Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(2): e2212644120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36595688

RESUMEN

Iron homeostasis is critical for cellular and organismal function and is tightly regulated to prevent toxicity or anemia due to iron excess or deficiency, respectively. However, subcellular regulatory mechanisms of iron remain largely unexplored. Here, we report that SEL1L-HRD1 protein complex of endoplasmic reticulum (ER)-associated degradation (ERAD) in hepatocytes controls systemic iron homeostasis in a ceruloplasmin (CP)-dependent, and ER stress-independent, manner. Mice with hepatocyte-specific Sel1L deficiency exhibit altered basal iron homeostasis and are sensitized to iron deficiency while resistant to iron overload. Proteomics screening for a factor linking ERAD deficiency to altered iron homeostasis identifies CP, a key ferroxidase involved in systemic iron distribution by catalyzing iron oxidation and efflux from tissues. Indeed, CP is highly unstable and a bona fide substrate of SEL1L-HRD1 ERAD. In the absence of ERAD, CP protein accumulates in the ER and is shunted to refolding, leading to elevated secretion. Providing clinical relevance of these findings, SEL1L-HRD1 ERAD is responsible for the degradation of a subset of disease-causing CP mutants, thereby attenuating their pathogenicity. Together, this study uncovers the role of SEL1L-HRD1 ERAD in systemic iron homeostasis and provides insights into protein misfolding-associated proteotoxicity.


Asunto(s)
Ceruloplasmina , Degradación Asociada con el Retículo Endoplásmico , Ratones , Animales , Ceruloplasmina/genética , Ubiquitina-Proteína Ligasas/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas/metabolismo , Homeostasis , Hierro/metabolismo
2.
J Biol Chem ; 299(5): 104691, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37037306

RESUMEN

Mitophagy is a cargo-specific autophagic process that recycles damaged mitochondria to promote mitochondrial turnover. PTEN-induced putative kinase 1 (PINK1) mediates the canonical mitophagic pathway. However, the role of PINK1 in diseases where mitophagy has been purported to play a role, such as colorectal cancer, is unclear. Our results here demonstrate that higher PINK1 expression is positively correlated with decreased colon cancer survival, and mitophagy is required for colon cancer growth. We show that doxycycline-inducible knockdown (KD) of PINK1 in a panel of colon cancer cell lines inhibited proliferation, whereas disruption of other mitophagy receptors did not impact cell growth. We observed that PINK KD led to a decrease in mitochondrial respiration, membrane hyperpolarization, accumulation of mitochondrial DNA, and depletion of antioxidant glutathione. In addition, mitochondria are important hubs for the utilization of iron and synthesizing iron-dependent cofactors such as heme and iron sulfur clusters. We observed an increase in the iron storage protein ferritin and a decreased labile iron pool in the PINK1 KD cells, but total cellular iron or markers of iron starvation/overload were not affected. Finally, cellular iron storage and the labile iron pool are maintained via autophagic degradation of ferritin (ferritinophagy). We found overexpressing nuclear receptor coactivator 4, a key adaptor for ferritinophagy, rescued cell growth and the labile iron pool in PINK1 KD cells. These results indicate that PINK1 integrates mitophagy and ferritinophagy to regulate intracellular iron availability and is essential for maintaining intracellular iron homeostasis to support survival and growth in colorectal cancer cells.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Mitofagia , Proteínas Quinasas , Humanos , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Ferritinas , Hierro/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
3.
Am J Physiol Renal Physiol ; 326(2): F178-F188, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37994409

RESUMEN

Chronic kidney disease is increasing at an alarming rate and correlates with the increase in diabetes, obesity, and hypertension that disproportionately impact socioeconomically disadvantaged communities. Iron plays essential roles in many biological processes including oxygen transport, mitochondrial function, cell proliferation, and regeneration. However, excess iron induces the generation and propagation of reactive oxygen species, which lead to oxidative stress, cellular damage, and ferroptosis. Iron homeostasis is regulated in part by the kidney through iron resorption from the glomerular filtrate and exports into the plasma by ferroportin (FPN). Yet, the impact of iron overload in the kidney has not been addressed. To test more directly whether excess iron accumulation is toxic to kidneys, we generated a kidney proximal tubule-specific knockout of FPN. Despite significant intracellular iron accumulation in FPN mutant tubules, basal kidney function was not measurably different from wild type kidneys. However, upon induction of acute kidney injury (AKI), FPN mutant kidneys exhibited significantly more damage and failed recovery, evidence for ferroptosis, and increased fibrosis. Thus, disruption of iron export in proximal tubules, leading to iron overload, can significantly impair recovery from AKI and can contribute to progressive renal damage indicative of chronic kidney disease. Understanding the mechanisms that regulate iron homeostasis in the kidney may provide new therapeutic strategies for progressive kidney disease and other ferroptosis-associated disorders.NEW & NOTEWORTHY Physiological iron homeostasis depends in part on renal resorption and export into the plasma. We show that specific deletion of iron exporters in the proximal tubules sensitizes cells to injury and inhibits recovery. This can promote a chronic kidney disease phenotype. Our paper demonstrates the need for iron balance in the proximal tubules to maintain and promote healthy recovery after acute kidney injury.


Asunto(s)
Lesión Renal Aguda , Proteínas de Transporte de Catión , Sobrecarga de Hierro , Insuficiencia Renal Crónica , Humanos , Riñón/metabolismo , Lesión Renal Aguda/genética , Lesión Renal Aguda/metabolismo , Hierro/metabolismo , Sobrecarga de Hierro/metabolismo , Homeostasis/fisiología , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo
4.
Blood ; 139(16): 2547-2552, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-34990508

RESUMEN

Intestinal iron absorption is activated during increased systemic demand for iron. The best-studied example is iron deficiency anemia, which increases intestinal iron absorption. Interestingly, the intestinal response to anemia is very similar to that of iron overload disorders, as both the conditions activate a transcriptional program that leads to a hyperabsorption of iron via the transcription factor hypoxia-inducible factor 2α (HIF2α). However, pathways for selective targeting of intestine-mediated iron overload remain unknown. Nuclear receptor coactivator 4 (NCOA4) is a critical cargo receptor for autophagic breakdown of ferritin and the subsequent release of iron, in a process termed ferritinophagy. Our work demonstrates that NCOA4-mediated intestinal ferritinophagy is integrated into systemic iron demand via HIF2α. To demonstrate the importance of the intestinal HIF2α/ferritinophagy axis in systemic iron homeostasis, whole-body and intestine-specific NCOA4-/- mouse lines were generated and assessed. The analyses revealed that the intestinal and systemic response to iron deficiency was not altered after disruption of intestinal NCOA4. However, in a mouse model of hemochromatosis, ablation of intestinal NCOA4 was protective against iron overload. Therefore, NCOA4 can be selectively targeted for the management of iron overload disorders without disrupting the physiological processes involved in the response to systemic iron deficiency.


Asunto(s)
Anemia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Hemocromatosis , Sobrecarga de Hierro , Animales , Enterocitos/metabolismo , Hemocromatosis/genética , Hierro/metabolismo , Ratones , Coactivadores de Receptor Nuclear/genética , Factores de Transcripción/metabolismo
5.
J Nutr ; 154(4): 1153-1164, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38246358

RESUMEN

BACKGROUND: Tissue repair and regeneration in the gastrointestinal system are crucial for maintaining homeostasis, with the process relying on intricate cellular interactions and affected by micro- and macro-nutrients. Iron, essential for various biological functions, plays a dual role in tissue healing by potentially causing oxidative damage and participating in anti-inflammatory mechanisms, underscoring its complex relationship with inflammation and tissue repair. OBJECTIVE: The study aimed to elucidate the role of low dietary iron in gastrointestinal tissue repair. METHODS: We utilized quantitative iron measurements to assess iron levels in inflamed regions of patients with ulcerative colitis and Crohn's disease. In addition, 3 mouse models of gastrointestinal injury/repair (dextran sulfate sodium-induced colitis, radiation injury, and wound biopsy) were used to assess the effects of low dietary iron on tissue repair. RESULTS: We found that levels of iron in inflamed regions of both patients with ulcerative colitis and Crohn's disease are elevated. Similarly, during gastrointestinal repair, iron levels were found to be heightened, specifically in intestinal epithelial cells across the 3 injury/repair models. Mice on a low-iron diet showed compromised tissue repair with reduced proliferation. In standard diet, epithelial cells and the stem cell compartment maintain adequate iron stores. However, during a period of iron deficiency, epithelial cells exhaust their iron reserves, whereas the stem cell compartments maintain their iron pools. During injury, when the stem compartment is disrupted, low iron levels impair proliferation and compromise repair mechanisms. CONCLUSIONS: Low dietary iron impairs intestinal repair through compromising the ability of epithelial cells to aid in intestinal proliferation.


Asunto(s)
Colitis Ulcerosa , Colitis , Enfermedad de Crohn , Humanos , Ratones , Animales , Enfermedad de Crohn/patología , Hierro de la Dieta/efectos adversos , Colitis/inducido químicamente , Cicatrización de Heridas , Modelos Animales de Enfermedad , Hierro/farmacología , Mucosa Intestinal , Sulfato de Dextran/farmacología , Ratones Endogámicos C57BL
6.
FASEB J ; 34(2): 2929-2943, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31908045

RESUMEN

Diet plays a significant role in the pathogenesis of inflammatory bowel disease (IBD). A recent epidemiological study has shown an inverse relationship between nutritional manganese (Mn) status and IBD patients. Mn is an essential micronutrient required for normal cell function and physiological processes. To date, the roles of Mn in intestinal homeostasis remain unknown and the contribution of Mn to IBD has yet to be explored. Here, we provide evidence that Mn is critical for the maintenance of the intestinal barrier and that Mn deficiency exacerbates dextran sulfate sodium (DSS)-induced colitis in mice. Specifically, when treated with DSS, Mn-deficient mice showed increased morbidity, weight loss, and colon injury, with a concomitant increase in inflammatory cytokine levels and oxidative and DNA damage. Even without DSS treatment, dietary Mn deficiency alone increased intestinal permeability by impairing intestinal tight junctions. In contrast, mice fed a Mn-supplemented diet showed slightly increased tolerance to DSS-induced experimental colitis, as judged by the colon length. Despite the well-appreciated roles of intestinal microbiota in driving inflammation in IBD, the gut microbiome composition was not altered by changes in dietary Mn. We conclude that Mn is necessary for proper maintenance of the intestinal barrier and provides protection against DSS-induced colon injury.


Asunto(s)
Colitis , Colon , Suplementos Dietéticos , Microbioma Gastrointestinal/efectos de los fármacos , Manganeso/farmacología , Animales , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/microbiología , Colitis/patología , Colon/metabolismo , Colon/microbiología , Colon/patología , Daño del ADN , Sulfato de Dextran/toxicidad , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/microbiología , Inflamación/patología , Ratones , Oxidación-Reducción/efectos de los fármacos
7.
Ann Hematol ; 100(10): 2487-2500, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34236495

RESUMEN

Measurable residual disease (MRD) is an important parameter to predict outcome in B-cell acute lymphoblastic leukemia (B-ALL). Two different approaches have been used for the assessment of MRD by multiparametric flow cytometry that include the "Leukemia Associated Aberrant Immunophenotype (LAIP)" and "Difference from Normal (DFN)" approach. In this retrospective study, we analyzed 539 samples obtained from 281 patients of which 258 were paired samples and the remaining 23 samples were from post-induction time point only, to explore the utility of baseline immunophenotype (IPT) for MRD assessment. Single-tube 10-color panel was used both at diagnosis and MRD time points. Out of 281 patients, 31.67% (n = 89) were positive and 68.32% (n = 192) were negative for MRD. Among 258 paired diagnostic and follow-up samples, baseline IPT was required in only 9.31% (24/258) cases which included cases with hematogone pattern and isolated dim to negative CD10 expression patterns. Comparison of baseline IPT with post-induction MRD positive samples showed a change in expression of at least one antigen in 94.04% cases. Although the immunophenotypic change in expression of various antigens is frequent in post-induction samples of B-ALL, it does not adversely impact the MRD assessment. In conclusion, the baseline IPT is required in less than 10% of B-ALL, specifically those with hematogone pattern and/or dim to negative expression of CD10. Hence, a combination of DFN and LAIP approach is recommended for reliable MRD assessment.


Asunto(s)
Neoplasia Residual/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Antígenos CD/análisis , Citometría de Flujo , Humanos , Inmunofenotipificación , Neoplasia Residual/terapia , Neprilisina/análisis , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Estudios Retrospectivos
8.
J Biol Chem ; 294(11): 3974-3986, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30659096

RESUMEN

Hypoxia-inducible factor 2α (HIF2α) directly regulates a battery of genes essential for intestinal iron absorption. Interestingly, iron deficiency and overload disorders do not result in increased intestinal expression of glycolytic or angiogenic HIF2α target genes. Similarly, inflammatory and tumor foci can induce a distinct subset of HIF2α target genes in vivo These observations indicate that different stimuli activate distinct subsets of HIF2α target genes via mechanisms that remain unclear. Here, we conducted a high-throughput siRNA-based screen to identify genes that regulate HIF2α's transcriptional activity on the promoter of the iron transporter gene divalent metal transporter-1 (DMT1). SMAD family member 3 (SMAD3) and SMAD4 were identified as potential transcriptional repressors. Further analysis revealed that SMAD4 signaling selectively represses iron-absorptive gene promoters but not the inflammatory or glycolytic HIF2α or HIF1α target genes. Moreover, the highly homologous SMAD2 did not alter HIF2α transcriptional activity. During iron deficiency, SMAD3 and SMAD4 expression was significantly decreased via proteasomal degradation, allowing for derepression of iron target genes. Several iron-regulatory genes contain a SMAD-binding element (SBE) in their proximal promoters; however, mutation of the putative SBE on the DMT1 promoter did not alter the repressive function of SMAD3 or SMAD4. Importantly, the transcription factor forkhead box protein A1 (FOXA1) was critical in SMAD4-induced DMT1 repression, and DNA binding of SMAD4 was essential for the repression of HIF2α activity, suggesting an indirect repressive mechanism through DNA binding. These results provide mechanistic clues to how HIF signaling can be regulated by different cellular cues.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas Reguladoras del Hierro/metabolismo , Proteína smad3/metabolismo , Proteína Smad4/metabolismo , Animales , Células Cultivadas , Humanos , Proteínas Reguladoras del Hierro/genética , Ratones , Ratones Noqueados , Proteína smad3/deficiencia , Proteína Smad4/deficiencia
10.
Cell Biol Int ; 44(11): 2307-2314, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32767706

RESUMEN

Ferritinophagy is a form of selective autophagy responsible for degrading intracellular ferritin, mediated by nuclear receptor coactivator 4 (NCOA4). NCOA4 plays significant roles in systemic iron homeostasis, and its disruption leads to simultaneous anemia and susceptibility to iron overload. The importance of iron colorectal cancer pathogenesis is well studied; however, the role of ferritinophagy in colon cancer cell growth has not been assessed. Disruption of ferritinophagy via NCOA4 knockout leads to only marginal differences in growth under basal and iron-restricted conditions. Moreover, NCOA4 played no significant role in cell death induced by 5-fluorouracil and erastin. Western blotting analysis for ferritin and transferrin receptor 1 found a dose-dependent effect on expression in both proteins in wild-type and NCOA4 knockout cell lines, but further investigation revealed no difference in growth response when treated at both high and low doses. Our data demonstrate a marginal role for ferritinophagy in growth both under normal and cytotoxic conditions in colon cancer cells, as well as a possible compensatory mechanism in colon cancer cells in response to ferroptosis induction.


Asunto(s)
Neoplasias del Colon/metabolismo , Ferritinas/metabolismo , Coactivadores de Receptor Nuclear/metabolismo , Autofagia/efectos de los fármacos , Autofagia/fisiología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/fisiología , Neoplasias del Colon/fisiopatología , Ferritinas/fisiología , Homeostasis/efectos de los fármacos , Humanos , Hierro/metabolismo , Trastornos del Metabolismo del Hierro , Coactivadores de Receptor Nuclear/genética , Especies Reactivas de Oxígeno/metabolismo
11.
Cell Microbiol ; 20(7): e12834, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29470856

RESUMEN

Hepcidin mediated ferroportin (Fpn) degradation in macrophages is a well adopted strategy to limit iron availability towards invading pathogens. Leishmania donovani (LD), a protozoan parasite, resides within macrophage and competes with host for availing iron. Using in vitro and in vivo model of infection, we reveal that LD decreases Fpn abundance in host macrophages by hepcidin independent mechanism. Unaffected level of Fpn-FLAG in LD infected J774 macrophage confirms that Fpn down-regulation is not due its degradation. While increased Fpn mRNA but decreased protein expression in macrophages suggests blocking of Fpn translation by LD infection that is confirmed by 35 S-methionine labelling assay. We further reveal that LD blocks Fpn translation by induced binding of iron regulatory proteins (IRPs) to the iron responsive element present in its 5'UTR. Supershift analysis provides evidence of involvement of IRP2 particularly during in vivo infection. Accordingly, a significant increase in IRP2 protein expression with simultaneous decrease in its stability regulator F-box and leucine-rich repeat Protein 5 (FBXL5) is detected in splenocytes of LD-infected mice. Increased intracellular growth due to compromised expressions of Fpn and FBXL5 by specific siRNAs reveals that LD uses a novel strategy of manipulating IRP2-FBXL5 axis to inhibit host Fpn expression.


Asunto(s)
Proteínas de Transporte de Catión/antagonistas & inhibidores , Proteínas F-Box/metabolismo , Interacciones Huésped-Patógeno , Proteína 2 Reguladora de Hierro/metabolismo , Leishmania donovani/crecimiento & desarrollo , Leishmaniasis Visceral/patología , Macrófagos/parasitología , Animales , Proteínas de Transporte de Catión/biosíntesis , Línea Celular , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Evasión Inmune , Leishmania donovani/patogenicidad , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/parasitología , Macrófagos/inmunología , Ratones Endogámicos BALB C , Modelos Biológicos , Biosíntesis de Proteínas
12.
J Biol Chem ; 290(39): 23523-7, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26296885

RESUMEN

Sickle cell disease (SCD) is caused by genetic defects in the ß-globin chain. SCD is a frequently inherited blood disorder, and sickle cell anemia is a common type of hemoglobinopathy. During anemia, the hypoxic response via the transcription factor hypoxia-inducible factor (HIF)-2α is highly activated in the intestine and is essential in iron absorption. Intestinal disruption of HIF-2α protects against tissue iron accumulation in iron overload anemias. However, the role of intestinal HIF-2α in regulating anemia in SCD is currently not known. Here we show that in mouse models of SCD, disruption of intestinal HIF-2α significantly decreased tissue iron accumulation. This was attributed to a decrease in intestinal iron absorptive genes, which were highly induced in a mouse model of SCD. Interestingly, disruption of intestinal HIF-2α led to a robust improvement in anemia with an increase in RBC, hemoglobin, and hematocrit. This was attributed to improvement in RBC survival, hemolysis, and insufficient erythropoiesis, which is evident from a significant decrease in serum bilirubin, reticulocyte counts, and serum erythropoietin following intestinal HIF-2α disruption. These data suggest that targeting intestinal HIF-2α has a significant therapeutic potential in SCD pathophysiology.


Asunto(s)
Anemia de Células Falciformes/fisiopatología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Mucosa Intestinal/metabolismo , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Humanos , Ratones , Ratones Transgénicos
13.
PLoS Comput Biol ; 10(7): e1003701, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24991925

RESUMEN

A major process of iron homeostasis in whole-body iron metabolism is the release of iron from the macrophages of the reticuloendothelial system. Macrophages recognize and phagocytose senescent or damaged erythrocytes. Then, they process the heme iron, which is returned to the circulation for reutilization by red blood cell precursors during erythropoiesis. The amount of iron released, compared to the amount shunted for storage as ferritin, is greater during iron deficiency. A currently accepted model of iron release assumes a passive-gradient with free diffusion of intracellular labile iron (Fe2+) through ferroportin (FPN), the transporter on the plasma membrane. Outside the cell, a multi-copper ferroxidase, ceruloplasmin (Cp), oxidizes ferrous to ferric ion. Apo-transferrin (Tf), the primary carrier of soluble iron in the plasma, binds ferric ion to form mono-ferric and di-ferric transferrin. According to the passive-gradient model, the removal of ferrous ion from the site of release sustains the gradient that maintains the iron release. Subcellular localization of FPN, however, indicates that the role of FPN may be more complex. By experiments and mathematical modeling, we have investigated the detailed mechanism of iron release from macrophages focusing on the roles of the Cp, FPN and apo-Tf. The passive-gradient model is quantitatively analyzed using a mathematical model for the first time. A comparison of experimental data with model simulations shows that the passive-gradient model cannot explain macrophage iron release. However, a facilitated-transport model associated with FPN can explain the iron release mechanism. According to the facilitated-transport model, intracellular FPN carries labile iron to the macrophage membrane. Extracellular Cp accelerates the oxidation of ferrous ion bound to FPN. Apo-Tf in the extracellular environment binds to the oxidized ferrous ion, completing the release process. Facilitated-transport model can correctly predict cellular iron efflux and is essential for physiologically relevant whole-body model of iron metabolism.


Asunto(s)
Simulación por Computador , Homeostasis/fisiología , Hierro/metabolismo , Macrófagos/metabolismo , Modelos Biológicos , Biología Computacional , Humanos , Espacio Intracelular/metabolismo , Macrófagos/citología
14.
Indian J Hematol Blood Transfus ; 40(1): 12-24, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38312180

RESUMEN

The spectrum of benign B-cell precursors, known as hematogones (HGs), shows a significant morphological and immunophenotypic overlap with their malignant counterpart i.e. B-lymphoid blasts (BLBs). This results in a diagnostic dilemma in assessment of cases wherein there is a physiological preponderance of HGs and also poses a significant challenge in measurable residual disease assessment in B-cell acute lymphoblastic leukaemia. Consequently, expression patterns of various immunophenotypic markers are considered the most important tool in identification and delineation of HGs from BLBs. However, certain aspects of B-cell compartment evaluation by flow cytometric immunophenotyping and its relevance in clinical scenarios is yet to be defined precisely. This review summarizes current flowcytometric data on HGs and its discrimination from BLBs based on thorough review of literature and evaluation of in-house data. Furthermore, it focuses on the utility of an additional analytical tool i.e., radar plot for a comprehensive representation of various subsets of the B-cell compartment and their differentiation from BLBs. Supplementary Information: The online version contains supplementary material available at 10.1007/s12288-023-01696-5.

15.
J Obstet Gynaecol India ; 74(2): 125-130, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38707875

RESUMEN

Background: According to WHO, hypertensive disease is the leading cause of direct maternal mortality accounting for 10-25% in developing countries (James in Heart, 90(12):1499-504). This study compares the combinations of mean arterial pressure (MAP) and uterine artery doppler (UAD) versus serum-free ß HCG, pregnancy-associated plasma protein-A, and placental growth factor (PlGF) versus a combination of all variables at 11 to 13+6 as long-term predictors of pregnancy-induced hypertension (PIH). Materials and Methods: A prospective, observational cohort study recruited 97 primigravidae at 11 to 13+6 weeks gestation at GMCH. Follow-up was done at 32-34 weeks and before delivery. Development of PIH, mode of delivery, birthweight, maternal and fetal adverse outcomes were documented, analyzed and compared among three groups. In Group A-biophysical markers, Group B-biochemical markers and in Group C all variables were used. Results: The mean age, maternal weight, height and BMI of patients developing gestational hypertension were 30 ± 5 years, 64.3 ± 12.5 kg, 155.8 ± 5.5 cm and 26.4 ± 4.1, respectively. Out of the 3, Group C is the best screening test for predicting the overall chance of development of gestational hypertension with a sensitivity of 97.37% and specificity of 38.98% (p < 0.0001). A mild negative correlation is seen between PlGF levels and severity of PIH (p-0.0382). Conclusion: MAP and UAD can be easily incorporated into the infrastructure of most hospitals. If the biochemical test kits are made available at a low cost through available programs such as JSSK, it can bring down the MMR by preventing gestational hypertension.

16.
Sci Adv ; 10(14): eadk8823, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38569037

RESUMEN

Organisms across taxa face stresses including variable temperature, redox imbalance, and xenobiotics. Successfully responding to stress and restoring homeostasis are crucial for survival. Aging is associated with a decreased stress response and alterations in the microbiome, which contribute to disease development. Animals and their microbiota share their environment; however, microbes have short generation time and can rapidly evolve and potentially affect host physiology during stress. Here, we leverage Caenorhabditis elegans and its simplified bacterial diet to demonstrate how microbial adaptation to oxidative stress affects the host's lifespan and stress response. We find that worms fed stress-evolved bacteria exhibit enhanced stress resistance and an extended lifespan. Through comprehensive genetic and metabolic analysis, we find that iron in stress-evolved bacteria enhances worm stress resistance and lifespan via activation of the mitogen-activated protein kinase pathway. In conclusion, our study provides evidence that understanding microbial stress-mediated adaptations could be used to slow aging and alleviate age-related health decline.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Longevidad/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Estrés Oxidativo , Dieta , Bacterias/genética , Bacterias/metabolismo
17.
Int J Lab Hematol ; 46(4): 646-656, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38456256

RESUMEN

INTRODUCTION: Despite extensive research, comprehensive characterization of leukaemic stem cells (LSC) and information on their immunophenotypic differences from normal haematopoietic stem cells (HSC) is lacking. Herein, we attempted to unravel the immunophenotypic (IPT) characteristics and heterogeneity of LSC using multiparametric flow cytometry (MFC) and single-cell sequencing. MATERIALS AND METHODS: Bone marrow aspirate samples from patients with acute myeloid leukaemia (AML) were evaluated using MFC at diagnostic and post induction time points using a single tube-10-colour-panel containing LSC-associated antibodies CD123, CD45RA, CD44, CD33 and COMPOSITE (CLL-1, TIM-3, CD25, CD11b, CD22, CD7, CD56) with backbone markers that is, CD45, CD34, CD38, CD117, sCD3. Single-cell sequencing of the whole transcriptome was also done in a bone marrow sample. RESULTS: LSCs and HSCs were identified in 225/255 (88.2%) and 183/255 (71.6%) samples, respectively. Significantly higher expression was noted for COMPOSITE, CD45RA, CD123, CD33, and CD44 in LSCs than HSCs (p < 0.0001). On comparing the LSC specific antigen expressions between CD34+ (n = 184) and CD34- LSCs (n = 41), no difference was observed between the groups. More than one sub-population of LSC was demonstrated in 4.4% of cases, which further revealed high concordance between MFC and single cell transcriptomic analysis in one of the cases displaying three LSC subpopulations by both methods. CONCLUSION: A single tube-10-colour MFC panel is proposed as an easy and reproducible tool to identify and discriminate LSCs from HSCs. LSCs display both inter- and intra-sample heterogeneity in terms of antigen expressions, which opens the facets for single cell molecular analysis to elucidate the role of subpopulations of LSCs in AML progression.


Asunto(s)
Citometría de Flujo , Inmunofenotipificación , Leucemia Mieloide Aguda , Células Madre Neoplásicas , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/metabolismo , Citometría de Flujo/métodos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Masculino , Femenino , Adulto , Persona de Mediana Edad , Análisis de la Célula Individual/métodos , Antígenos CD/metabolismo , Antígenos CD/análisis , Anciano
18.
Endocrinology ; 165(9)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39045670

RESUMEN

Classic hereditary hemochromatosis (HH) is an autosomal recessive iron-overload disorder resulting from loss-of-function mutations of the HFE gene. Patients with HH exhibit excessive hepatic iron accumulation that predisposes these patients to liver disease, including the risk for developing liver cancer. Chronic iron overload also poses a risk for the development of metabolic disorders such as obesity, type 2 diabetes, and insulin resistance. We hypothesized that liraglutide, GLP1 receptor agonist, alters iron metabolism while also reducing body weight and glucose tolerance in a mouse model of HH (global HFE knockout, HFE KO) and diet-induced obesity and glucose intolerance. The total body HFE KO and wild-type control mice were fed high-fat diet for 8 weeks. Mice were subdivided into liraglutide and vehicle-treated groups and received daily subcutaneous administration of the respective treatment once daily for 18 weeks. Liraglutide improved glucose tolerance and hepatic lipid markers and reduced body weight in a mouse model of HH, the HFE KO mouse, similar to wild-type controls. Importantly, our data show that liraglutide alters iron metabolism in HFE KO mice, leading to decreased circulating and stored iron levels in HFE KO mice. These observations highlight the potential that GLP1 receptor agonist could be used to reduce iron overload in addition to reducing body weight and improving glucose regulation in HH patients.


Asunto(s)
Modelos Animales de Enfermedad , Proteína de la Hemocromatosis , Hemocromatosis , Homeostasis , Hierro , Liraglutida , Ratones Noqueados , Animales , Hemocromatosis/genética , Hemocromatosis/metabolismo , Hemocromatosis/tratamiento farmacológico , Liraglutida/farmacología , Liraglutida/uso terapéutico , Hierro/metabolismo , Homeostasis/efectos de los fármacos , Ratones , Proteína de la Hemocromatosis/genética , Proteína de la Hemocromatosis/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos , Masculino , Dieta Alta en Grasa/efectos adversos , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/tratamiento farmacológico , Intolerancia a la Glucosa/genética , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/genética , Ratones Endogámicos C57BL , Peso Corporal/efectos de los fármacos
19.
Adv Sci (Weinh) ; 11(12): e2307022, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38243847

RESUMEN

In clinics, hepcidin levels are elevated in various anemia-related conditions, particularly in iron-refractory anemia and in high inflammatory states that suppress iron absorption, which remains an urgent unmet medical need. To identify effective treatment options for various types of iron-refractory anemia, the potential effect of hypoxia and pharmacologically-mimetic drug FG-4592 (Roxadustat) are evaluated, a hypoxia-inducible factor (HIF)-prolyl hydroxylase (PHD) inhibitor, on mouse models of iron-refractory iron-deficiency anemia (IRIDA), anemia of inflammation and 5-fluorouracil-induced chemotherapy-related anemia. The potent protective effects of both hypoxia and FG-4592 on IRIDA as well as other 2 tested mouse cohorts are found. Mechanistically, it is demonstrated that hypoxia or FG-4592 could stabilize duodenal Hif2α, leading to the activation of Fpn transcription regardless of hepcidin levels, which in turn results in increased intestinal iron absorption and the amelioration of hepcidin-activated anemias. Moreover, duodenal Hif2α overexpression fully rescues phenotypes of Tmprss6 knockout mice, and Hif2α knockout in the gut significantly delays the recovery from 5-fluorouracil-induced anemia, which can not be rescued by FG-4592 treatment. Taken together, the findings of this study provide compelling evidence that targeting intestinal hypoxia-related pathways can serve as a potential therapeutic strategy for treating a broad spectrum of anemia, especially iron refractory anemia.


Asunto(s)
Anemia Refractaria , Anemia , Animales , Ratones , Anemia/tratamiento farmacológico , Anemia Refractaria/tratamiento farmacológico , Fluorouracilo/uso terapéutico , Glicina , Hepcidinas/uso terapéutico , Hipoxia , Hierro , Isoquinolinas/farmacología , Isoquinolinas/uso terapéutico
20.
bioRxiv ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-38617233

RESUMEN

Ferroptosis is a non-apoptotic form of cell death resulting from the iron-dependent accumulation of lipid peroxides. Colorectal cancer (CRC) cells accumulate high levels of intracellular iron and reactive oxygen species (ROS) and are thus particularly sensitive to ferroptosis. The compound (S)-RSL3 ([1S,3R]-RSL3) is a commonly used ferroptosis inducing compound that is currently characterized as a selective inhibitor of the selenocysteine containing enzyme (selenoprotein) Gluathione Peroxidase 4 (GPx4), an enzyme that utilizes glutathione to directly detoxify lipid peroxides. However, through chemical controls utilizing the (R) stereoisomer of RSL3 ([1R,3R]-RSL3) that does not bind GPx4, combined with inducible genetic knockdowns of GPx4 in CRC cell lines, we revealed that GPx4 dependency does not always align with (S)-RSL3 sensitivity, questioning the current characterization of GPx4 as the central regulator of ferroptosis. Utilizing affinity pull-down mass spectrometry with chemically modified (S)-RSL3 probes we discovered that the effects of (S)-RSL3 extend far beyond GPx4 inhibition, revealing that (S)-RSL3 is a broad and non-selective inhibitor of selenoproteins. To further investigate the therapeutic potential of broadly disrupting the selenoproteome as a therapeutic strategy in CRC, we employed additional chemical and genetic approaches. We found that the selenoprotein inhibitor auranofin, an FDA approved gold-salt, chemically induced oxidative cell death and ferroptosis in both in-vitro and in-vivo models of CRC. Consistent with these data, we found that AlkBH8, a tRNA-selenocysteine methyltransferase required for the translation of selenoproteins, is essential for the in-vitro growth and xenograft survival of CRC cell lines. In summary, these findings recharacterize the mechanism of action of the most commonly used ferroptosis inducing molecule, (S)-RSL3, and reveal that broad inhibition of selenoproteins is a promising novel therapeutic angle for the treatment of CRC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA