Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Neurosci ; 19(8): 499-514, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29934561

RESUMEN

Drug addiction is a worldwide societal problem and public health burden, and results from recreational drug use that develops into a complex brain disorder. The opioid system, one of the first discovered neuropeptide systems in the history of neuroscience, is central to addiction. Recently, opioid receptors have been propelled back on stage by the rising opioid epidemics, revolutions in G protein-coupled receptor research and fascinating developments in basic neuroscience. This Review discusses rapidly advancing research into the role of opioid receptors in addiction, and addresses the key questions of whether we can kill pain without addiction using mu-opioid-receptor-targeting opiates, how mu- and kappa-opioid receptors operate within the neurocircuitry of addiction and whether we can bridge human and animal opioid research in the field of drug abuse.


Asunto(s)
Encéfalo/fisiopatología , Dolor/tratamiento farmacológico , Receptores Opioides kappa/fisiología , Receptores Opioides mu/fisiología , Trastornos Relacionados con Sustancias/fisiopatología , Animales , Humanos , Neuronas/fisiología , Recompensa , Trastornos Relacionados con Sustancias/etiología
2.
Mol Psychiatry ; 27(11): 4662-4672, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36075963

RESUMEN

The neural orphan G protein coupled receptor GPR88 is predominant in the striatum and cortex of both rodents and humans, and considered a potential target for brain disorders. Previous studies have shown multiple behavioral phenotypes in Gpr88 knockout mice, and human genetic studies have reported association with psychosis. Here we tested the possibility that GPR88 contributes to Attention Deficit Hyperactivity Disorder (ADHD). In the mouse, we tested Gpr88 knockout mice in three behavioral paradigms, best translatable between rodents and humans, and found higher motor impulsivity and reduced attention together with the reported hyperactivity. Atomoxetine, a typical ADHD drug, reduced impulsivity in mutant mice. Conditional Gpr88 knockout mice in either D1R-type or D2R-type medium spiny neurons revealed distinct implications of the two receptor populations in waiting and stopping impulsivity. Thus, animal data demonstrate that deficient GPR88 activity causally promotes ADHD-like behaviors, and identify circuit mechanisms underlying GPR88-regulated impulsivity. In humans, we performed a family-based genetic study including 567 nuclear families with DSM-IV diagnosis of ADHD. There was a minor association for SNP rs2036212 with diagnosis, treatment response and cognition. A stronger association was found for SNP rs2809817 upon patient stratification, suggesting that the T allele is a risk factor when prenatal stress is involved. Human data therefore identify GPR88 variants associated with the disease, and highlight a potential role of life trajectories to modulate GPR88 function. Overall, animal and human data concur to suggest that GPR88 signaling should be considered a key factor for diagnostic and treatment of ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Animales , Humanos , Ratones , Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno por Déficit de Atención con Hiperactividad/metabolismo , Cuerpo Estriado/metabolismo , Ratones Noqueados , Conducta Impulsiva , Proteínas Portadoras/metabolismo , Factores de Riesgo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
3.
Bioorg Med Chem Lett ; 80: 129120, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36587872

RESUMEN

GPR88 is an orphan G protein-coupled receptor which has been implicated in a number of striatal-associated disorders. Herein we describe the synthesis and pharmacological characterization of the first GPR88 radioligand, [3H]RTI-33, derived from a synthetic agonist RTI-13951-33. [3H]RTI-33 has a specific activity of 83.4 Ci/mmol and showed one-site, saturable binding (KD of 85 nM) in membranes prepared from stable PPLS-HA-hGPR88-CHO cells. A competition binding assay was developed to determine binding affinities of several known GPR88 agonists. This radioligand represents a powerful tool for future mechanistic and cell-based ligand-receptor interaction studies of GPR88.


Asunto(s)
Proteínas Portadoras , Receptores Acoplados a Proteínas G , Cricetinae , Animales , Cricetulus , Receptores Acoplados a Proteínas G/agonistas , Ensayo de Unión Radioligante
4.
J Pineal Res ; 73(4): e12825, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35996205

RESUMEN

Melatonin, through its G protein-coupled receptor (GPCR) (MTNR1B gene) MT2 , is implicated in analgesia, but the relationship between MT2 receptors and the opioid system remains elusive. In a model of rodent neuropathic pain (spared nerve injured [SNI]), the selective melatonin MT2 agonist UCM924 reversed the allodynia (a pain response to a non-noxious stimulus), and this effect was nullified by the pharmacological blockade or genetic inactivation of the mu opioid receptor (MOR), but not the delta opioid receptor (DOR). Indeed, SNI MOR, but not DOR knockout mice, did not respond to the antiallodynic effects of the UCM924. Similarly, the nonselective opioid antagonist naloxone and the selective MOR antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) blocked the effects of UCM924 in SNI rats, but not the DOR antagonist naltrindole (NTI). Electrophysiological recordings in the rostral-ventromedial medulla (RVM) revealed that the typical reduction of the firing activity of pronociceptive ON-cells, and the enhancement of the firing of the antinociceptive OFF-cells, induced by the microinjection of the MT2 agonist UCM924 into the ventrolateral periaqueductal gray (vlPAG) were blocked by MOR, but not DOR, antagonism. Immunohistochemistry studies showed that MT2 receptors are expressed in both excitatory (CaMKIIα+ ) and inhibitory (GAD65+ ) neuronal cell bodies in the vlPAG (~2.16% total), but not RVM. Only 0.20% of vlPAG neurons coexpressed MOR and MT2 receptors. Finally, UCM924 treatment induced an increase in the enkephalin precursor gene (PENK) in the PAG of SNI mice. Collectively, the melatonin MT2 receptor agonism requires MORs to exert its antiallodynic effects, mostly through an interneuronal circuit involving MOR and MT2 receptors.


Asunto(s)
Melatonina , Neuralgia , Ratones , Animales , Ratas , Receptores Opioides mu/genética , Receptores Opioides mu/agonistas , Melatonina/farmacología , Melatonina/uso terapéutico , Antagonistas de Narcóticos/farmacología , Antagonistas de Narcóticos/uso terapéutico , Receptores Opioides delta , Analgésicos Opioides/uso terapéutico , Encefalinas/farmacología , Encefalinas/uso terapéutico , Naloxona/farmacología , Naloxona/uso terapéutico , Neuralgia/tratamiento farmacológico
5.
Addict Biol ; 27(6): e13227, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36301207

RESUMEN

GPR88 is an orphan G-protein-coupled receptor that is considered a potential target to treat neuropsychiatric disorders, including addiction. Most knowledge about GPR88 function stems from knockout mouse studies, and in vivo pharmacology is still scarce. Here we examine the effects of the novel brain-penetrant agonist RTI-13951-33 on several alcohol-related behaviours in the mouse. In the intermittent-access-two-bottle-choice paradigm, the compound reduced excessive voluntary alcohol drinking, while water drinking was intact. This was observed for C57BL/6 mice, as well as for control but not Gpr88 knockout mice, demonstrating efficacy and specificity of the drug in vivo. In the drinking-in-the-dark paradigm, RTI-13951-33 also reduced binge-like drinking behaviour for control but not Gpr88 knockout mice, confirming the alcohol consumption-reducing effect and in vivo specificity of the drug. When C57BL/6 mice were trained for alcohol self-administration, RTI-13951-33 decreased the number of nose-pokes over a 4-h session and reduced the number of licks and bursts of licks, suggesting reduced motivation to obtain alcohol. Finally, RTI-13951-33 did not induce any place preference or aversion but reduced the expression of conditioned place preference to alcohol, indicative of a reduction of alcohol-reward seeking. Altogether, data show that RTI-13951-33 limits alcohol intake under distinct conditions that require consummatory behaviour, operant response or association with contextual cues. RTI-13951-33 therefore is a promising lead compound to evaluate GPR88 as a therapeutic target for alcohol use disorders. More broadly, RTI-13951-33 represents a unique tool to better understand GPR88 function, disentangle receptor roles in development from those in the adult and perhaps address other neuropsychiatric disorders.


Asunto(s)
Alcoholismo , Animales , Ratones , Alcoholismo/tratamiento farmacológico , Ratones Endogámicos C57BL , Consumo de Bebidas Alcohólicas/psicología , Etanol/farmacología , Ratones Noqueados , Receptores Acoplados a Proteínas G
7.
Proc Natl Acad Sci U S A ; 113(41): 11603-11608, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27671662

RESUMEN

Connectome genetics seeks to uncover how genetic factors shape brain functional connectivity; however, the causal impact of a single gene's activity on whole-brain networks remains unknown. We tested whether the sole targeted deletion of the mu opioid receptor gene (Oprm1) alters the brain connectome in living mice. Hypothesis-free analysis of combined resting-state fMRI diffusion tractography showed pronounced modifications of functional connectivity with only minor changes in structural pathways. Fine-grained resting-state fMRI mapping, graph theory, and intergroup comparison revealed Oprm1-specific hubs and captured a unique Oprm1 gene-to-network signature. Strongest perturbations occurred in connectional patterns of pain/aversion-related nodes, including the mu receptor-enriched habenula node. Our data demonstrate that the main receptor for morphine predominantly shapes the so-called reward/aversion circuitry, with major influence on negative affect centers.


Asunto(s)
Encéfalo/fisiología , Conectoma , Eliminación de Gen , Receptores Opioides mu/genética , Recompensa , Animales , Mapeo Encefálico/métodos , Conectoma/métodos , Imagen de Difusión Tensora , Genotipo , Imagen por Resonancia Magnética , Masculino , Ratones , Modelos Neurológicos , Receptores Opioides mu/metabolismo
8.
J Neurosci ; 36(39): 10116-27, 2016 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-27683907

RESUMEN

UNLABELLED: Brain-derived neurotrophic factor (BDNF) signaling in the dorsolateral striatum (DLS) keeps alcohol intake in moderation. For example, activation of the BDNF receptor tropomyosin receptor kinase B (TrkB) in the DLS reduces intake in rats that consume moderate amounts of alcohol. Here, we tested whether long-term excessive consumption of alcohol produces neuroadaptations in BDNF signaling in the rat DLS. We found that BDNF was no longer able to gate alcohol self-administration after a history of repeated cycles of binge alcohol drinking and withdrawal. We then elucidated the possible neuroadaptations that could block the ability of BDNF to keep consumption of alcohol in moderation. We report that intermittent access to 20% alcohol in a two-bottle choice paradigm that models excessive alcohol drinking produces a mobilization of DLS p75 neurotrophin receptor (p75NTR), whose activities oppose those of the Trk receptors, including TrkB. These neuroadaptations were not observed in the DLS of rats exposed to continuous access to 10% alcohol or in rats consuming sucrose. Furthermore, short hairpin RNA (shRNA)-mediated knockdown of the p75NTR gene in the DLS, as well as intra-DLS infusion or systemic administration of the p75NTR modulator, LM11A-31, significantly reduced binge drinking of alcohol. Together, our results suggest that excessive alcohol consumption produces a change in BDNF signaling in the DLS, which is mediated by the recruitment of p75NTR. Our data also imply that modulators of p75NTR signaling could be developed as medications for alcohol abuse disorders. SIGNIFICANCE STATEMENT: Neuroadaptations gate or drive excessive, compulsive alcohol drinking. We previously showed that brain-derived neurotrophic factor and its receptor, TrkB, in the dorsolateral striatum (DLS), are part of an endogenous system that keeps alcohol drinking in moderation. Here, we show that a history of excessive alcohol intake produces neuroadaptations in the DLS that preclude BDNF's ability to gate alcohol self-administration in rats by the recruitment of the low-affinity neurotrophin receptor, p75NTR, whose activities opposes those of the Trk receptors. Finally, we show that the administration of the p75NTR modulator, LM11A-31, significantly reduces excessive alcohol intake suggesting that the drug may be developed as a new treatment for alcohol abuse disorders.


Asunto(s)
Alcoholismo/fisiopatología , Consumo Excesivo de Bebidas Alcohólicas/fisiopatología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cuerpo Estriado/fisiopatología , Plasticidad Neuronal , Receptores de Factor de Crecimiento Nervioso/metabolismo , Adaptación Fisiológica , Animales , Masculino , Proteínas del Tejido Nervioso , Ratas , Ratas Long-Evans , Receptores de Factores de Crecimiento
9.
J Neurosci ; 33(36): 14369-78, 2013 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-24005290

RESUMEN

We previously found that excessive ethanol drinking activates Fyn in the dorsomedial striatum (DMS) (Wang et al., 2010; Gibb et al., 2011). Ethanol-mediated Fyn activation in the DMS leads to the phosphorylation of the GluN2B subunit of the NMDA receptor, to the enhancement of the channel's activity, and to the development and/or maintenance of ethanol drinking behaviors (Wang et al., 2007, 2010). Protein tyrosine phosphatase α (PTPα) is essential for Fyn kinase activation (Bhandari et al., 1998), and we showed that ethanol-mediated Fyn activation is facilitated by the recruitment of PTPα to synaptic membranes, the compartment where Fyn resides (Gibb et al., 2011). Here we tested the hypothesis that PTPα in the DMS is part of the Fyn/GluN2B pathway and is thus a major contributor to the neuroadaptations underlying excessive ethanol intake behaviors. We found that RNA interference (RNAi)-mediated PTPα knockdown in the DMS reduces excessive ethanol intake and preference in rodents. Importantly, no alterations in water, saccharine/sucrose, or quinine intake were observed. Furthermore, downregulation of PTPα in the DMS of mice significantly reduces ethanol-mediated Fyn activation, GluN2B phosphorylation, and ethanol withdrawal-induced long-term facilitation of NMDAR activity without altering the intrinsic features of DMS neurons. Together, these results position PTPα upstream of Fyn within the DMS and demonstrate the important contribution of the phosphatase to the maladaptive synaptic changes that lead to excessive ethanol intake.


Asunto(s)
Consumo de Bebidas Alcohólicas/metabolismo , Cuerpo Estriado/fisiología , Proteínas Tirosina Fosfatasas Clase 4 Similares a Receptores/metabolismo , Adaptación Fisiológica , Animales , Cuerpo Estriado/citología , Cuerpo Estriado/metabolismo , Regulación hacia Abajo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/enzimología , Neuronas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Ratas , Ratas Long-Evans , Proteínas Tirosina Fosfatasas Clase 4 Similares a Receptores/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transcripción Genética
10.
J Neurochem ; 129(6): 1024-34, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24588427

RESUMEN

The STriatal-Enriched protein tyrosine Phosphatase 61 (STEP61 ) inhibits the activity of the tyrosine kinase Fyn and dephosphorylates the GluN2B subunit of the NMDA receptor, whereas the protein kinase A phosphorylation of STEP61 inhibits the activity of the phosphatase (Pharmacol. Rev., 64, , p. 65). Previously, we found that ethanol activates Fyn in the dorsomedial striatum (DMS) leading to GluN2B phosphorylation, which, in turn, underlies the development of ethanol intake (J. Neurosci., 30, , p. 10187). Here, we tested the hypothesis that inhibition of STEP61 by ethanol is upstream of Fyn/GluN2B. We show that exposure of mice to ethanol increased STEP61 phosphorylation in the DMS, which was maintained after withdrawal and was not observed in other striatal regions. Specific knockdown of STEP61 in the DMS of mice enhanced ethanol-mediated Fyn activation and GluN2B phosphorylation, and increased ethanol intake without altering the level of water, saccharine, quinine consumption or spontaneous locomotor activity. Together, our data suggest that blockade of STEP61 activity in response to ethanol is sufficient for the activation of the Fyn/GluN2B pathway in the DMS. Being upstream of Fyn and GluN2B, inactive STEP61 in the DMS primes the induction of ethanol intake. We show that ethanol-mediated inhibition of STEP61 in the DMS leads to Fyn activation and GluN2B phosphorylation. (a) Under basal conditions, active STEP61 inhibits Fyn activity and dephosphorylates GluN2B. (b) Ethanol leads to the phosphorylation of STEP61 on a specific inhibitory site. The inhibition of STEP61 activity contributes to the activation of Fyn in response to ethanol, which, in turn, phosphorylates GluN2B. These molecular adaptations in the DMS promote ethanol drinking.


Asunto(s)
Consumo de Bebidas Alcohólicas/psicología , Neostriado/enzimología , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Animales , Anticuerpos Bloqueadores/farmacología , Western Blotting , Conducta de Elección , Regulación hacia Abajo/fisiología , Inhibidores Enzimáticos/farmacología , Técnicas de Silenciamiento del Gen , Inmunohistoquímica , Lentivirus/genética , Lentivirus/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Fosforilación , Proteínas Tirosina Fosfatasas/fisiología , Quinina/farmacología , ARN Interferente Pequeño/biosíntesis , ARN Interferente Pequeño/genética , Sacarina/farmacología
11.
Sci Rep ; 14(1): 9767, 2024 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684914

RESUMEN

Opioid use disorder (OUD) is a chronic relapsing disorder that is a major burden for the lives of affected individuals, and society as a whole. Opioid withdrawal is characterized by strong physical symptoms, along with signs of negative affect. Negative affect due to opioid withdrawal is a major obstacle to recovery and relapse prevention. The mechanisms behind negative affect due to either spontaneous or antagonist-precipitated opioid withdrawal are not well known, and more animal models need be developed. Here, we present behavioral models of negative affect upon naloxone-precipitated morphine withdrawal in adult male mice. Social, anxiety, and despair-like deficits were investigated following naloxone administration in mice receiving morphine under three dosing regimens; acute, chronic constant dose and chronic escalating doses. Social behaviour in the three-chamber social preference test was decreased following withdrawal from chronic and escalating but not acute morphine. Anxiety-like behaviour in the open field was increased for all three treatments. Despair-like behaviour was increased following withdrawal from chronic and escalating but not acute morphine. Altogether, these animal models will contribute to study behavioural and neuronal circuitries involved in the several negative affective signs characterizing OUD.


Asunto(s)
Modelos Animales de Enfermedad , Morfina , Naloxona , Síndrome de Abstinencia a Sustancias , Animales , Masculino , Morfina/efectos adversos , Morfina/administración & dosificación , Ratones , Naloxona/administración & dosificación , Naloxona/farmacología , Ansiedad , Conducta Animal/efectos de los fármacos , Antagonistas de Narcóticos/administración & dosificación , Antagonistas de Narcóticos/farmacología , Analgésicos Opioides/administración & dosificación , Analgésicos Opioides/efectos adversos , Conducta Social , Dependencia de Morfina/psicología , Trastornos Relacionados con Opioides
12.
Biol Psychiatry ; 95(3): 266-274, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37517704

RESUMEN

BACKGROUND: The transcription factor ΔFOSB, acting in the nucleus accumbens, has been shown to control transcriptional and behavioral responses to opioids and other drugs of abuse. However, circuit-level consequences of ΔFOSB induction on the rest of the brain, which are required for its regulation of complex behavior, remain unknown. METHODS: We used an epigenetic approach in mice to suppress or activate the endogenous Fosb gene and thereby decrease or increase, respectively, levels of ΔFOSB selectively in D1-type medium spiny neurons of the nucleus accumbens and tested whether these modifications affect the organization of functional connectivity (FC) in the brain. We acquired functional magnetic resonance imaging data at rest and in response to a morphine challenge and analyzed both stationary and dynamic FC patterns. RESULTS: The 2 manipulations modified brainwide communication markedly and differently. ΔFOSB down- and upregulation had overlapping effects on prefrontal- and retrosplenial cortex-centered networks, but also generated specific FC signatures for epithalamus (habenula) and dopaminergic/serotonergic centers, respectively. Analysis of dynamic FC patterns showed that increasing ΔFOSB essentially altered responsivity to morphine and uncovered striking modifications of the roles of the epithalamus and amygdala in brain communication, particularly upon ΔFOSB downregulation. CONCLUSIONS: These novel findings illustrate how it is possible to link activity of a transcription factor within a single cell type of an identified brain region to consequent changes in circuit function brainwide by use of functional magnetic resonance imaging, and they pave the way for fundamental advances in bridging the gap between transcriptional and brain connectivity mechanisms underlying opioid addiction.


Asunto(s)
Neuronas Espinosas Medianas , Núcleo Accumbens , Animales , Ratones , Encéfalo/metabolismo , Morfina/farmacología , Núcleo Accumbens/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Factores de Transcripción/metabolismo
13.
J Med Chem ; 67(13): 11296-11325, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38949964

RESUMEN

Decreased activity and expression of the G-protein coupled receptor GPR88 is linked to many behavior-linked neurological disorders. Published preclinical GPR88 allosteric agonists all have in vivo pharmacokinetic properties that preclude their progression to the clinic, including high lipophilicity and poor brain penetration. Here, we describe our attempts to improve GPR88 agonists' drug-like properties and our analysis of the trade-offs required to successfully target GPR88's allosteric pocket. We discovered two new GPR88 agonists: One that reduced morphine-induced locomotor activity in a murine proof-of-concept study, and the atropoisomeric BI-9508, which is a brain penetrant and has improved pharmacokinetic properties and dosing that recommend it for future in vivo studies in rodents. BI-9508 still suffers from high lipophilicity, and research on this series was halted. Because of its utility as a tool compound, we now offer researchers access to BI-9508 and a negative control free of charge via Boehringer Ingelheim's open innovation portal opnMe.com.


Asunto(s)
Encéfalo , Receptores Acoplados a Proteínas G , Animales , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Ratones , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Humanos , Descubrimiento de Drogas , Masculino , Relación Estructura-Actividad , Ratones Endogámicos C57BL , Morfina/farmacología , Morfina/farmacocinética
14.
J Neurosci ; 32(43): 15124-32, 2012 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-23100433

RESUMEN

We found previously that acute ex vivo as well as repeated cycles of in vivo ethanol exposure and withdrawal, including excessive voluntary consumption of ethanol, produces a long-lasting increase in the activity of NR2B-containing NMDA receptors (NR2B-NMDARs) in the dorsomedial striatum (DMS) of rats (Wang et al., 2010a). Activation of NMDARs is required for the induction of long-term potentiation (LTP) of AMPA receptor (AMPAR)-mediated synaptic response. We therefore examined whether the ethanol-mediated upregulation of NMDAR activity alters the induction of LTP in the DMS. We found that ex vivo acute exposure of striatal slices to, and withdrawal from, ethanol facilitates the induction of LTP in DMS neurons, which is abolished by the inhibition of NR2B-NMDARs. We also report that repeated systemic administration of ethanol causes an NR2B-NMDAR-dependent facilitation of LTP in the DMS. LTP is mediated by the insertion of AMPAR subunits into the synaptic membrane, and we found that repeated systemic administration of ethanol, as well as cycles of excessive ethanol consumption and withdrawal, produced a long-lasting increase in synaptic localization of the GluR1 and GluR2 subunits of AMPARs in the DMS. Importantly, we report that inhibition of AMPARs in the DMS attenuates operant self-administration of ethanol, but not of sucrose. Together, our data suggest that aberrant synaptic plasticity in the DMS induced by repeated cycles of ethanol exposure and withdrawal contributes to the molecular mechanisms underlying the development and/or maintenance of excessive ethanol consumption.


Asunto(s)
Depresores del Sistema Nervioso Central/farmacología , Cuerpo Estriado/efectos de los fármacos , Etanol/farmacología , Receptores AMPA/metabolismo , Análisis de Varianza , Animales , Animales Recién Nacidos , Conducta de Elección/efectos de los fármacos , Condicionamiento Operante/efectos de los fármacos , Cuerpo Estriado/citología , Antagonistas de Dopamina/farmacología , Estimulación Eléctrica , Potenciales Evocados/efectos de los fármacos , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Preferencias Alimentarias/efectos de los fármacos , Antagonistas del GABA/farmacología , Técnicas In Vitro , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , N-Metilaspartato/farmacología , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Picrotoxina/farmacología , Quinoxalinas/farmacología , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley , Autoadministración , Sacarosa/administración & dosificación , Sulpirida/farmacología , Edulcorantes/administración & dosificación , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología
15.
Neuropharmacology ; 232: 109524, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37003572

RESUMEN

Opioid use disorder (OUD) is a chronic brain disease which originates from long-term neuroadaptations that develop after repeated opioid consumption and withdrawal episodes. These neuroadaptations lead among other things to the development of a negative affect, which includes loss of motivation for natural rewards, higher anxiety, social deficits, heightened stress reactivity, an inability to identify and describe emotions, physical and/or emotional pain, malaise, dysphoria, sleep disorders and chronic irritability. The urge for relief from this negative affect is one of major causes of relapse, and thus represents a critical challenge for treatment and relapse prevention. Animal models of negative affect induced by opioid withdrawal have recapitulated the development of a negative emotional state with signs such as anhedonia, increased anxiety responses, increased despair-like behaviour and deficits in social interaction. This research has been critical to determine neurocircuitry adaptations during chronic opioid administration or upon withdrawal. In this review, we summarize the recent literature of rodent models of (i) acute withdrawal, (ii) protracted abstinence from passive administration of opioids, (iii) withdrawal or protracted abstinence from opioid self-administration. Finally, we describe neurocircuitry involved in acute withdrawal and protracted abstinence. This article is part of the Special Issue on "Opioid-induced changes in addiction and pain circuits".


Asunto(s)
Analgésicos Opioides , Síndrome de Abstinencia a Sustancias , Animales , Analgésicos Opioides/efectos adversos , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Modelos Animales , Narcóticos , Afecto , Dolor
16.
Front Psychiatry ; 14: 1186397, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37287667

RESUMEN

Introduction: Tianeptine is approved in some countries to treat depression and anxiety. In addition to its activity on serotonin and glutamate neurotransmission, tianeptine has been proven to be a mu-opioid receptor (MOR) agonist, but only a few preclinical studies have characterized the opioid-like behavioral effects of tianeptine. Methods: In this study, we tested tianeptine activity on G protein activation using the [S35] GTPγS binding assay in brain tissue from MOR+/+ and MOR-/- mice. Then, to determine whether tianeptine behavioral responses are MOR-dependent, we characterized the analgesic, locomotor, and rewarding responses of tianeptine in MOR+/+ and MOR-/- mice using tail immersion, hot plate, locomotor, and conditioned place preference tests. Results: Using the [S35] GTPγS binding assay, we found that tianeptine signaling is mediated by MOR in the brain with properties similar to those of DAMGO (a classic MOR agonist). Furthermore, we found that the MOR is necessary for tianeptine's analgesic (tail immersion and hot plate), locomotor, and rewarding (conditioned place preference) effects. Indeed, these behavioral effects could only be measured in MOR+/+ mice but not in MOR-/- mice. Additionally, chronic administration of tianeptine induced tolerance to its analgesic and hyperlocomotor effects. Discussion: These findings suggest that tianeptine's opioid-like effects require MOR and that chronic use could lead to tolerance.

17.
Biol Psychiatry ; 93(12): 1108-1117, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36496267

RESUMEN

BACKGROUND: The mu opioid receptor (MOR) is central to hedonic balance and produces euphoria by engaging reward circuits. MOR signaling may also influence aversion centers, notably the habenula (Hb), where the receptor is highly dense. Our previous data suggest that the inhibitory activity of MOR in the Hb may limit aversive states. To investigate this hypothesis, we tested whether neurons expressing MOR in the Hb (Hb-MOR neurons) promote negative affect. METHODS: Using Oprm1-Cre knockin mice, we combined tracing and optogenetics with behavioral testing to investigate consequences of Hb-MOR neuron stimulation for approach/avoidance (real-time place preference), anxiety-related responses (open field, elevated plus maze, and marble burying), and despair-like behavior (tail suspension). RESULTS: Optostimulation of Hb-MOR neurons elicited avoidance behavior, demonstrating that these neurons promote aversive states. Anterograde tracing showed that, in addition to the interpeduncular nucleus, Hb-MOR neurons project to the dorsal raphe nucleus. Optostimulation of Hb-MOR/interpeduncular nucleus terminals triggered avoidance and despair-like responses with no anxiety-related effect, whereas light-activation of Hb-MOR/dorsal raphe nucleus terminals increased levels of anxiety with no effect on other behaviors, revealing 2 dissociable pathways controlling negative affect. CONCLUSIONS: Together, the data demonstrate that Hb neurons expressing MOR facilitate aversive states via 2 distinct Hb circuits, contributing to despair-like behavior (Hb-MOR/interpeduncular nucleus) and anxiety (Hb-MOR/dorsal raphe nucleus). The findings support the notion that inhibition of these neurons by either endogenous or exogenous opioids may relieve negative affect, a mechanism that would have implications for hedonic homeostasis and addiction.


Asunto(s)
Habénula , Receptores Opioides mu , Ratones , Animales , Receptores Opioides mu/genética , Habénula/metabolismo , Neuronas/metabolismo , Núcleo Dorsal del Rafe , Afecto
18.
Psychopharmacology (Berl) ; 240(3): 637-646, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36471064

RESUMEN

RATIONALE: The Netrin-1/DCC guidance cue pathway is critically involved in the adolescent organization of the mesocorticolimbic dopamine circuitry. Adult mice heterozygous for Dcc show reduced dopamine release in the nucleus accumbens in response to amphetamine and, in turn, blunted sensitivity to the rewarding effects of this drug. OBJECTIVE: Here, we tested whether the protective effects of Dcc haploinsufficiency are specific to stimulant drugs of abuse or instead extrapolate to opioids and ethanol. METHODS: We used the place preference paradigm to measure the rewarding effects of cocaine (20 mg/kg), morphine (5 or 10 mg/Kg), or ethanol (20%) in adult (PND 75) male Dcc haploinsufficient mice or their wild-type litter mates. In a second experiment, we compared in these two genotypes, in vivo dopamine release in the nucleus accumbens after a single i.p. injection of morphine (10 mg/kg). RESULTS: We found reduced morphine-induced dopamine release in the nucleus accumbens of Dcc haploinsufficient male mice, but, contrary to the effects of stimulant drugs, there is no effect of genotype on morphine-induced conditioned preference. CONCLUSION: These findings show that reduced drug-induced mesolimbic dopamine in Dcc haploinsufficient male mice protects specifically against the rewarding effects of stimulant drugs, but not against the rewarding properties of morphine and ethanol. These results suggest that these drugs exert their rewarding effect via different brain circuits.


Asunto(s)
Cocaína , Ratones , Masculino , Animales , Cocaína/farmacología , Cocaína/metabolismo , Dopamina/metabolismo , Receptor DCC/genética , Receptor DCC/metabolismo , Morfina/farmacología , Morfina/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/farmacología , Haploinsuficiencia , Etanol/farmacología , Receptores de Superficie Celular/genética , Núcleo Accumbens
19.
Biol Psychiatry ; 94(11): 852-862, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37393045

RESUMEN

BACKGROUND: Chronic opioid exposure leads to hedonic deficits and enhanced vulnerability to addiction, which are observed and even strengthen after a period of abstinence, but the underlying circuit mechanisms are poorly understood. In this study, using both molecular and behavioral approaches, we tested the hypothesis that neurons expressing mu opioid receptors (MORs) in the dorsal raphe nucleus (DRN) are involved in addiction vulnerability associated with morphine abstinence. METHODS: MOR-Cre mice were exposed to chronic morphine and then went through spontaneous withdrawal for 4 weeks, a well-established mouse model of morphine abstinence. We studied DRN-MOR neurons of abstinent mice using 1) viral translating ribosome affinity for transcriptome profiling, 2) fiber photometry to measure neuronal activity, and 3) an opto-intracranial self-stimulation paradigm applied to DRN-MOR neurons to assess responses related to addiction vulnerability including persistence to respond, motivation to obtain the stimulation, self-stimulation despite punishment, and cue-induced reinstatement. RESULTS: DRN-MOR neurons of abstinent animals showed a downregulation of genes involved in ion conductance and MOR-mediated signaling, as well as altered responding to acute morphine. Opto-intracranial self-stimulation data showed that abstinent animals executed more impulsive-like and persistent responses during acquisition and scored higher on addiction-like criteria. CONCLUSIONS: Our data suggest that protracted abstinence to chronic morphine leads to reduced MOR function in DRN-MOR neurons and abnormal self-stimulation of these neurons. We propose that DRN-MOR neurons have partially lost their reward-facilitating properties, which in turn may lead to increased propensity to perform addiction-related behaviors.


Asunto(s)
Núcleo Dorsal del Rafe , Morfina , Ratones , Animales , Morfina/farmacología , Receptores Opioides mu , Analgésicos Opioides , Neuronas/metabolismo
20.
Biol Psychiatry ; 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38104648

RESUMEN

BACKGROUND: Opioid use disorder is a chronic relapsing disorder. The brain adapts to opioids that are taken for pain treatment or recreational use so that abstinence becomes a true challenge for individuals with opioid use disorder. Studying brain dysfunction at this stage is difficult, and human neuroimaging has provided highly heterogeneous information. METHODS: Here, we took advantage of an established mouse model of morphine abstinence together with functional magnetic resonance imaging to investigate whole-brain functional connectivity (FC) first at rest and then in response to an acute morphine challenge during image acquisition. RESULTS: Hierarchical clustering of seed pair correlation coefficients showed modified FC in abstinent animals, brainwide and regardless of the condition. Seed-to-voxel analysis and random forest classification, performed on data at rest, indicated that the retrosplenial cortex (a core component of the default mode network) and the amygdala (a major aversion center) are the best markers of abstinence, thus validating the translatability of the study. Seed pair network clustering confirmed disruption of a retrosplenial cortex-centered network, reflecting major reorganization of brain FC. The latter analysis also identified a persistent but unreported morphine signature in abstinent mice at rest, which involves cortical and midbrain components and characterizes the enduring morphine footprint. Finally, dynamic FC analysis revealed that the intrascanner acute morphine challenge modified FC faster and more broadly in abstinent animals, demonstrating brainwide adaptations of FC reactivity to an acute opioid challenge. CONCLUSIONS: This study used a unique experimental design to demonstrate that a prior history of chronic opioid exposure leaves a durable pharmacological signature on brain communication, with implications for pain management and recovery from opioid use disorder.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA