Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(6): e2309627121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38294940

RESUMEN

We present an accreditation protocol for analogue, i.e., continuous-time, quantum simulators. For a given simulation task, it provides an upper bound on the variation distance between the probability distributions at the output of an erroneous and error-free analogue quantum simulator. As its overheads are independent of the size and nature of the simulation, the protocol is ready for immediate usage and practical for the long term. It builds on the recent theoretical advances of strongly universal Hamiltonians and quantum accreditation as well as experimental progress toward the realization of programmable hybrid analogue-digital quantum simulators.

2.
Phys Rev Lett ; 128(23): 230501, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35749187

RESUMEN

Quantum states of light have been shown to enhance precision in absorption estimation over classical strategies. By exploiting interference and resonant enhancement effects, we show that coherent-state probes in all-pass ring resonators can outperform any quantum probe single-pass strategy even when normalized by the mean input photon number. We also find that under optimal conditions coherent-state probes equal the performance of arbitrarily bright pure single-mode squeezed probes in all-pass ring resonators.

3.
Phys Rev Lett ; 126(15): 150402, 2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33929253

RESUMEN

We present a model-independent measure of dynamical complexity based on simulation of complex quantum dynamics using stroboscopic Markovian dynamics. Tools from classical signal processing enable us to infer the Hilbert space dimension of the complex quantum system evolving under a time-independent Hamiltonian via pulsed interrogation. We illustrate this using simulated third-order pump-probe spectroscopy data for exciton transport in a toy model of a coupled dimer with vibrational levels, revealing the dimension of the singly excited manifold of the dimer. Finally, we probe the complexity of excitonic transport in light harvesting 2 (LH2) and Fenna-Matthews-Olson (FMO) complexes using data from two recent nonlinear ultrafast optical spectroscopy experiments. For the latter we make model-independent inferences that are commensurate with model-specific ones, including the estimation of the fewest number of parameters needed to fit the experimental data and identifying the spatial extent, i.e., delocalization size, of quantum states participating in this complex quantum dynamics.

4.
Phys Rev Lett ; 125(8): 080501, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32909785

RESUMEN

Weak-value amplification (WVA) is a metrological protocol that amplifies ultrasmall physical effects. However, the amplified outcomes necessarily occur with highly suppressed probabilities, leading to the extensive debate on whether the overall measurement precision is improved in comparison to that of conventional measurement (CM). Here, we experimentally demonstrate the unambiguous advantages of WVA that overcome practical limitations including noise and saturation of photodetection and maintain a shot-noise-scaling precision for a large range of input light intensity well beyond the dynamic range of the photodetector. The precision achieved by WVA is 6 times higher than that of CM in our setup. Our results clear the way for the widespread use of WVA in applications involving the measurement of small signals including precision metrology and commercial sensors.

5.
Phys Rev Lett ; 123(20): 200503, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31809066

RESUMEN

Only with the simultaneous estimation of multiple parameters are the quantum aspects of metrology fully revealed. This is due to the incompatibility of observables. The fundamental bound for multiparameter quantum estimation is the Holevo Cramér-Rao bound (HCRB) whose evaluation has so far remained elusive. For finite-dimensional systems we recast its evaluation as a semidefinite program, with reduced size for rank-deficient states. We show that it also satisfies strong duality. We use this result to study phase and loss estimation in optical interferometry and three-dimensional magnetometry with noisy multiqubit systems. For the former, we show that, in some regimes, it is possible to attain the HCRB with the optimal (single-copy) measurement for phase estimation. For the latter, we show a nontrivial interplay between the HCRB and incompatibility and provide numerical evidence that projective single-copy measurements attain the HCRB in the noiseless 2-qubit case.

6.
Faraday Discuss ; 221(0): 110-132, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31536094

RESUMEN

The role of quantum effects in excitonic energy transport (EET) has been scrutinised intensely and with increasingly sophisticated experimental techniques. This increased complexity requires invoking correspondingly elaborate models to fit spectroscopic data before molecular parameters can be extracted. Possible quantum effects in EET can then be studied, but the conclusions are strongly contingent on the efficacy of the fitting and the accuracy of the model. To circumvent this challenge, we propose a witness for quantum coherence in EET that can be extracted directly from two-pulse pump-probe spectroscopy experimental data. We provide simulations to judge the feasibility of our approach. Somewhat counterintuitively, our protocol does not probe quantum coherence directly, but only indirectly through its implicit deletion. It allows for classical models with no quantum coherence to be decisively ruled out.

7.
Phys Rev Lett ; 121(11): 110505, 2018 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-30265105

RESUMEN

Optomechanical sensors involving multiple optical carriers can experience mechanically mediated interactions causing multimode correlations across the optical fields. One instance is laser-interferometric gravitational wave detectors which introduce multiple carrier frequencies for classical sensing and control purposes. An outstanding question is whether such multicarrier optomechanical sensors outperform their single-carrier counterpart in terms of quantum-limited sensitivity. We show that the best precision is achieved by a single-carrier instance of the sensor. For the current LIGO detection system this precision is already reachable.

8.
Phys Rev Lett ; 119(13): 130504, 2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-29341700

RESUMEN

A quantum theory of multiphase estimation is crucial for quantum-enhanced sensing and imaging and may link quantum metrology to more complex quantum computation and communication protocols. In this Letter, we tackle one of the key difficulties of multiphase estimation: obtaining a measurement which saturates the fundamental sensitivity bounds. We derive necessary and sufficient conditions for projective measurements acting on pure states to saturate the ultimate theoretical bound on precision given by the quantum Fisher information matrix. We apply our theory to the specific example of interferometric phase estimation using photon number measurements, a convenient choice in the laboratory. Our results thus introduce concepts and methods relevant to the future theoretical and experimental development of multiparameter estimation.

9.
Phys Rev Lett ; 116(3): 030801, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26849579

RESUMEN

We present a framework for the quantum enhanced estimation of multiple parameters corresponding to noncommuting unitary generators. Our formalism provides a recipe for the simultaneous estimation of all three components of a magnetic field. We propose a probe state that surpasses the precision of estimating the three components individually, and we discuss measurements that come close to attaining the quantum limit. Our study also reveals that too much quantum entanglement may be detrimental to attaining the Heisenberg scaling in the estimation of unitarily generated parameters.

10.
Phys Rev Lett ; 114(21): 210801, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-26066422

RESUMEN

Weak values and measurements have been proposed as a means to achieve dramatic enhancements in metrology based on the greatly increased range of possible measurement outcomes. Unfortunately, the very large values of measurement outcomes occur with highly suppressed probabilities. This raises three vital questions in weak-measurement-based metrology. Namely, (Q1) Does postselection enhance the measurement precision? (Q2) Does weak measurement offer better precision than strong measurement? (Q3) Is it possible to beat the standard quantum limit or to achieve the Heisenberg limit with weak measurement using only classical resources? We analyze these questions for two prototypical, and generic, measurement protocols and show that while the answers to the first two questions are negative for both protocols, the answer to the last is affirmative for measurements with phase-space interactions, and negative for configuration space interactions. Our results, particularly the ability of weak measurements to perform at par with strong measurements in some cases, are instructive for the design of weak-measurement-based protocols for quantum metrology.

11.
Phys Rev Lett ; 113(13): 130502, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25302876

RESUMEN

We develop a scheme for time-frequency encoded continuous-variable cluster-state quantum computing using quantum memories. In particular, we propose a method to produce, manipulate, and measure two-dimensional cluster states in a single spatial mode by exploiting the intrinsic time-frequency selectivity of Raman quantum memories. Time-frequency encoding enables the scheme to be extremely compact, requiring a number of memories that are a linear function of only the number of different frequencies in which the computational state is encoded, independent of its temporal duration. We therefore show that quantum memories can be a powerful component for scalable photonic quantum information processing architectures.

17.
Phys Rev Lett ; 110(7): 070502, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25166357

RESUMEN

Deep insight can be gained into the nature of nonclassical correlations by studying the quantum operations that create them. Motivated by this we propose a measure of nonclassicality of a quantum operation utilizing the relative entropy to quantify its commutativity with the completely dephasing operation. We show that our measure of nonclassicality is a sum of two independent contributions, the generating power--its ability to produce nonclassical states out of classical ones, and the distinguishing power--its usefulness to a classical observer for distinguishing between classical and nonclassical states. Each of these effects can be exploited individually in quantum protocols. We further show that our measure leads to an interpretation of quantum discord as the difference in superdense coding capacities between a quantum state and the best classical state when both are produced at a source that makes a classical error during transmission.

18.
Phys Rev Lett ; 111(7): 070403, 2013 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-23992052

RESUMEN

We study the simultaneous estimation of multiple phases as a discretized model for the imaging of a phase object. We identify quantum probe states that provide an enhancement compared to the best quantum scheme for the estimation of each individual phase separately as well as improvements over classical strategies. Our strategy provides an advantage in the variance of the estimation over individual quantum estimation schemes that scales as O(d), where d is the number of phases. Finally, we study the attainability of this limit using realistic probes and photon-number-resolving detectors. This is a problem in which an intrinsic advantage is derived from the estimation of multiple parameters simultaneously.

19.
Phys Rev Lett ; 110(17): 173602, 2013 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-23679726

RESUMEN

Nonclassical states of light are necessary resources for quantum technologies such as cryptography, computation and the definition of metrological standards. Observing signatures of nonclassicality generally requires inferring either the photon number distribution or a quasiprobability distribution indirectly from a set of measurements. Here, we report an experiment in which the nonclassical character of families of quantum states is assessed by direct inspection of the outcomes from a multiplexed photon counter. This scheme does not register the actual photon number distribution; the statistics of the detector clicks alone serve as a witness of nonclassicality, as proposed by Sperling et al. [Phys. Rev. Lett. 109, 093601 (2012)]. Our work paves a way for the practical characterization of increasingly sophisticated states and detectors.

20.
ScientificWorldJournal ; 2013: 403191, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24489501

RESUMEN

The rDNA-ITS (Ribosomal DNA Internal Transcribed Spacers) fragment of the genomic DNA of 8 wild edible mushrooms (collected from Eastern Chota Nagpur Plateau of West Bengal, India) was amplified using ITS1 (Internal Transcribed Spacers 1) and ITS2 primers and subjected to nucleotide sequence determination for identification of mushrooms as mentioned. The sequences were aligned using ClustalW software program. The aligned sequences revealed identity (homology percentage from GenBank data base) of Amanita hemibapha [CN (Chota Nagpur) 1, % identity 99 (JX844716.1)], Amanita sp. [CN 2, % identity 98 (JX844763.1)], Astraeus hygrometricus [CN 3, % identity 87 (FJ536664.1)], Termitomyces sp. [CN 4, % identity 90 (JF746992.1)], Termitomyces sp. [CN 5, % identity 99 (GU001667.1)], T. microcarpus [CN 6, % identity 82 (EF421077.1)], Termitomyces sp. [CN 7, % identity 76 (JF746993.1)], and Volvariella volvacea [CN 8, % identity 100 (JN086680.1)]. Although out of 8 mushrooms 4 could be identified up to species level, the nucleotide sequences of the rest may be relevant to further characterization. A phylogenetic tree is constructed using Neighbor-Joining method showing interrelationship between/among the mushrooms. The determined nucleotide sequences of the mushrooms may provide additional information enriching GenBank database aiding to molecular taxonomy and facilitating its domestication and characterization for human benefits.


Asunto(s)
Agaricales/clasificación , Agaricales/genética , Secuencia de Bases , Biología Computacional , ADN de Hongos , Datos de Secuencia Molecular , Fenotipo , Filogenia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA