RESUMEN
BACKGROUND AND AIMS: Pediatric acute liver failure (PALF) is a life-threatening condition. In Europe, the main causes are viral infections (12%-16%) and inherited metabolic diseases (14%-28%). Yet, in up to 50% of cases the underlying etiology remains elusive, challenging clinical management, including liver transplantation. We systematically studied indeterminate PALF cases referred for genetic evaluation by whole-exome sequencing (WES), and analyzed phenotypic and biochemical markers, and the diagnostic yield of WES in this condition. APPROACH AND RESULTS: With this international, multicenter observational study, patients (0-18 y) with indeterminate PALF were analyzed by WES. Data on the clinical and biochemical phenotype were retrieved and systematically analyzed. RESULTS: In total, 260 indeterminate PALF patients from 19 countries were recruited between 2011 and 2022, of whom 59 had recurrent PALF. WES established a genetic diagnosis in 37% of cases (97/260). Diagnostic yield was highest in children with PALF in the first year of life (41%), and in children with recurrent acute liver failure (64%). Thirty-six distinct disease genes were identified. Defects in NBAS (n=20), MPV17 (n=8), and DGUOK (n=7) were the most frequent findings. When categorizing, the most frequent were mitochondrial diseases (45%), disorders of vesicular trafficking (28%), and cytosolic aminoacyl-tRNA synthetase deficiencies (10%). One-third of patients had a fatal outcome. Fifty-six patients received liver transplantation. CONCLUSIONS: This study elucidates a large contribution of genetic causes in PALF of indeterminate origin with an increasing spectrum of disease entities. The high proportion of diagnosed cases and potential treatment implications argue for exome or in future rapid genome sequencing in PALF diagnostics.
Asunto(s)
Fallo Hepático Agudo , Trasplante de Hígado , Niño , Humanos , Recurrencia Local de Neoplasia , Fallo Hepático Agudo/diagnóstico , Biomarcadores , Trasplante de Hígado/efectos adversos , Europa (Continente)RESUMEN
Soluble RANKL (sRANKL) and osteoprotegerin (OPG) are regulators of osteoclast differentiation and activation, but adequate pediatric reference values are lacking. Here we provide LMS (Lambda-Mu-Sigma)-based continuous pediatric reference percentiles for sRANKL, OPG and sRANKL/OPG ratio that will allow calculation of standardized patient z-scores to assess bone modeling in children. PURPOSE: Soluble receptor activator of nuclear factor kappa B ligand (sRANKL) and osteoprotegerin (OPG) are regulators of osteoclast differentiation and activation and thus bone metabolic turnover in children. Adequate pediatric reference values for their serum/plasma concentrations are lacking. The development of Lambda-Mu-Sigma (LMS)-based continuous reference percentiles for laboratory parameters allow improved data interpretation in clinical practice. METHODS: A total of 300 children aged 0.1-18 years (166 boys) were enrolled in the HAnnover Reference values for Pediatrics (HARP) study. sRANKL and OPG were assessed by ELISA. LMS-based continuous reference percentiles were generated using RefCurv software. RESULTS: LMS-based percentiles were established for sRANKL, OPG and sRANKL/OPG ratio, which were all found to be age-dependent. sRANKL and sRANKL/OPG associated with sex. In boys, sRANKL percentiles were highest during infancy, followed by a continuous decline until the age of 7 years and a second peak around age 12-13 years. In girls, a continuous, slow decline of sRANKL percentiles was noticed from infancy onwards until the age of 13 years, followed by a rapid decline until adulthood. OPG percentiles continuously declined from infancy to adulthood. The percentiles for sRANKL/OPG ratio paralleled those of sRANKL. Serum concentrations of sRANKL correlated with OPG and serum phosphate z-scores, while OPG concentrations inversely associated with standardized body weight, BMI, and urinary phosphate to creatinine ratio (each p < 0.05). CONCLUSION: This is the first report of LMS-based continuous pediatric reference percentiles for sRANKL, OPG and sRANKL/OPG ratio that allows calculation of standardized patient z-scores to assess bone metabolic turnover in children.
Asunto(s)
Proteínas Portadoras , Citocinas , Osteoprotegerina , Ligando RANK , Niño , Femenino , Humanos , Masculino , Fosfatos , Valores de Referencia , AdolescenteRESUMEN
PURPOSE: This study aimed to define the genotypic and phenotypic spectrum of reversible acute liver failure (ALF) of infancy resulting from biallelic pathogenic TRMU variants and determine the role of cysteine supplementation in its treatment. METHODS: Individuals with biallelic (likely) pathogenic variants in TRMU were studied within an international retrospective collection of de-identified patient data. RESULTS: In 62 individuals, including 30 previously unreported cases, we described 47 (likely) pathogenic TRMU variants, of which 17 were novel, and 1 intragenic deletion. Of these 62 individuals, 42 were alive at a median age of 6.8 (0.6-22) years after a median follow-up of 3.6 (0.1-22) years. The most frequent finding, occurring in all but 2 individuals, was liver involvement. ALF occurred only in the first year of life and was reported in 43 of 62 individuals; 11 of whom received liver transplantation. Loss-of-function TRMU variants were associated with poor survival. Supplementation with at least 1 cysteine source, typically N-acetylcysteine, improved survival significantly. Neurodevelopmental delay was observed in 11 individuals and persisted in 4 of the survivors, but we were unable to determine whether this was a primary or a secondary consequence of TRMU deficiency. CONCLUSION: In most patients, TRMU-associated ALF was a transient, reversible disease and cysteine supplementation improved survival.
Asunto(s)
Fallo Hepático Agudo , Fallo Hepático , Adolescente , Niño , Preescolar , Humanos , Lactante , Adulto Joven , Acetilcisteína/uso terapéutico , Fallo Hepático/tratamiento farmacológico , Fallo Hepático/genética , Fallo Hepático Agudo/tratamiento farmacológico , Fallo Hepático Agudo/genética , Proteínas Mitocondriales/genética , Mutación , Estudios Retrospectivos , ARNt Metiltransferasas/genéticaRESUMEN
Analytical and therapeutic innovations led to a continuous but variable extension of newborn screening (NBS) programmes worldwide. Every extension requires a careful evaluation of feasibility, diagnostic (process) quality and possible health benefits to balance benefits and limitations. The aim of this study was to evaluate the suitability of 18 candidate diseases for inclusion in NBS programmes. Utilising tandem mass spectrometry as well as establishing specific diagnostic pathways with second-tier analyses, three German NBS centres designed and conducted an evaluation study for 18 candidate diseases, all of them inherited metabolic diseases. In total, 1 777 264 NBS samples were analysed. Overall, 441 positive NBS results were reported resulting in 68 confirmed diagnoses, 373 false-positive cases and an estimated cumulative prevalence of approximately 1 in 26 000 newborns. The positive predictive value ranged from 0.07 (carnitine transporter defect) to 0.67 (HMG-CoA lyase deficiency). Three individuals were missed and 14 individuals (21%) developed symptoms before the positive NBS results were reported. The majority of tested candidate diseases were found to be suitable for inclusion in NBS programmes, while multiple acyl-CoA dehydrogenase deficiency, isolated methylmalonic acidurias, propionic acidemia and malonyl-CoA decarboxylase deficiency showed some and carnitine transporter defect significant limitations. Evaluation studies are an important tool to assess the potential benefits and limitations of expanding NBS programmes to new diseases.
Asunto(s)
Errores Innatos del Metabolismo , Acidemia Propiónica , Humanos , Recién Nacido , Tamizaje Neonatal/métodos , Errores Innatos del Metabolismo/diagnóstico , Errores Innatos del Metabolismo/epidemiología , Espectrometría de Masas en Tándem/métodos , Carnitina/metabolismoRESUMEN
Rare genetic mutations of the mannosyl-oligosaccharide glucosidase (MOGS) gene affecting the function of the mannosyl-oligosaccharide glucosidase (glucosidase I) are the cause of the congenital disorder of glycosylation IIb (CDG-IIb). Glucosidase I specifically removes the distal α1,2-linked glucose from the protein bound precursor N-glycan Glc3Man9GlcNAc2, which is the initial step of N-glycan maturation. Here, we comparatively analyzed N-glycosylation of the whole serum proteome, serum-derived immunoglobulin G (IgG), transferrin (TF), and α-1-antitrypsin (AAT) of a female patient who is compound heterozygous for 2 novel missense mutations in the MOGS gene, her heterozygous parents, and a sibling with wildtype genotype by multiplexed capillary gel electrophoresis coupled to laser induced fluorescence detection (xCGE-LIF) at unprecedented depth. Thereby, we detected the CDG-IIb-characteristic non-de-glucosylated N-glycans Glc3Man7-9GlcNAc2 as well as the free tetrasaccharide Glc3-Man in whole serum of the patient but not in the other family members. The N-glycan analysis of the serum proteome further revealed that relative intensities of IgG-specific complex type di-antennary N-glycans with core-fucosylation were considerably reduced in the patient's serum whereas TF- and AAT-characteristic sialylated di- and tri-antennary N-glycans were increased. This finding reflected the hypogammaglobulinemia diagnosed in the patient. We further detected aberrant oligo-mannose (Glc3Man7GlcNAc2) and hybrid type N-glycans on patient-derived IgGs and we attributed this defective glycosylation to be the reason for an increased IgG clearance. This mechanism can explain the hypogammaglobulinemia that is associated with CDG-IIb.
Asunto(s)
Agammaglobulinemia , Trastornos Congénitos de Glicosilación , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/metabolismo , Femenino , Glicómica , Glicosilación , Humanos , Inmunoglobulina G/metabolismo , Polisacáridos/metabolismo , Proteoma/metabolismoRESUMEN
ADP-ribosylation is a reversible posttranslational modification used to regulate protein function. ADP-ribosyltransferases transfer ADP-ribose from NAD+ to the target protein, and ADP-ribosylhydrolases, such as ADPRHL2, reverse the reaction. We used exome sequencing to identify five different bi-allelic pathogenic ADPRHL2 variants in 12 individuals from 8 families affected by a neurodegenerative disorder manifesting in childhood or adolescence with key clinical features including developmental delay or regression, seizures, ataxia, and axonal (sensori-)motor neuropathy. ADPRHL2 was virtually absent in available affected individuals' fibroblasts, and cell viability was reduced upon hydrogen peroxide exposure, although it was rescued by expression of wild-type ADPRHL2 mRNA as well as treatment with a PARP1 inhibitor. Our findings suggest impaired protein ribosylation as another pathway that, if disturbed, causes neurodegenerative diseases.
Asunto(s)
Ataxia Cerebelosa/genética , Discapacidades del Desarrollo/genética , Glicósido Hidrolasas/genética , Mutación/genética , Enfermedades Neurodegenerativas/genética , ADP-Ribosilación/genética , Adenosina Difosfato Ribosa/genética , Adolescente , Alelos , Niño , Preescolar , Exoma/genética , Femenino , Humanos , Lactante , Masculino , Malformaciones del Sistema Nervioso/genética , Procesamiento Proteico-Postraduccional/genéticaRESUMEN
Glutaric aciduria type 1 (GA1) is a rare neurometabolic disorder, caused by inherited deficiency of glutaryl-CoA dehydrogenase, mostly affecting the brain. Early identification by newborn screening (NBS) significantly improves neurologic outcome. It has remained unclear whether recommended therapy, particular low lysine diet, is safe or negatively affects anthropometric long-term outcome. This national prospective, observational, multi-centre study included 79 patients identified by NBS and investigated effects of interventional and non-interventional parameters on body weight, body length, body mass index (BMI) and head circumference as well as neurological parameters. Adherence to recommended maintenance and emergency treatment (ET) had a positive impact on neurologic outcome and allowed normal anthropometric development until adulthood. In contrast, non-adherence to ET, resulting in increased risk of dystonia, had a negative impact on body weight (mean SDS -1.07; P = .023) and body length (mean SDS -1.34; P = -.016). Consistently, longitudinal analysis showed a negative influence of severe dystonia on weight and length development over time (P < .001). Macrocephaly was more often found in female (mean SDS 0.56) than in male patients (mean SDS -0.20; P = .049), and also in individuals with high excreter phenotype (mean SDS 0.44) compared to low excreter patients (mean SDS -0.68; P = .016). In GA1, recommended long-term treatment is effective and allows for normal anthropometric long-term development up to adolescence, with gender- and excreter type-specific variations. Delayed ET and severe movement disorder result in poor anthropometric outcome.
Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Errores Innatos del Metabolismo de los Aminoácidos/terapia , Encefalopatías Metabólicas/diagnóstico , Encefalopatías Metabólicas/terapia , Glutaril-CoA Deshidrogenasa/deficiencia , Adolescente , Antropometría , Estatura , Índice de Masa Corporal , Peso Corporal , Niño , Preescolar , Distonía/patología , Tratamiento de Urgencia , Femenino , Alemania , Humanos , Lactante , Recién Nacido , Masculino , Megalencefalia/patología , Tamizaje Neonatal , Estudios Prospectivos , Factores Sexuales , Adulto JovenRESUMEN
PURPOSE: Pathogenic variants in neuroblastoma-amplified sequence (NBAS) cause an autosomal recessive disorder with a wide range of symptoms affecting liver, skeletal system, and brain, among others. There is a continuously growing number of patients but a lack of systematic and quantitative analysis. METHODS: Individuals with biallelic variants in NBAS were recruited within an international, multicenter study, including novel and previously published patients. Clinical variables were analyzed with log-linear models and visualized by mosaic plots; facial profiles were investigated via DeepGestalt. The structure of the NBAS protein was predicted using computational methods. RESULTS: One hundred ten individuals from 97 families with biallelic pathogenic NBAS variants were identified, including 26 novel patients with 19 previously unreported variants, giving a total number of 86 variants. Protein modeling redefined the ß-propeller domain of NBAS. Based on the localization of missense variants and in-frame deletions, three clinical subgroups arise that differ significantly regarding main clinical features and are directly related to the affected region of the NBAS protein: ß-propeller (combined phenotype), Sec39 (infantile liver failure syndrome type 2/ILFS2), and C-terminal (short stature, optic atrophy, and Pelger-Huët anomaly/SOPH). CONCLUSION: We define clinical subgroups of NBAS-associated disease that can guide patient management and point to domain-specific functions of NBAS.
Asunto(s)
Enfermedades Genéticas Congénitas/genética , Predisposición Genética a la Enfermedad , Proteínas de Neoplasias/genética , Alelos , Encéfalo/patología , Niño , Preescolar , Femenino , Enfermedades Genéticas Congénitas/patología , Humanos , Lactante , Hígado/patología , Trasplante de Hígado/efectos adversos , Masculino , Músculo Esquelético/patología , Mutación Missense/genética , FenotipoRESUMEN
Niemann-Pick Type C (NPC) is an autosomal recessive lysosomal storage disease leading to progressive neurodegeneration. Mutations in the NPC1 gene, which accounts for 95% of the cases, lead to a defect in intra-lysosomal trafficking of cholesterol and an accumulation of storage material including cholesterol and sphingolipids in the endo-lysosomal system. Symptoms are progressive neurological and visceral deterioration, with variable onset and severity of the disease. This study investigates the influence of two different NPC1 mutations on the biochemical phenotype in fibroblasts isolated from NPC patients in comparison to healthy, wild type (WT) cells. Skin derived fibroblasts were cultured from one patient compound-heterozygous for D874V/D948Y mutations, which presented wild-type like intracellular trafficking of NPC1, and a second patient compound- heterozygous for I1061T/P887L mutations, which exhibited a more severe biochemical phenotype as revealed in the delayed trafficking of NPC1. Biochemical analysis using HPLC and TLC indicated that lipid accumulations were mutation-dependent and correlated with the trafficking pattern of NPC1: higher levels of cholesterol and glycolipids were associated with the mutations that exhibited delayed intracellular trafficking, as compared to their WT-like trafficked or wild type (WT) counterparts. Furthermore, variations in membrane structure was confirmed in these cell lines based on alteration in lipid rafts composition as revealed by the shift in flotillin-2 (FLOT2) distribution, a typical lipid rafts marker, which again showed marked alterations only in the NPC1 mutant showing major trafficking delay. Finally, treatment with N-butyldeoxynojirimycin (NB-DNJ, Miglustat) led to a reduction of stored lipids in cells from both patients to various extents, however, no normalisation in lipid raft structure was achieved. The data presented in this study help in understanding the varying biochemical phenotypes observed in patients harbouring different mutations, which explain why the effectiveness of NB-DNJ treatment is patient specific.
Asunto(s)
1-Desoxinojirimicina/análogos & derivados , Colesterol/metabolismo , Microdominios de Membrana/efectos de los fármacos , Mutación , Proteína Niemann-Pick C1/genética , Esfingolípidos/metabolismo , 1-Desoxinojirimicina/farmacología , Células Cultivadas , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Genotipo , Humanos , Microdominios de Membrana/química , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Proteína Niemann-Pick C1/metabolismo , Enfermedad de Niemann-Pick Tipo C/genética , Enfermedad de Niemann-Pick Tipo C/metabolismo , Fenotipo , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genéticaRESUMEN
OBJECTIVE: Untreated individuals with glutaric aciduria type 1 (GA1) commonly present with a complex, predominantly dystonic movement disorder (MD) following acute or insidious onset striatal damage. Implementation of GA1 into newborn screening (NBS) programs has improved the short-term outcome. It remains unclear, however, whether NBS changes the long-term outcome and which variables are predictive. METHODS: This prospective, observational, multicenter study includes 87 patients identified by NBS, 4 patients missed by NBS, and 3 women with GA1 identified by positive NBS results of their unaffected children. RESULTS: The study population comprises 98.3% of individuals with GA1 identified by NBS in Germany during 1999-2016. Overall, cumulative sensitivity of NBS is 95.6%, but it is lower (84%) for patients with low excreter phenotype. The neurologic outcome of patients missed by NBS is as poor as in the pre-NBS era, and the clinical phenotype of diagnosed patients depends on the quality of therapeutic interventions rather than noninterventional variables. Presymptomatic start of treatment according to current guideline recommendations clearly improves the neurologic outcome (MD: 7% of patients), whereas delayed emergency treatment results in acute onset MD (100%), and deviations from maintenance treatment increase the risk of insidious onset MD (50%). Independent of the neurologic phenotype, kidney function tends to decline with age, a nonneurologic manifestation not predicted by any variable included in this study. INTERPRETATION: NBS is a beneficial, disease-changing intervention for GA1. However, improved neurologic outcome critically depends on adherence to recommended therapy, whereas kidney dysfunction does not appear to be impacted by recommended therapy. Ann Neurol 2018;83:970-979.
Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/terapia , Encefalopatías Metabólicas/terapia , Diagnóstico Precoz , Glutaril-CoA Deshidrogenasa/deficiencia , Tamizaje Neonatal , Niño , Preescolar , Femenino , Alemania , Glutaril-CoA Deshidrogenasa/análisis , Humanos , Recién Nacido , Masculino , Tamizaje Neonatal/métodos , Fenotipo , Estudios ProspectivosRESUMEN
2-methylacetoacetyl-coenzyme A thiolase (MAT) deficiency, also known as beta-ketothiolase deficiency, is an inborn error of ketone body utilization and isoleucine catabolism. It is caused by mutations in the ACAT1 gene and may present with metabolic ketoacidosis. In order to obtain a more comprehensive view on this disease, we have collected clinical and biochemical data as well as information on ACAT1 mutations of 32 patients from 12 metabolic centers in five countries. Patients were between 23months and 27years old, more than half of them were offspring of a consanguineous union. 63% of the study participants presented with a metabolic decompensation while most others were identified via newborn screening or family studies. In symptomatic patients, age at manifestation ranged between 5months and 6.8years. Only 7% developed a major mental disability while the vast majority was cognitively normal. More than one third of the identified mutations in ACAT1 are intronic mutations which are expected to disturb splicing. We identified several novel mutations but, in agreement with previous reports, no clear genotype-phenotype correlation could be found. Our study underlines that the prognosis in MAT deficiency is good and MAT deficient individuals may remain asymptomatic, if diagnosed early and preventive measures are applied.
Asunto(s)
Acetil-CoA C-Aciltransferasa/deficiencia , Errores Innatos del Metabolismo de los Aminoácidos/complicaciones , Errores Innatos del Metabolismo de los Aminoácidos/genética , Ácidos Grasos/metabolismo , Isoleucina/metabolismo , Cuerpos Cetónicos/metabolismo , Acetil-CoA C-Acetiltransferasa/genética , Acetil-CoA C-Aciltransferasa/genética , Adolescente , Adulto , Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Errores Innatos del Metabolismo de los Aminoácidos/fisiopatología , Niño , Preescolar , Consanguinidad , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Recién Nacido , Masculino , Mutación , Tamizaje Neonatal , Pronóstico , Estudios Retrospectivos , Adulto JovenRESUMEN
3-Hydroxy-3-methylglutaryl-coenzyme A lyase deficiency (HMGCLD) is a rare inborn error of ketone body synthesis and leucine degradation, caused by mutations in the HMGCL gene. In order to obtain a comprehensive view on this disease, we have collected clinical and biochemical data as well as information on HMGCL mutations of 37 patients (35 families) from metabolic centers in Belgium, Germany, The Netherlands, Switzerland, and Turkey. All patients were symptomatic at some stage with 94% presenting with an acute metabolic decompensation. In 50% of the patients, the disorder manifested neonatally, mostly within the first days of life. Only 8% of patients presented after one year of age. Six patients died prior to data collection. Long-term neurological complications were common. Half of the patients had a normal cognitive development while the remainder showed psychomotor deficits. We identified seven novel HMGCL mutations. In agreement with previous reports, no clear genotype-phenotype correlation could be found. This is the largest cohort of HMGCLD patients reported so far, demonstrating that HMGCLD is a potentially life-threatening disease with variable clinical outcome. Our findings suggest that the clinical course of HMGCLD cannot be predicted accurately from HMGCL genotype. The overall outcome in HMGCLD appears limited, thus rendering early diagnosis and strict avoidance of metabolic crises important.
Asunto(s)
Acetil-CoA C-Acetiltransferasa/deficiencia , Errores Innatos del Metabolismo de los Aminoácidos , Adolescente , Adulto , Errores Innatos del Metabolismo de los Aminoácidos/complicaciones , Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Errores Innatos del Metabolismo de los Aminoácidos/dietoterapia , Errores Innatos del Metabolismo de los Aminoácidos/fisiopatología , Bélgica , Niño , Preescolar , Ácidos Grasos/metabolismo , Femenino , Estudios de Asociación Genética , Alemania , Humanos , Lactante , Cuerpos Cetónicos/metabolismo , Leucina/metabolismo , Masculino , Mutación , Países Bajos , Oxo-Ácido-Liasas/genética , Evaluación del Resultado de la Atención al Paciente , Suiza , Turquía , Adulto JovenRESUMEN
L-Arginine (Arg) and L-homoarginine (hArg) are precursors of nitric oxide (NO), a signalling molecule with multiple important roles in human organism. In the circulation of adults, high concentrations of asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) and low concentrations of hArg emerged as cardiovascular risk factors. Yet, the importance of the Arg/hArg/NO pathway, especially of hArg and ADMA, in preterm neonates is little understood. We comprehensively investigated the Arg/hArg/NO pathway in 106 healthy preterm infants (51 boys, 55 girls) aged between 23 + 6 and 36 + 1 gestational weeks. Babies were divided into two groups: group I consisted of 31 babies with a gestational age of 23 + 6 - 29 + 6 weeks; group II comprised 75 children with a gestational age of 30 + 0 - 36 + 1 weeks. Plasma and urine concentrations of ADMA, SDMA, hArg, Arg, dimethylamine (DMA) which is the major urinary ADMA metabolite, as well as of nitrite and nitrate, the major NO metabolites, were determined by GC-MS and GC-MS/MS methods. ADMA and hArg plasma levels, but not the hArg/ADMA molar ratio, were significantly higher in group II than in group I: 895 ± 166 nM vs. 774 ± 164 nM (P = 0.001) for ADMA and 0.56 ± 0.04 µM vs. 0.48 ± 0.08 µM (P = 0.010) for hArg. There was no statistical difference between the groups with regard to urinary ADMA (12.2 ± 4.6 vs 12.8 ± 3.6 µmol/mmol creatinine; P = 0.61) and urinary SDMA. Urinary hArg, ADMA, SDMA correlated tightly with each other. Urinary excretion of DMA was slightly higher in group I compared to group II: 282 ± 44 vs. 247 ± 35 µmol/mmol creatinine (P = 0.004). The DMA/ADMA molar ratio in urine was tendentiously higher in neonates of group I compared to group II: 27 ± 13 vs. 20 ± 5 (P = 0.065). There were no differences between the groups with respect to Arg in plasma and to nitrite and nitrate in plasma and urine. In preterm neonates, ADMA and hArg biosynthesis increases with gestational age without remarkable changes in the hArg/ADMA ratio or NO biosynthesis. Our study suggests that ADMA and hArg are involved in foetal growth.
Asunto(s)
Arginina/análogos & derivados , Arginina/metabolismo , Desarrollo Fetal/fisiología , Homoarginina/fisiología , Óxido Nítrico/metabolismo , Arginina/fisiología , Femenino , Edad Gestacional , Humanos , Recién Nacido , Recien Nacido Prematuro , Masculino , Redes y Vías MetabólicasRESUMEN
Hepatorenal tyrosinaemia (HT1) is a serious condition that used to be fatal before the advent of nitisinone (NTBC, Orfadine®) as a therapeutic option. We have recently shown that selective screening is inadequate as initial symptoms are often uncharacteristic which leads to a considerable delay in diagnosis and treatment. This has a negative impact on morbidity and mortality as well as long-term outcome. For example, the odds ratio to develop hepatocellular carcinoma is 12.7 when treatment is initiated after the first birthday compared to start of treatment in the neonatal period. Timely diagnosis is only possible when neonatal mass screening is operational. HT1 meets all the criteria for neonatal mass screening at a clinical and analytical level. The natural course of the disease is well known, clinically there is a latent phase in most patients when presymptomatic treatment can be initiated. There are no mild phenotypes which do not require treatment. Using succinylacetone as the screening parameter a highly specific and sensitive test is available with acceptable financial burden. Neonatal mass screening for HT1 is acceptable to the target population as it can be performed simultaneously with the already existing screening tests in dried blood, there are no false negative and false positive cases and the financial burden to the health system is moderate. An efficient treatment is available with nitisinone and protein-reduced diet supplemented with special amino acid mixtures. Despite compelling evidence in favour of a neonatal mass screening for HT1 only 57% of European centres taking part in our recent cross-sectional study have included HT1 in their newborn screening programme.
Asunto(s)
Tirosinemias/diagnóstico , Tirosinemias/patología , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Europa (Continente) , Heptanoatos/metabolismo , Humanos , Recién Nacido , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Tamizaje Neonatal/métodos , Tirosinemias/complicaciones , Tirosinemias/metabolismoRESUMEN
Since the introduction of 2-(2 nitro-4-3 trifluoro-methylbenzoyl)-1, 3-cyclohexanedione (NTBC), life expectancy of HT1 patients greatly improved. However, due to treatment with NTBC, tyrosine concentrations greatly increase. As a consequence to possible neurocognitive problems, the main objective of dietary therapy in HT1 is to provide adequate nutrition allowing normal growth and development while strictly controlling tyrosine levels in blood (and tissues). Although no well-defined target levels exist, tyrosine concentrations below 400 µmol/L are considered to be safe. To achieve this aim a diet restricted in natural protein and supplemented with a special tyrosine and phenylalanine-free amino acid mixture is necessary.Dietary management could be strenuous at diagnosis due to several different problems. If vomiting and diarrhea are a major issue at diagnosis, frequent feeding with additional energy from low protein food is needed for catch-up growth. Initiation of dietary treatment is usually easier if diagnosis is directly after birth. Based on newborn screening when infants are still reasonable healthy. If presenting clinically infants may experience serious difficulties in taking the amino acid mixtures probably due to feeding problems while when presenting after some 2-3 months taste development and the difference in the taste of amino acid mixtures compared to regular formula and breast milk increase difficulties with the treatment.Following a dietary treatment is even harder than taking some medicine. Older children and adolescents often relax the diet and at some age become reluctant to stick to a strict regimen. Therefore, adequate training and information should be given to the patients and the family at regular intervals. To achieve this, a multidisciplinary approach involving pediatricians/physicians, dieticians, psychologists and social workers is an asset for the care of patients with HT1.
Asunto(s)
Ciclohexanonas/uso terapéutico , Nitrobenzoatos/uso terapéutico , Tirosinemias/dietoterapia , Tirosinemias/tratamiento farmacológico , Dieta/métodos , Humanos , Fenilalanina/metabolismo , Tirosina/metabolismo , Tirosinemias/metabolismoRESUMEN
BACKGROUND: The hepatic urea cycle is the main metabolic pathway for detoxification of ammonia. Inborn errors of urea cycle function present with severe hyperammonemia and a high case fatality rate. Long-term prognosis depends on the residual activity of the defective enzyme. A reliable method to estimate urea cycle activity in-vivo does not exist yet. The aim of this study was to evaluate a practical method to quantify (13)C-urea production as a marker for urea cycle function in healthy subjects, patients with confirmed urea cycle defect (UCD) and asymptomatic carriers of UCD mutations. METHODS: (13)C-labeled sodium acetate was applied orally in a single dose to 47 subjects (10 healthy subjects, 28 symptomatic patients, 9 asymptomatic carriers). RESULTS: The oral (13)C-ureagenesis assay is a safe method. While healthy subjects and asymptomatic carriers did not differ with regards to kinetic variables for urea cycle flux, symptomatic patients had lower (13)C-plasma urea levels. Although the (13)C-ureagenesis assay revealed no significant differences between individual urea cycle enzyme defects, it reflected the heterogeneity between different clinical subgroups, including male neonatal onset ornithine carbamoyltransferase deficiency. Applying the (13)C-urea area under the curve can differentiate between severe from more mildly affected neonates. Late onset patients differ significantly from neonates, carriers and healthy subjects. CONCLUSION: This study evaluated the oral (13)C-ureagenesis assay as a sensitive in-vivo measure for ureagenesis capacity. The assay has the potential to become a reliable tool to differentiate UCD patient subgroups, follow changes in ureagenesis capacity and could be helpful in monitoring novel therapies of UCD.
Asunto(s)
Acetato de Sodio/farmacocinética , Trastornos Innatos del Ciclo de la Urea/diagnóstico , Urea/metabolismo , Administración Oral , Adolescente , Adulto , Isótopos de Carbono/metabolismo , Niño , Preescolar , Femenino , Humanos , Hiperamonemia/diagnóstico , Hiperamonemia/metabolismo , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Monitoreo Fisiológico , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/diagnóstico , Trazadores Radiactivos , Acetato de Sodio/administración & dosificación , Adulto JovenRESUMEN
BACKGROUND: Gestational diabetes (GDM) has long-term consequences for the offspring. Sirtuins (SIRTs) are associated with vascular and metabolic functions. We studied the impact of GDM on SIRT activity and expression in fetal endothelial colony-forming cells (ECFCs) and human umbilical vein endothelial cells (HUVECs) from pregnancies complicated by GDM. METHODS: ECFCs and HUVECs were isolated from cord and cord blood of 10 uncomplicated pregnancies (NPs) and 10 GDM pregnancies. Nicotinamidadenindinukleotid (NAD(+)) concentration, SIRT1 and SIRT3 activity, transcription levels of SIRT1, SIRT3, and SIRT4, and protein levels of SIRT1, SIRT3, and SIRT4 were determined in vitro with or without SIRT activators resveratrol (RSV) and paeonol. RESULTS: Fetal ECFCs from GDM pregnancies showed a decreased NAD(+) concentration, reduced SIRT1 and SIRT3 activity, and lower transcription levels of SIRT1, SIRT3, and SIRT4. HUVECs from GDM pregnancies had decreased NAD(+) concentrations and transcription levels of SIRT1 and SIRT4. RSV markedly enhanced the expression and activity of SIRTs in ECFCs and HUVECs, while paeonol was active only in ECFCs. CONCLUSION: A reduction of SIRT activity and expression in fetal endothelial cells provides potential mechanistic insights into the pathophysiology of long-term cardiovascular complications observed in the offspring of GDM pregnancies. SIRT activators can increase SIRT activity in ECFCs, which opens perspectives for new therapeutic targets.
Asunto(s)
Diabetes Gestacional/metabolismo , Sirtuinas/metabolismo , Adulto , Índice de Masa Corporal , Células Endoteliales/metabolismo , Femenino , Regulación de la Expresión Génica , Hemoglobinas/química , Células Endoteliales de la Vena Umbilical Humana , Humanos , Recién Nacido , Masculino , Proteínas Mitocondriales/metabolismo , NAD/química , Embarazo , Sirtuina 1/metabolismo , Sirtuina 3/metabolismoRESUMEN
Objective In this retrospective study, we aimed to assess frequency, types, and long-term outcome of neurological disease during acute Mycoplasma pneumoniae (M. pneumoniae) infection in pediatric patients. Materials and Methods Medical records of patients hospitalized with acute M. pneumoniae infection were reviewed. Possible risk factors were analyzed by uni- and multivariate regression. Patients with neurological symptoms were followed up by expanded disability status score (EDSS) and the cognitive problems in children and adolescents (KOPKJ) scale. Results Out of 89 patients, 22 suffered from neurological symptoms and signs. Neurological disorders were diagnosed in 11 patients: (meningo-) encephalitis (n = 6), aseptic meningitis (n = 3), transverse myelitis (n = 1), and vestibular neuritis (n = 1), 11 patients had nonspecific neurological symptoms and signs. Multivariate logistic regression identified lower respiratory tract symptoms as a negative predictor (odds ratio [OR] = 0.1, p < 0.001), a preexisting immune deficit was associated with a trend for a decreased risk (OR = 0.12, p = 0.058). Long-term follow-up after a median of 5.1 years (range, 0.6-13 years) showed ongoing neurological deficits in the EDSS in 8/18, and in the KOPKJ in 7/17. Conclusion Neurological symptoms occurred in 25% of hospitalized pediatric patients with M. pneumoniae infection. Outcome was often favorable, but significant sequels were reported by 45%.
Asunto(s)
Meningitis Aséptica/fisiopatología , Meningoencefalitis/fisiopatología , Mielitis Transversa/fisiopatología , Neumonía por Mycoplasma/fisiopatología , Neuronitis Vestibular/fisiopatología , Adolescente , Ataxia/etiología , Niño , Preescolar , Encefalitis/complicaciones , Encefalitis/fisiopatología , Femenino , Estudios de Seguimiento , Cefalea/etiología , Hospitalización , Humanos , Modelos Logísticos , Masculino , Meningismo/etiología , Meningitis Aséptica/complicaciones , Meningoencefalitis/complicaciones , Análisis Multivariante , Infecciones por Mycoplasma/complicaciones , Infecciones por Mycoplasma/fisiopatología , Mycoplasma pneumoniae , Mielitis Transversa/complicaciones , Parestesia/etiología , Neumonía por Mycoplasma/complicaciones , Estudios Retrospectivos , Neuronitis Vestibular/complicacionesRESUMEN
Renal replacement therapy has become available for the majority of patients suffering from severe congenital chronic kidney disease (CKD). Data on the long-term neurocognitive outcome and the impact of early kidney transplantation (KTx) in this setting is unclear. Neurocognitive outcomes in 15 patients (11 male) with isolated congenital CKD (stage 3-5) requiring KTx at a mean age of 2.8 ± 1.3 were assessed at a mean age of 8.3 ± 1.4 years. Patients underwent neurological examination and testing for neuromotor and neurocognitive function using three independent tests. Pre-emptive KTx was performed in six patients, and nine patients were dialyzed prior to KTx for a mean period of 11.1 ± 8.6 months. Neuromotor function was abnormal in 8/15 patients. HAWIK-III showed a global intelligence quotient (IQ) of 93.5 ± 11.4 (P = 0.05) due to a significantly reduced performance IQ of 89.1 ± 11.3 (P < 0.01). In three patients, the global IQ was clinically significantly reduced by >1 SD to <85. In patients with neuromotor dysfunction, performance IQ was lower than in patients with normal neuromotor function (83.8 ± 10.2 vs. 96.2 ± 9.0, P = 0.04). Time on dialysis was inversely correlated to verbal IQ (r = 0.78, P = 0.02). Pre-emptive KTx and duration of dialysis treatment <3 months was associated with superior neurocognitive outcome. Early (pre-emptive) KTx results in superior long-term neurocognitive outcome in children with severe congenital CKD.