Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Crit Rev Microbiol ; 49(2): 197-213, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35287539

RESUMEN

Effector proteins secreted by pathogens modulate various host cellular processes and help in bacterial pathogenesis. Some of these proteins, injected by enteric pathogens via Type Three Secretion System (T3SS) were grouped together based on a conserved signature motif (WxxxE) present in them. The presence of WxxxE motif is not limited to effectors released by enteric pathogens or the T3SS but has been detected in non-enteric pathogens, plant pathogens and in association with Type II and Type IV secretion systems. WxxxE effectors are involved in actin organization, inflammation regulation, vacuole or tubule formation, endolysosomal signalling regulation, tight junction disruption, and apoptosis. The WxxxE sequence has also been identified in TIR [Toll/interleukin-1 (IL-1) receptor] domains of bacteria and host. In the present review, we have focussed on the established and predicted functions of WxxxE effectors secreted by several pathogens, including enteric, non-enteric, and plant pathogens.


Asunto(s)
Bacterias , Proteínas Bacterianas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacterias/genética , Bacterias/metabolismo , Transducción de Señal
2.
Proc Natl Acad Sci U S A ; 117(43): 26895-26906, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33055214

RESUMEN

Sensing of pathogens by Toll-like receptor 4 (TLR4) induces an inflammatory response; controlled responses confer immunity but uncontrolled responses cause harm. Here we define how a multimodular scaffold, GIV (a.k.a. Girdin), titrates such inflammatory response in macrophages. Upon challenge with either live microbes or microbe-derived lipopolysaccharides (a ligand for TLR4), macrophages with GIV mount a more tolerant (hypo-reactive) transcriptional response and suppress proinflammatory cytokines and signaling pathways (i.e., NFkB and CREB) downstream of TLR4 compared to their GIV-depleted counterparts. Myeloid-specific gene-depletion studies confirmed that the presence of GIV ameliorates dextran sodium sulfate-induced colitis and sepsis-induced death. The antiinflammatory actions of GIV are mediated via its C-terminally located TIR-like BB-loop (TILL) motif which binds the cytoplasmic TIR modules of TLR4 in a manner that precludes receptor dimerization; such dimerization is a prerequisite for proinflammatory signaling. Binding of GIV's TILL motif to TIR modules inhibits proinflammatory signaling via other TLRs, suggesting a convergent paradigm for fine-tuning macrophage inflammatory responses.


Asunto(s)
Proteínas de Microfilamentos/metabolismo , Receptor Toll-Like 4/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Colitis/metabolismo , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Células RAW 264.7 , Sepsis/metabolismo , Transducción de Señal
3.
Gut ; 71(9): 1790-1802, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34853057

RESUMEN

OBJECTIVE: Tuft cells residing in the intestinal epithelium have diverse functions. In the small intestine, they provide protection against inflammation, combat against helminth and protist infections, and serve as entry portals for enteroviruses. In the colon, they had been implicated in tumourigenesis. Commitment of intestinal progenitor cells to the tuft cell lineage requires Rho GTPase Cell Division Cycle 42 (CDC42), a Rho GTPase that acts downstream of the epidermal growth factor receptor and wingless-related integration site signalling cascades, and the master transcription factor POU class 2 homeobox 3 (POU2F3). This study investigates how this pathway is regulated by the DEAD box containing RNA binding protein DDX5 in vivo. DESIGN: We assessed the role of DDX5 in tuft cell specification and function in control and epithelial cell-specific Ddx5 knockout mice (DDX5ΔIEC) using transcriptomic approaches. RESULTS: DDX5ΔIEC mice harboured a loss of intestinal tuft cell populations, modified microbial repertoire, and altered susceptibilities to ileal inflammation and colonic tumourigenesis. Mechanistically, DDX5 promotes CDC42 protein synthesis through a post-transcriptional mechanism to license tuft cell specification. Importantly, the DDX5-CDC42 axis is parallel but distinct from the known interleukin-13 circuit implicated in tuft cell hyperplasia, and both pathways augment Pou2f3 expression in secretory lineage progenitors. In mature tuft cells, DDX5 not only promotes integrin signalling and microbial responses, it also represses gene programmes involved in membrane transport and lipid metabolism. CONCLUSION: RNA binding protein DDX5 directs tuft cell specification and function to regulate microbial repertoire and disease susceptibility in the intestine.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Mucosa Intestinal , Animales , Carcinogénesis/metabolismo , ARN Helicasas DEAD-box/genética , Susceptibilidad a Enfermedades , Inflamación/metabolismo , Mucosa Intestinal/metabolismo , Ratones , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al GTP rho/metabolismo
4.
J Physiol ; 600(8): 1851-1865, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35100665

RESUMEN

Infections with non-typhoidal Salmonella spp. represent the most burdensome foodborne illnesses worldwide, yet despite their prevalence, the mechanism through which Salmonella elicits diarrhoea is not entirely known. Intestinal ion transporters play important roles in fluid and electrolyte homeostasis in the intestine. We have previously shown that infection with Salmonella caused decreased colonic expression of the chloride/bicarbonate exchanger SLC26A3 (down-regulated in adenoma; DRA) in a mouse model. In this study, we focused on the mechanism of DRA downregulation during Salmonella infection, by using murine epithelial enteroid-derived monolayers (EDMs). The decrease in DRA expression caused by infection was recapitulated in EDMs and accompanied by increased expression of Atonal Homolog 1 (ATOH1), the goblet cell marker Muc2 and the enteroendocrine cell marker ChgA. This suggested biased epithelial differentiation towards the secretory, rather than absorptive phenotype. In addition, the downstream Notch effector, Notch intracellular domain (NICD) and Hes1 were decreased following Salmonella infection. The relevance of Notch signalling was further investigated using a γ-secretase inhibitor, which recapitulated the downregulation in Hes1 and DRA as well as upregulation in ATOH1 and Muc2 seen following infection. Our findings suggest that Salmonella infection may result in a shift from absorptive to secretory cell types through Notch inhibition, which explains why there is a decreased capacity for absorption and ultimately the accumulation of diarrhoeal fluid. Our work also shows the value of EDMs as a model to investigate mechanisms that might be targeted for therapy of diarrhoea caused by Salmonella infection. KEY POINTS: Salmonella is a leading foodborne pathogen known to cause high-chloride-content diarrhoea. Salmonella infection of murine enteroid-derived monolayers decreased DRA expression. Salmonella infection resulted in upregulation of the secretory epithelial marker ATOH1, the goblet cell marker Muc2 and the enteroendocrine cell marker ChgA. Downregulation of DRA may result from infection-induced Notch inhibition, as reflected by decreased expression of Notch intracellular domain and Hes1, as well as from decreased HNF1α signalling. The imbalance in intestinal epithelial differentiation favouring secretory over absorptive cell types is a possible mechanism by which Salmonella elicits diarrhoea and may be relevant therapeutically.


Asunto(s)
Cloruros , Infecciones por Salmonella , Animales , Antiportadores/genética , Antiportadores/metabolismo , Diferenciación Celular , Antiportadores de Cloruro-Bicarbonato/metabolismo , Cloruros/metabolismo , Diarrea , Mucosa Intestinal/metabolismo , Ratones , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo
5.
J Exp Bot ; 73(11): 3511-3530, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35243491

RESUMEN

Nitrate is an important nutrient and a key signalling molecule for plant development. A number of transcription factors involved in the response to nitrate and their regulatory mechanisms have been identified. However, little is known about the transcription factors involved in nitrate sensing and their regulatory mechanisms among crop plants. In this study, we identified functions of a nitrate-responsive miR444:MADS-box transcription factor OsMADS27 module and its downstream targets mediating rice root growth and stress responses. Transgenic rice plants expressing miR444 target mimic improved rice root growth. Although miR444 has the potential to target multiple genes, we identified OsMADS27 as the major miR444 target that regulates the expression of nitrate transporters, as well as several key genes including expansins, and those associated with auxin signalling, to promote root growth. In agreement with this, overexpression of miRNA-resistant OsMADS27 improved root development and tolerance to abiotic stresses, while its silencing suppressed root growth. OsMADS27 mediated robust stress tolerance in plants through its ability to bind to the promoters of specific stress regulators, as observed in ChIP-seq analysis. Our results provide evidence of a nitrate-dependent miR444-OsMADS27 signalling cascade involved in the regulation of rice root growth, as well as its surprising role in stress responses.


Asunto(s)
MicroARNs/genética , Oryza , Regulación de la Expresión Génica de las Plantas , Nitratos/metabolismo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/metabolismo
6.
J Biol Chem ; 295(32): 11082-11098, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32518160

RESUMEN

Infection with the Gram-negative, microaerophilic bacterium Helicobacter pylori induces an inflammatory response and oxidative DNA damage in gastric epithelial cells that can lead to gastric cancer (GC). However, the underlying pathogenic mechanism is largely unclear. Here, we report that the suppression of Nei-like DNA glycosylase 2 (NEIL2), a mammalian DNA glycosylase that specifically removes oxidized bases, is one mechanism through which H. pylori infection may fuel the accumulation of DNA damage leading to GC. Using cultured cell lines, gastric biopsy specimens, primary cells, and human enteroid-derived monolayers from healthy human stomach, we show that H. pylori infection greatly reduces NEIL2 expression. The H. pylori infection-induced downregulation of NEIL2 was specific, as Campylobacter jejuni had no such effect. Using gastric organoids isolated from the murine stomach in coculture experiments with live bacteria mimicking the infected stomach lining, we found that H. pylori infection is associated with the production of various inflammatory cytokines. This response was more pronounced in Neil2 knockout (KO) mouse cells than in WT cells, suggesting that NEIL2 suppresses inflammation under physiological conditions. Notably, the H. pylori-infected Neil2-KO murine stomach exhibited more DNA damage than the WT. Furthermore, H. pylori-infected Neil2-KO mice had greater inflammation and more epithelial cell damage. Computational analysis of gene expression profiles of DNA glycosylases in gastric specimens linked the reduced Neil2 level to GC progression. Our results suggest that NEIL2 downregulation is a plausible mechanism by which H. pylori infection impairs DNA damage repair, amplifies the inflammatory response, and initiates GC.


Asunto(s)
ADN Glicosilasas/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Regulación hacia Abajo , Mucosa Gástrica/metabolismo , Genoma , Infecciones por Helicobacter/metabolismo , Helicobacter pylori/aislamiento & purificación , Inflamación/metabolismo , Animales , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , ADN Glicosilasas/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Progresión de la Enfermedad , Mucosa Gástrica/patología , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/patología , Helicobacter pylori/metabolismo , Humanos , Ratones , ARN Mensajero/genética
7.
Plant Mol Biol ; 105(1-2): 99-114, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32964370

RESUMEN

KEY MESSAGE: This manuscript describes the functions of an Argonaute protein named AGO17 in rice. AGO17 is required for the development of rice reproductive tissues. Argonaute (AGO) proteins are a well-conserved multigene family of regulators mediating gene silencing across eukaryotes. Monocot plants have additional members of AGO, the functions of which are poorly understood. Among the non-dicot AGO1 clade members in monocots, AGO17 expresses highly in reproductive tissues. Here we show that overexpression of Oryza sativa indica AGO17 in rice resulted in robust growth and increased yield, whereas its silencing resulted in reduced panicle length, less fertility, and poor growth. Small (s)RNA transcriptome analysis revealed misregulation of several miRNAs and other categories of sRNAs in silenced and overexpression lines, in agreement with its likely competition with other AGO1 clade members. Targets of differentially expressed miRNAs included previously unreported target RNAs coding for proteins involved in development, phase transition, and transport. Our results indicate a distinctive role for OsAGO17 in rice reproductive development that could be harnessed to improve yield.


Asunto(s)
Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Oryza/genética , Oryza/metabolismo , Fenotipo , Arabidopsis , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Silenciador del Gen , MicroARNs/genética , MicroARNs/metabolismo , Plantas Modificadas Genéticamente , Polen/metabolismo , ARN de Planta/genética , Reproducción/fisiología , Análisis de Secuencia de ARN , Transcriptoma
8.
Am J Physiol Lung Cell Mol Physiol ; 321(6): L1134-L1146, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34704852

RESUMEN

Over 40 million people use e-cigarettes worldwide, but the impact of chronic e-cigarette use on health has not been adequately defined. In particular, effects of e-cigarette aerosol inhalation on inflammation and host defenses across the body are not fully understood. We conducted a longitudinal cohort pilot study to explore changes in the inflammatory state and monocyte function of e-cigarette users (n = 20) versus healthy controls (n = 13) and to evaluate effects of e-cigarette use reduction on the same. Saliva, sputum, and blood were obtained from e-cigarette users at baseline and after a 2-wk intervention of decreased e-cigarette use. Overall, across 38 proteins quantified by multiplex, airway samples from e-cigarette users tended to have decreased levels of immunomodulatory proteins relative to healthy controls, whereas levels of cytokines, chemokines, and growth factors in the circulation tended to be elevated. Specifically, e-cigarette users had lower levels of IL-1 receptor antagonist (IL-1Ra) in saliva (P < 0.0001), with higher IL-1Ra and growth-regulated oncogene (GRO) levels in sputum (P < 0.01 and P < 0.05, respectively), and higher levels of both TNFß (P < 0.0001) and VEGF (P < 0.0001) in plasma. Circulating monocytes from e-cigarette users had alterations in their inflammatory phenotype in response to reduced e-cigarette use, with blunted IL-8 and IL-6 release upon challenge with bacterial lipopolysaccharide (P < 0.001 and P < 0.05, respectively), suggesting a decreased ability to appropriately respond to bacterial infection. Based on these findings, chronic inhalation of e-cigarette aerosols alters the inflammatory state of the airways and systemic circulation, raising concern for the development of both inflammatory and infectious diseases in chronic users of e-cigarettes.


Asunto(s)
Citocinas/metabolismo , Sistemas Electrónicos de Liberación de Nicotina/estadística & datos numéricos , Inflamación/diagnóstico , Sistema Respiratorio/inmunología , Humo/efectos adversos , Vapeo/efectos adversos , Adolescente , Adulto , Estudios de Casos y Controles , Citocinas/análisis , Femenino , Humanos , Inflamación/inducido químicamente , Inflamación/metabolismo , Estudios Longitudinales , Masculino , Proyectos Piloto , Plasma/efectos de los fármacos , Plasma/metabolismo , Sistema Respiratorio/efectos de los fármacos , Sistema Respiratorio/metabolismo , Sistema Respiratorio/patología , Saliva/efectos de los fármacos , Saliva/metabolismo , Esputo/efectos de los fármacos , Esputo/metabolismo , Adulto Joven
9.
Proc Natl Acad Sci U S A ; 115(39): E9192-E9200, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30209212

RESUMEN

Intestinal epithelial cell (IEC) death is a common feature of inflammatory bowel disease (IBD) that triggers inflammation by compromising barrier integrity. In many patients with IBD, epithelial damage and inflammation are TNF-dependent. Elevated TNF production in IBD is accompanied by increased expression of the TNFAIP3 gene, which encodes A20, a negative feedback regulator of NF-κB. A20 in intestinal epithelium from patients with IBD coincided with the presence of cleaved caspase-3, and A20 transgenic (Tg) mice, in which A20 is expressed from an IEC-specific promoter, were highly susceptible to TNF-induced IEC death, intestinal damage, and shock. A20-expressing intestinal organoids were also susceptible to TNF-induced death, demonstrating that enhanced TNF-induced apoptosis was a cell-autonomous property of A20. This effect was dependent on Receptor Interacting Protein Kinase 1 (RIPK1) activity, and A20 was found to associate with the Ripoptosome complex, potentiating its ability to activate caspase-8. A20-potentiated RIPK1-dependent apoptosis did not require the A20 deubiquitinase (DUB) domain and zinc finger 4 (ZnF4), which mediate NF-κB inhibition in fibroblasts, but was strictly dependent on ZnF7 and A20 dimerization. We suggest that A20 dimers bind linear ubiquitin to stabilize the Ripoptosome and potentiate its apoptosis-inducing activity.


Asunto(s)
Apoptosis , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Caspasa 3/genética , Caspasa 3/metabolismo , Caspasa 8/genética , Caspasa 8/metabolismo , Humanos , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/patología , Ratones , Ratones Transgénicos , FN-kappa B/genética , FN-kappa B/metabolismo , Multimerización de Proteína , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/genética
10.
Am J Physiol Gastrointest Liver Physiol ; 317(5): G580-G591, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31433211

RESUMEN

Congenital tufting enteropathy (CTE) is an autosomal recessive disease characterized by severe intestinal failure in infancy and mutations in the epithelial cell adhesion molecule (EPCAM) gene. Previous studies of CTE in mice expressing mutant EpCAM show neonatal lethality. Hence, to study the cellular, molecular, and physiological alterations that result from EpCAM mutation, a tamoxifen-inducible mutant EpCAM enteroid model has been generated. The presence of mutant EpCAM in the model was confirmed at both mRNA and protein levels. Immunofluorescence microscopy demonstrated the reduced expression of mutant EpCAM. Mutant enteroids had reduced budding potential as well as significantly decreased mRNA expression for epithelial lineage markers (Mucin 2, lysozyme, sucrase-isomaltase), proliferation marker Ki67, and secretory pathway transcription factors (Atoh1, Hnf1b). Significantly decreased numbers of Paneth and goblet cells were confirmed by staining. These findings were correlated with intestinal tissue from CTE patients and the mutant mice model that had significantly fewer Paneth and goblet cells than in healthy counterparts. FITC-dextran studies demonstrated significantly impaired barrier function in monolayers derived from mutant enteroids compared with control monolayers. In conclusion, we have established an ex vivo CTE model. The role of EpCAM in the budding potential, differentiation, and barrier function of enteroids is noted. Our study establishes new facets of EpCAM biology that will aid in understanding the pathophysiology of CTE and role of EpCAM in health and disease.NEW & NOTEWORTHY Here, we develop a novel ex vivo enteroid model for congenital tufting enteropathy (CTE) based on epithelial cell adhesion molecule (EPCAM) gene mutations found in patients. With this model we demonstrate the role of EpCAM in maintaining the functional homeostasis of the intestinal epithelium, including differentiation, proliferation, and barrier integrity. This study further establishes a new direction in EpCAM biology that will help in understanding the detailed pathophysiology of CTE and role of EpCAM.


Asunto(s)
Diarrea Infantil/genética , Molécula de Adhesión Celular Epitelial/genética , Mucosa Intestinal/citología , Síndromes de Malabsorción/genética , Técnicas de Cultivo de Tejidos/métodos , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Diarrea Infantil/patología , Molécula de Adhesión Celular Epitelial/metabolismo , Femenino , Células Caliciformes/citología , Células Caliciformes/metabolismo , Células Caliciformes/fisiología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Síndromes de Malabsorción/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Células de Paneth/citología , Células de Paneth/metabolismo , Células de Paneth/fisiología
11.
PLoS Pathog ; 12(1): e1005382, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26761793

RESUMEN

Generation of reactive oxygen species (ROS) during infection is an immediate host defense leading to microbial killing. APE1 is a multifunctional protein induced by ROS and after induction, protects against ROS-mediated DNA damage. Rac1 and NAPDH oxidase (Nox1) are important contributors of ROS generation following infection and associated with gastrointestinal epithelial injury. The purpose of this study was to determine if APE1 regulates the function of Rac1 and Nox1 during oxidative stress. Gastric or colonic epithelial cells (wild-type or with suppressed APE1) were infected with Helicobacter pylori or Salmonella enterica and assessed for Rac1 and NADPH oxidase-dependent superoxide production. Rac1 and APE1 interactions were measured by co-immunoprecipitation, confocal microscopy and proximity ligation assay (PLA) in cell lines or in biopsy specimens. Significantly greater levels of ROS were produced by APE1-deficient human gastric and colonic cell lines and primary gastric epithelial cells compared to control cells after infection with either gastric or enteric pathogens. H. pylori activated Rac1 and Nox1 in all cell types, but activation was higher in APE1 suppressed cells. APE1 overexpression decreased H. pylori-induced ROS generation, Rac1 activation, and Nox1 expression. We determined that the effects of APE1 were mediated through its N-terminal lysine residues interacting with Rac1, leading to inhibition of Nox1 expression and ROS generation. APE1 is a negative regulator of oxidative stress in the gastrointestinal epithelium during bacterial infection by modulating Rac1 and Nox1. Our results implicate APE1 in novel molecular interactions that regulate early stress responses elicited by microbial infections.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Mucosa Gástrica/inmunología , Infecciones por Helicobacter/inmunología , Mucosa Intestinal/inmunología , Infecciones por Salmonella/inmunología , Proteína de Unión al GTP rac1/metabolismo , Western Blotting , Línea Celular , Técnica del Anticuerpo Fluorescente , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiología , Infecciones por Helicobacter/metabolismo , Humanos , Inmunoprecipitación , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Microscopía Confocal , Especies Reactivas de Oxígeno/inmunología , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Infecciones por Salmonella/metabolismo , Proteína de Unión al GTP rac1/inmunología
12.
Am J Physiol Regul Integr Comp Physiol ; 314(6): R834-R847, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29384700

RESUMEN

Electronic (e)-cigarettes theoretically may be safer than conventional tobacco. However, our prior studies demonstrated direct adverse effects of e-cigarette vapor (EV) on airway cells, including decreased viability and function. We hypothesize that repetitive, chronic inhalation of EV will diminish airway barrier function, leading to inflammatory protein release into circulation, creating a systemic inflammatory state, ultimately leading to distant organ injury and dysfunction. C57BL/6 and CD-1 mice underwent nose only EV exposure daily for 3-6 mo, followed by cardiorenal physiological testing. Primary human bronchial epithelial cells were grown at an air-liquid interface and exposed to EV for 15 min daily for 3-5 days before functional testing. Daily inhalation of EV increased circulating proinflammatory and profibrotic proteins in both C57BL/6 and CD-1 mice: the greatest increases observed were in angiopoietin-1 (31-fold) and EGF (25-fold). Proinflammatory responses were recapitulated by daily EV exposures in vitro of human airway epithelium, with EV epithelium secreting higher IL-8 in response to infection (227 vs. 37 pg/ml, respectively; P < 0.05). Chronic EV inhalation in vivo reduced renal filtration by 20% ( P = 0.017). Fibrosis, assessed by Masson's trichrome and Picrosirius red staining, was increased in EV kidneys (1.86-fold, C57BL/6; 3.2-fold, CD-1; P < 0.05), heart (2.75-fold, C57BL/6 mice; P < 0.05), and liver (1.77-fold in CD-1; P < 0.0001). Gene expression changes demonstrated profibrotic pathway activation. EV inhalation altered cardiovascular function, with decreased heart rate ( P < 0.01), and elevated blood pressure ( P = 0.016). These data demonstrate that chronic inhalation of EV may lead to increased inflammation, organ damage, and cardiorenal and hepatic disease.


Asunto(s)
Barrera Alveolocapilar/efectos de los fármacos , Sistemas Electrónicos de Liberación de Nicotina , Inflamación/inducido químicamente , Nicotina/administración & dosificación , Nicotina/efectos adversos , Agonistas Nicotínicos/administración & dosificación , Agonistas Nicotínicos/efectos adversos , Animales , Citocinas/sangre , Femenino , Fibrosis/inducido químicamente , Expresión Génica/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Cultivo Primario de Células , Mucosa Respiratoria/citología , Mucosa Respiratoria/efectos de los fármacos , Sistema Respiratorio/efectos de los fármacos
13.
Arch Virol ; 163(9): 2551-2554, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29744588

RESUMEN

Begomoviruses (family Geminiviridae) cause important diseases in many crops. In addition, many wild plants are reservoirs of begomoviruses, which are a potential menace for nearby crops. A novel begomovirus was isolated from a weed of the species Synedrella nodiflora (Compositae) exhibiting yellow vein symptoms in South India. This virus had a typical monopartite Old World begomovirus genome and was accompanied by a betasatellite. Sequence comparison revealed that this virus represents a new species in the genus Begomovirus. Recombination analysis showed that the novel begomovirus originated through recombination between the begomoviruses ageratum yellow vein Sri Lanka virus and tomato leaf curl Sri Lanka virus.


Asunto(s)
Asteraceae/virología , Begomovirus/aislamiento & purificación , Enfermedades de las Plantas/virología , Begomovirus/clasificación , Begomovirus/genética , ADN Viral/genética , India , Filogenia
14.
J Infect Dis ; 216(12): 1655-1666, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29029244

RESUMEN

Macrophages are specialized phagocytic cells involved in clearing invading pathogens. Previously we reported that engulfment and cell motility protein 1 (ELMO1) in macrophages mediates bacterial internalization and intestinal inflammation. Here we studied the role of ELMO1 in the fate of internalized targets. ELMO1 is present in the intracellular vesicles and enhances accumulation of the protein LC3B following engulfment of Salmonella or treatment with autophagy-inducing rapamycin. The protein ATG5 and the kinase ULK1 are involved in classical autophagy, while LC3-associated phagocytosis is ULK1 independent. ATG5 but not ULK1 cooperated with ELMO1 in LC3 accumulation after infection, suggesting the ELMO1 preferentially regulated LC3-associated phagocytosis. Because LC3-associated phagocytosis delivers cargo for degradation, the contribution of ELMO1 to the lysosome degradation pathways was evaluated by studying pH and cathepsin B activity. ELMO1-depleted macrophages showed a time-dependent increase in pH and a decrease in cathepsin B activity associated with bacterial survival. Together, ELMO1 regulates LC3B accumulation and antimicrobial responses involved in the clearance of enteric pathogens. This paper investigated how innate immune pathways involving ELMO1 work in a coordinated fashion to eliminate bacterial threats. ELMO1 is present in the phagosome and enhances bacterial clearance by differential regulation of lysosomal acidification and enzymatic activity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia , Macrófagos/inmunología , Macrófagos/microbiología , Infecciones por Salmonella/patología , Salmonella/crecimiento & desarrollo , Salmonella/inmunología , Animales , Proteína 5 Relacionada con la Autofagia/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Catepsina B/análisis , Línea Celular , Modelos Animales de Enfermedad , Concentración de Iones de Hidrógeno , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/metabolismo
15.
Nature ; 477(7363): 220-4, 2011 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-21857682

RESUMEN

Rapid and efficient removal of apoptotic cells by phagocytes is important during development, tissue homeostasis and in immune responses. Efficient clearance depends on the capacity of a single phagocyte to ingest multiple apoptotic cells successively, and to process the corpse-derived cellular material. However, the factors that influence continued clearance by phagocytes are not known. Here we show that the mitochondrial membrane potential of the phagocyte critically controls engulfment capacity, with lower potential enhancing engulfment and vice versa. The mitochondrial membrane protein Ucp2, which acts to lower the mitochondrial membrane potential, was upregulated in phagocytes engulfing apoptotic cells. Loss of Ucp2 reduced phagocytic capacity, whereas Ucp2 overexpression enhanced engulfment. Mutational and pharmacological studies indicated a direct role for Ucp2-mediated mitochondrial function in phagocytosis. Macrophages from Ucp2-deficient mice were impaired in phagocytosis in vitro, and Ucp2-deficient mice showed profound in vivo defects in clearing dying cells in the thymus and testes. Collectively, these data indicate that mitochondrial membrane potential and Ucp2 are key molecular determinants of apoptotic cell clearance. As Ucp2 is linked to metabolic diseases and atherosclerosis, this newly discovered role for Ucp2 in apoptotic cell clearance has implications for the complex aetiology and pathogenesis of these diseases.


Asunto(s)
Apoptosis , Canales Iónicos/metabolismo , Proteínas Mitocondriales/metabolismo , Fagocitos/citología , Fagocitos/metabolismo , Fagocitosis/fisiología , Animales , Línea Celular , Tamaño de la Célula/efectos de los fármacos , Células Cultivadas , Canales Iónicos/deficiencia , Canales Iónicos/genética , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Proteínas Mitocondriales/deficiencia , Proteínas Mitocondriales/genética , Fagocitos/efectos de los fármacos , Fagocitosis/efectos de los fármacos , Timo/citología , Proteína Desacopladora 2
16.
FASEB J ; 28(5): 2214-24, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24509909

RESUMEN

After Helicobacter pylori infection in humans, gastric epithelial cells (GECs) undergo apoptosis due to stimulation by the bacteria or inflammatory cytokines. In this study, we assessed the expression and function of brain angiogenesis inhibitor 1 (BAI1) in the engulfment of apoptotic GECs using human tissue and cells. After induction of apoptosis by H. pylori or camptothecin, there was a 5-fold increase in the binding of apoptotic GECs to THP-1 cells or peripheral blood monocyte-derived macrophages as assayed by confocal microscopy or conventional and imaging flow cytometry. Binding was impaired 95% by pretreating apoptotic cells with annexin V, underscoring the requirement for phosphatidylserine recognition. The phosphatidylserine receptor BAI1 was expressed in human gastric biopsy specimens and gastric phagocytes. To confirm the role of BAI1 in apoptotic cell clearance, the functional domain of BAI1 was used as a competitive inhibitor or BAI1 expression was inhibited by small interfering RNA. Both approaches decreased binding and engulfment >40%. Exposing THP-1 cells to apoptotic cells inhibited IL-6 production from 1340 to <364 pg/ml; however, this decrease was independent of phagocytosis. We conclude that recognition of apoptotic cells by BAI1 contributes to their clearance in the human gastric mucosa and this is associated with anti-inflammatory effects.


Asunto(s)
Proteínas Angiogénicas/metabolismo , Apoptosis , Células Epiteliales/metabolismo , Infecciones por Helicobacter/metabolismo , Fagocitos/metabolismo , Línea Celular , Técnicas de Cocultivo , Citocinas/metabolismo , Células Epiteliales/microbiología , Mucosa Gástrica/citología , Mucosa Gástrica/microbiología , Gastritis/metabolismo , Regulación de la Expresión Génica , Helicobacter pylori , Humanos , Inflamación , Macrófagos/citología , Macrófagos/metabolismo , Monocitos/citología , Fagocitos/citología , Fagocitosis , Receptores de Superficie Celular/química , Receptores Acoplados a Proteínas G , Estómago/citología , Estómago/microbiología
17.
J Immunol ; 190(12): 6626-34, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23686492

RESUMEN

Increased apoptotic death of gastric epithelial cells is a hallmark of Helicobacter pylori infection, and altered epithelial cell turnover is an important contributor to gastric carcinogenesis. To address the fate of apoptotic gastric epithelial cells and their role in H. pylori mucosal disease, we investigated phagocyte clearance of apoptotic gastric epithelial cells in H. pylori infection. Human gastric mononuclear phagocytes were analyzed for their ability to take up apoptotic epithelial cells (AECs) in vivo using immunofluorescence analysis. We then used primary human gastric epithelial cells induced to undergo apoptosis by exposure to live H. pylori to study apoptotic cell uptake by autologous monocyte-derived macrophages. We show that HLA-DR(+) mononuclear phagocytes in human gastric mucosa contain cytokeratin-positive and TUNEL-positive AEC material, indicating that gastric phagocytes are involved in AEC clearance. We further show that H. pylori both increased apoptosis in primary gastric epithelial cells and decreased phagocytosis of the AECs by autologous monocyte-derived macrophages. Reduced macrophage clearance of apoptotic cells was mediated in part by H. pylori-induced macrophage TNF-α, which was expressed at higher levels in H. pylori-infected, compared with uninfected, gastric mucosa. Importantly, we show that H. pylori-infected gastric mucosa contained significantly higher numbers of AECs and higher levels of nonphagocytosed TUNEL-positive apoptotic material, consistent with a defect in apoptotic cell clearance. Thus, as shown in other autoimmune and chronic inflammatory diseases, insufficient phagocyte clearance may contribute to the chronic and self-perpetuating inflammation in human H. pylori infection.


Asunto(s)
Apoptosis/fisiología , Células Epiteliales/patología , Infecciones por Helicobacter/inmunología , Leucocitos Mononucleares/inmunología , Macrófagos/inmunología , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Mucosa Gástrica/citología , Mucosa Gástrica/inmunología , Infecciones por Helicobacter/patología , Helicobacter pylori , Humanos , Etiquetado Corte-Fin in Situ , Fagocitosis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
Proc Natl Acad Sci U S A ; 108(5): 2136-41, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21245295

RESUMEN

Bacterial recognition by host cells is essential for initiation of infection and the host response. Bacteria interact with host cells via multiple pattern recognition receptors that recognize microbial products or pathogen-associated molecular patterns. In response to this interaction, host cell signaling cascades are activated that lead to inflammatory responses and/or phagocytic clearance of attached bacteria. Brain angiogenesis inhibitor 1 (BAI1) is a receptor that recognizes apoptotic cells through its conserved type I thrombospondin repeats and triggers their engulfment through an ELMO1/Dock/Rac1 signaling module. Because thrombospondin repeats in other proteins have been shown to bind bacterial surface components, we hypothesized that BAI1 may also mediate the recognition and clearance of pathogenic bacteria. We found that preincubation of bacteria with recombinant soluble BAI1 ectodomain or knockdown of endogenous BAI1 in primary macrophages significantly reduced binding and internalization of the Gram-negative pathogen Salmonella typhimurium. Conversely, overexpression of BAI1 enhanced attachment and engulfment of Salmonella in macrophages and in heterologous nonphagocytic cells. Bacterial uptake is triggered by the BAI1-mediated activation of Rac through an ELMO/Dock-dependent mechanism, and inhibition of the BAI1/ELMO1 interaction prevents both Rac activation and bacterial uptake. Moreover, inhibition of ELMO1 or Rac function significantly impairs the proinflammatory response to infection. Finally, we show that BAI1 interacts with a variety of Gram-negative, but not Gram-positive, bacteria through recognition of their surface lipopolysaccharide. Together these findings identify BAI1 as a pattern recognition receptor that mediates nonopsonic phagocytosis of Gram-negative bacteria by macrophages and directly affects the host response to infection.


Asunto(s)
Proteínas Angiogénicas/fisiología , Adhesión Bacteriana , Macrófagos/microbiología , Salmonella typhimurium/fisiología , Animales , Western Blotting , Ensayo de Inmunoadsorción Enzimática , Ratones
19.
Microorganisms ; 12(9)2024 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-39338600

RESUMEN

Blastocystis is an anaerobic parasite that colonizes the intestinal tract of humans and animals. When it was first discovered, Blastocystis was considered to be a normal flora with beneficial effects on human health, such as maintaining gut hemostasis and improving intestinal barrier integrity. Later, with increasing research on Blastocystis, reports showed that Blastocystis sp. is associated with gastrointestinal disorders, colorectal cancer (CRC), and neurological disorders. The association between Blastocystis sp. and CRC has been confirmed in several countries. Blastocystis sp. can mediate CRC via similar mechanisms to CRC-associated bacteria, including infection-mediated inflammation, increased oxidative stress, induced gut dysbiosis, and damage to intestinal integrity, leading to a leaky gut. IL-8 is the main inflammatory cytokine released from epithelial cells and can promote CRC development. The causal association of Blastocystis sp. with other diseases needs further investigation. In this review, we have provided an update on Blastocystis sp. and summarized the debate about the beneficial and harmful effects of this parasite. We have also highlighted the possible mechanisms of Blastocystis-mediated CRC.

20.
bioRxiv ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39253444

RESUMEN

Background: E-cigarettes (E.cigs) cause inflammation and damage to human organs, including the lungs and heart. In the gut, E.cig vaping promotes inflammation and gut leakiness. Further, E.cig vaping increases tumorigenesis in oral and lung epithelial cells by inducing mutations and suppressing host DNA repair enzymes. It is well known that cigarette (cig) smoking increases the risk of colorectal cancer (CRC). To date, it is unknown whether E.cig vaping impacts CRC development. Methods: A mouse model of human familial adenomatous polyposis (CPC-APC) was utilized wherein a mutation in the adenomatous polyposis coli (APC) gene, CDX2-Cre-APCMin/+, leads to the development of colon adenomas within 16 weeks. Mice were exposed to air (controls), E.cig vaping, cig, or both (dual exposure). After 4 weeks of 2-hour exposures per day (1 hour of each for dual exposures), the colon was collected and assessed for polyp number and pathology scores by microscopy. Expression of inflammatory cytokines and cancer stem cell markers were quantified. DNA damage such as double-strand DNA breaks was evaluated by immunofluorescence, western blot and gene-specific long amplicon qPCR. DNA repair enzyme levels (NEIL-2, NEIL-1, NTH1, and OGG1) were quantified by western blot. Proliferation markers were assessed by RT-qPCR and ELISA. Results: CPC-APC mice exposed to E.cig, cig, and dual exposure developed a higher number of polyps compared to controls. Inflammatory proteins, DNA damage, and cancer stemness markers were higher in E-cig, cig, and dual-exposed mice as well. DNA damage was found to be associated with the suppression of DNA glycosylases, particularly with NEIL-2 and NTH1. E.cig and dual exposure both stimulated cancer cell stem markers (CD44, Lgr-5, DCLK1, and Ki67). The effect of E.cigs on polyp formation and CRC development was less than that of cigs, while dual exposure was more tumorigenic than either of the inhalants alone. Conclusion: E.cig vaping promotes CRC by stimulating inflammatory pathways, mediating DNA damage, and upregulating transcription of cancer stem cell markers. Critically, combining E.cig vaping with cig smoking leads to higher levels of tumorigenesis. Thus, while the chemical composition of these two inhalants, E.cigs and cigs, is highly disparate, they both drive the development of cancer and when combined, a highly common pattern of use, they can have additive or synergistic effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA