-density lipoproteins (+97%*/+14%, p = 0.021), and lipoprotein (a) (-16%*/+0.1%, p = 0.028). Circulating markers of glucose-insulin homeostasis differed significantly after n-3 for glucose (females/males: -2.1%/+3.9%*, p = 0.029), insulin (-31%*/+16%, p < 0.001), insulin C-peptide (-12%*/+13%*, p = 0.001), homeostasis model assessment of insulin resistance index 2 (-12%*/+14%*, p = 0.001) and insulin sensitivity index 2 (+14%*/-12%*, p = 0.001), and quantitative insulin sensitivity check index (+4.9%*/-3.4%*, p < 0.001). Conclusion: We found sex-specific responses after high-dose n-3 (but not n-6) supplementation in circulating markers of glycemic control/insulin sensitivity, which improved in females but worsened in males. This may partly be related to the sex differences we observed in several components of the lipoprotein-lipid profile following the n-3 intervention. Clinical trial registration: https://clinicaltrials.gov/, identifier [NCT02647333].

14.
EBioMedicine ; 91: 104569, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37084480

RESUMEN

BACKGROUND: The valine (branched-chain amino acid) metabolite 3-hydroxyisobutyrate (3-HIB), produced by 3-Hydroxyisobutyryl-CoA Hydrolase (HIBCH), is associated with insulin resistance and type 2 diabetes, but implicated tissues and cellular mechanisms are poorly understood. We hypothesized that HIBCH and 3-HIB regulate hepatic lipid accumulation. METHODS: HIBCH mRNA in human liver biopsies ("Liver cohort") and plasma 3-HIB ("CARBFUNC" cohort) were correlated with fatty liver and metabolic markers. Human Huh7 hepatocytes were supplemented with fatty acids (FAs) to induce lipid accumulation. Following HIBCH overexpression, siRNA knockdown, inhibition of PDK4 (a marker of FA ß-oxidation) or 3-HIB supplementation, we performed RNA-seq, Western blotting, targeted metabolite analyses and functional assays. FINDINGS: We identify a regulatory feedback loop between the valine/3-HIB pathway and PDK4 that shapes hepatic FA metabolism and metabolic health and responds to 3-HIB treatment of hepatocytes. HIBCH overexpression increased 3-HIB release and FA uptake, while knockdown increased cellular respiration and decreased reactive oxygen species (ROS) associated with metabolic shifts via PDK4 upregulation. Treatment with PDK4 inhibitor lowered 3-HIB release and increased FA uptake, while increasing HIBCH mRNA. Implicating this regulatory loop in fatty liver, human cohorts show positive correlations of liver fat with hepatic HIBCH and PDK4 expression (Liver cohort) and plasma 3-HIB (CARBFUNC cohort). Hepatocyte 3-HIB supplementation lowered HIBCH expression and FA uptake and increased cellular respiration and ROS. INTERPRETATION: These data implicate the hepatic valine/3-HIB pathway in mechanisms of fatty liver, reflected in increased plasma 3-HIB concentrations, and present possible targets for therapeutic intervention. FUNDING: Funding was provided by the Research Council of Norway (263124/F20), the University of Bergen, the Western Norway Health Authorities, Novo Nordisk Scandinavia AS, the Trond Mohn Foundation and the Norwegian Diabetes Association.


Asunto(s)
Diabetes Mellitus Tipo 2 , Haemophilus influenzae tipo b , Enfermedad del Hígado Graso no Alcohólico , Humanos , Valina , Haemophilus influenzae tipo b/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , ARN Mensajero/metabolismo , Lípidos , Metabolismo de los Lípidos
15.
J Clin Endocrinol Metab ; 108(9): 2217-2229, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-36916878

RESUMEN

CONTEXT: The neutral amino acid transporter SLC7A10/ASC-1 is an adipocyte-expressed gene with reduced expression in insulin resistance and obesity. Inhibition of SLC7A10 in adipocytes was shown to increase lipid accumulation despite decreasing insulin-stimulated uptake of glucose, a key substrate for de novo lipogenesis. These data imply that alternative lipogenic substrates to glucose fuel continued lipid accumulation during insulin resistance in obesity. OBJECTIVE: We examined whether increased lipid accumulation during insulin resistance in adipocytes may involve alter flux of lipogenic amino acids dependent on SLC7A10 expression and activity, and whether this is reflected by extracellular and circulating concentrations of marker metabolites. METHODS: In adipocyte cultures with impaired SLC7A10, we performed RNA sequencing and relevant functional assays. By targeted metabolite analyses (GC-MS/MS), flux of all amino acids and selected metabolites were measured in human and mouse adipose cultures. Additionally, SLC7A10 mRNA levels in human subcutaneous adipose tissue (SAT) were correlated to candidate metabolites and adiposity phenotypes in 2 independent cohorts. RESULTS: SLC7A10 impairment altered expression of genes related to metabolic processes, including branched-chain amino acid (BCAA) catabolism, lipogenesis, and glyceroneogenesis. In 3T3-L1 adipocytes, SLC7A10 inhibition increased fatty acid uptake and cellular content of glycerol and cholesterol. SLC7A10 impairment in SAT cultures altered uptake of aspartate and glutamate, and increased net uptake of BCAAs, while increasing the net release of the valine catabolite 3- hydroxyisobutyrate (3-HIB). In human cohorts, SLC7A10 mRNA correlated inversely with total fat mass, circulating triacylglycerols, BCAAs, and 3-HIB. CONCLUSION: Reduced SLC7A10 activity strongly affects flux of BCAAs in adipocytes, which may fuel continued lipogenesis during insulin resistance, and be reflected in increased circulating levels of the valine-derived catabolite 3-HIB.


Asunto(s)
Resistencia a la Insulina , Animales , Humanos , Ratones , Adipocitos/metabolismo , Aminoácidos/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Metabolismo de los Lípidos , Obesidad/genética , Obesidad/metabolismo , ARN Mensajero/metabolismo , Espectrometría de Masas en Tándem , Valina
16.
Nat Metab ; 5(5): 861-879, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37253881

RESUMEN

Recent large-scale genomic association studies found evidence for a genetic link between increased risk of type 2 diabetes and decreased risk for adiposity-related traits, reminiscent of metabolically obese normal weight (MONW) association signatures. However, the target genes and cellular mechanisms driving such MONW associations remain to be identified. Here, we systematically identify the cellular programmes of one of the top-scoring MONW risk loci, the 2q24.3 risk locus, in subcutaneous adipocytes. We identify a causal genetic variant, rs6712203, an intronic single-nucleotide polymorphism in the COBLL1 gene, which changes the conserved transcription factor motif of POU domain, class 2, transcription factor 2, and leads to differential COBLL1 gene expression by altering the enhancer activity at the locus in subcutaneous adipocytes. We then establish the cellular programme under the genetic control of the 2q24.3 MONW risk locus and the effector gene COBLL1, which is characterized by impaired actin cytoskeleton remodelling in differentiating subcutaneous adipocytes and subsequent failure of these cells to accumulate lipids and develop into metabolically active and insulin-sensitive adipocytes. Finally, we show that perturbations of the effector gene Cobll1 in a mouse model result in organismal phenotypes matching the MONW association signature, including decreased subcutaneous body fat mass and body weight along with impaired glucose tolerance. Taken together, our results provide a mechanistic link between the genetic risk for insulin resistance and low adiposity, providing a potential therapeutic hypothesis and a framework for future identification of causal relationships between genome associations and cellular programmes in other disorders.


Asunto(s)
Actinas , Adipocitos , Obesidad Metabólica Benigna , Humanos , Adipocitos/metabolismo , Actinas/metabolismo , Obesidad Metabólica Benigna/genética , Factores de Transcripción/genética , Grasa Subcutánea/metabolismo , Células Cultivadas , Haplotipos , Ratones Noqueados , Masculino , Femenino , Ratones , Animales
17.
iScience ; 26(9): 107697, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37694136

RESUMEN

Cholesterol-to-coprostanol conversion by the intestinal microbiota has been suggested to reduce intestinal and serum cholesterol availability, but the relationship between intestinal cholesterol conversion and the gut microbiota, dietary habits, and serum lipids has not been characterized in detail. We measured conserved proportions of cholesterol high and low-converter types in individuals with and without obesity from two distinct, independent low-carbohydrate high-fat (LCHF) dietary intervention studies. Across both cohorts, cholesterol conversion increased in previous low-converters after LCHF diet and was positively correlated with the fecal relative abundance of Eubacterium coprostanoligenes. Lean cholesterol high-converters had increased serum triacylglycerides and decreased HDL-C levels before LCHF diet and responded to the intervention with increased LDL-C, independently of fat, cholesterol, and saturated fatty acid intake. Our findings identify the cholesterol high-converter type as a microbiome marker, which in metabolically healthy lean individuals is associated with increased LDL-C in response to LCHF.

18.
Nutrients ; 14(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36558523

RESUMEN

Rest raw materials provide a new source of bioactive dietary ingredients, and this study aimed to determine the health effects of diets with chicken protein hydrolysate (CPH) and chicken oil (CO) generated from deboned chicken meat. Male Wistar rats (n = 56) were divided into seven groups in three predefined sub-experiments to study the effects of protein source (casein, chicken fillet, pork fillet, and CPH), the dose-effect of CPH (50% and 100% CPH), and the effects of combining CPH and CO. Rats were fed high-fat diets for 12 weeks, and casein and chicken fillet were used as controls in all sub-experiments. While casein, chicken-, or pork fillet diets resulted in similar weight gain and plasma lipid levels, the CPH diet reduced plasma total cholesterol. This effect was dose dependent and accompanied with the reduced hepatic activities of acetyl-CoA carboxylase and fatty acid synthase. Further, rats fed combined CPH and CO showed lower weight gain, and higher hepatic mitochondrial fatty acid oxidation, plasma L-carnitine, short-chain acylcarnitines, TMAO, and acetylcarnitine/palmitoylcarnitine. Thus, in male Wistar rats, CPH and CO lowered plasma cholesterol and increased hepatic fatty acid oxidation compared to whole protein diets, pointing to potential health-beneficial bioactive properties of these processed chicken rest raw materials.


Asunto(s)
Pollos , Hidrolisados de Proteína , Ratas , Masculino , Animales , Ratas Wistar , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/metabolismo , Pollos/metabolismo , Caseínas/metabolismo , Dieta Alta en Grasa/efectos adversos , Hígado/metabolismo , Aumento de Peso , Colesterol , Ácidos Grasos/metabolismo , Tejido Adiposo/metabolismo , Grasas de la Dieta/metabolismo
19.
Diabetol Metab Syndr ; 14(1): 146, 2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36209247

RESUMEN

BACKGROUND: Excess adipose tissue is associated with increased cardiovascular and metabolic risk, but the volume of visceral and subcutaneous adipose tissue poses different metabolic risks. MRI with fat suppression can be used to accurately quantify adipose depots. We have developed a new semi-automatic method, RAdipoSeg, for MRI adipose tissue segmentation and quantification in the free and open source statistical software R. METHODS: MRI images were obtained from wild-type mice on high- or low-fat diet, and from 20 human subjects without clinical signs of metabolic dysfunction. For each mouse and human subject, respectively, 10 images were segmented with RAdipoSeg and with the commercially available software SliceOmatic. Jaccard difference, relative volume difference and Spearman's rank correlation coefficients were calculated for each group. Agreement between the two methods were analysed with Bland-Altman plots. RESULTS: RAdipoSeg performed similarly to the commercial software. The mean Jaccard differences were 10-29% and the relative volume differences were below ( ±) 20%. Spearman's rank correlation coefficient gave p-values below 0.05 for both mouse and human images. The Bland-Altman plots indicated some systematic and proporitional bias, which can be countered by the flexible nature of the method. CONCLUSION: RAdipoSeg is a reliable and low cost method for fat segmentation in studies of mice and humans.

20.
Int J Cardiol Cardiovasc Risk Prev ; 15: 200150, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36573185

RESUMEN

Background: Physical activity (PA) influences sympathetic stimulation, platelet activation as well as vascular function, and has been associated with improved health outcomes in patients with coronary heart disease. ß-blocker therapy reduces sympathetic activity and improves platelet and endothelial function. We investigated if ß-blocker treatment modifies the association of self-reported PA with the risk of all-cause mortality. Methods: A total of 2284 patients undergoing elective coronary angiography for suspected stable angina pectoris (SAP) were studied. Using Cox modeling, we examined associations between PA (categorized as 'sedentary/inactive', 'low', 'moderate', and 'high') and all-cause mortality according to ß-blocker therapy. Results: During a median follow-up of 10.3 years, 390 patients (17.1%) died. Higher PA was generally associated with a more favorable cardiovascular risk profile. Compared to the patients who were sedentary or inactive, the age and sex adjusted HRs (95% CI) for all-cause mortality were 0.89 (0.66-1.20), 0.73 (0.57-0.95) and 0.72 (0.55-0.95) in the low, moderate and high PA group, respectively. However, and notably, these risk estimates were 0.85 (0.60-1.20), 0.65 (0.47-0.89) and 0.58 (0.41-0.81) in ß-blocker treated subjects vs. 1.00 (0.57-1.78), 0.96 (0.61-1.52) and 1.20 (0.74-1.95) in non-treated groups (P interaction = 0.018). The results were essentially similar in the multivariable adjusted models. Conclusions: In patients with suspected SAP, increased PA was associated with reduced mortality risk primarily in patients treated with ß-blockers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA