Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 111(32): 11768-73, 2014 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-25074915

RESUMEN

The mammalian sex-determining factor SRY comprises a conserved high-mobility group (HMG) box DNA-binding domain and poorly conserved regions outside the HMG box. Mouse Sry is unusual in that it includes a C-terminal polyglutamine (polyQ) tract that is absent in nonrodent SRY proteins, and yet, paradoxically, is essential for male sex determination. To dissect the molecular functions of this domain, we generated a series of Sry mutants, and studied their biochemical properties in cell lines and transgenic mouse embryos. Sry protein lacking the polyQ domain was unstable, due to proteasomal degradation. Replacing this domain with irrelevant sequences stabilized the protein but failed to restore Sry's ability to up-regulate its key target gene SRY-box 9 (Sox9) and its sex-determining function in vivo. These functions were restored only when a VP16 transactivation domain was substituted. We conclude that the polyQ domain has important roles in protein stabilization and transcriptional activation, both of which are essential for male sex determination in mice. Our data disprove the hypothesis that the conserved HMG box domain is the only functional domain of Sry, and highlight an evolutionary paradox whereby mouse Sry has evolved a novel bifunctional module to activate Sox9 directly, whereas SRY proteins in other taxa, including humans, seem to lack this ability, presumably making them dependent on partner proteins(s) to provide this function.


Asunto(s)
Genes sry , Procesos de Determinación del Sexo , Proteína de la Región Y Determinante del Sexo/genética , Proteína de la Región Y Determinante del Sexo/metabolismo , Animales , Evolución Molecular , Femenino , Genes Reporteros , Masculino , Ratones , Ratones Transgénicos , Mutagénesis , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Péptidos/química , Embarazo , Complejo de la Endopetidasa Proteasomal/metabolismo , Desnaturalización Proteica , Estabilidad Proteica , Estructura Terciaria de Proteína , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Eliminación de Secuencia , Proteína de la Región Y Determinante del Sexo/química , Activación Transcripcional
2.
FASEB J ; 29(7): 2759-68, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25782991

RESUMEN

Controlled gene regulation during gamete development is vital for maintaining reproductive potential. During the process of gamete development, male germ cells experience extended periods of inactive transcription despite requirements for continued growth and differentiation. Spermatogenesis therefore provides an ideal model to study the effects of posttranscriptional control on gene regulation. During spermatogenesis posttranscriptional regulation is orchestrated by abundantly expressed RNA-binding proteins. One such group of RNA-binding proteins is the Musashi family, previously identified as a critical regulator of testis germ cell development and meiosis in Drosophila and also shown to be vital to sperm development and reproductive potential in the mouse. We focus in depth on the role and function of the vertebrate Musashi ortholog Musashi-1 (MSI1). Through detailed expression studies and utilizing our novel transgenic Msi1 testis-specific overexpression model, we have identified 2 unique RNA-binding targets of MSI1 in spermatogonia, Msi2 and Erh, and have demonstrated a role for MSI1 in translational regulation. We have also provided evidence to suggest that nuclear import protein, IPO5, facilitates the nuclear translocation of MSI1 to the transcriptionally silenced XY chromatin domain in meiotic pachytene spermatocytes, resulting in the release of MSI1 RNA-binding targets. This firmly establishes MSI1 as a master regulator of posttranscriptional control during early spermatogenesis and highlights the significance of the subcellular localization of RNA binding proteins in relation to their function.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al ARN/metabolismo , Espermatogénesis/fisiología , Factores de Transcripción/metabolismo , beta Carioferinas/metabolismo , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Animales , Proteínas de Ciclo Celular/genética , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Transgénicos , Modelos Biológicos , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Proteínas de Unión al ARN/genética , Espermatocitos/metabolismo , Espermatogonias/metabolismo , Testículo/citología , Testículo/crecimiento & desarrollo , Testículo/metabolismo , Factores de Transcripción/genética , beta Carioferinas/genética
3.
Biol Reprod ; 90(5): 92, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24671879

RESUMEN

Spermatogenesis is a complex developmental process whereby diploid spermatogenic stem cells become haploid and undergo a series of morphological changes to produce physically mature spermatozoa. Crucial to this process are a number of RNA-binding proteins, responsible for the posttranscriptional control of essential mRNAs and particularly pertinent to the two periods of inactive transcription that occur in spermatogenesis. One such group of RNA-binding proteins is the Musashi family, specifically Musashi-1 (MSI1) and Musashi-2 (MSI2), which act as key translational regulators in various stem cell populations and have been linked with the induction of tumorigenesis. In the present study, we examined the differential expression of mammalian MSI1 and MSI2 during germ cell development in the mouse testis. MSI1 was found to be predominately localized in mitotic gonocytes and spermatogonia, whereas MSI2 was detected in meiotic spermatocytes and differentiating spermatids. Extensive examination of the function of Musashi in spermatogenesis was achieved through the use of two transgenic mouse models with germ cell-specific overexpression of full-length isoforms of Msi1 or Msi2. These models demonstrated that aberrant expression of either Msi1 or Msi2 has deleterious effects on normal spermatogenesis, with Msi2 overexpression resulting in male sterility. Studies undertaken on human testicular seminoma tumors provide further insights into the relevance of MSI1 and MSI2 overexpression as diagnostic markers to human stem cell cancers. Overall this study provides further evidence for the unique functions that RNA-binding protein isoforms occupy within spermatogenesis, and introduces the potential manipulation of the Musashi family proteins to elucidate the mechanisms of posttranscriptional gene expression during germ cell development.


Asunto(s)
Proteínas de Unión al ARN/fisiología , Espermatocitos/fisiología , Espermatogénesis/fisiología , Espermatogonias/fisiología , Testículo/fisiología , Animales , Western Blotting , Regulación del Desarrollo de la Expresión Génica , Humanos , Inmunohistoquímica , Masculino , Meiosis/genética , Meiosis/fisiología , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Isoformas de Proteínas , ARN/química , ARN/genética , Proteínas de Unión al ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espermatocitos/ultraestructura , Espermatogonias/ultraestructura , Estadísticas no Paramétricas , Testículo/citología , Testículo/metabolismo
4.
Dev Biol ; 364(2): 89-98, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22230615

RESUMEN

During lymphangiogenesis in the mammalian embryo, a subset of vascular endothelial cells in the cardinal veins is reprogrammed to adopt a lymphatic endothelial fate. The prevailing model of lymphangiogenesis contends that these lymphatic precursor cells migrate away from the cardinal veins and reassemble peripherally as lymph sacs from which a lymphatic vasculature is generated. However, this model fails to account for a number of observations that, as a result, have remained anecdotal. Here, we use optical projection tomography, confocal microscopy and in vivo live imaging to uncover three key stages of lymphatic vascular morphogenesis in the mouse embryo at high resolution. First, we define territories or "pre-lymphatic clusters" of Prox1-positive lymphatic endothelial progenitor cells along the antero-posterior axis of the cardinal veins. Second, these pre-lymphatic clusters undergo progressive extrusion ("ballooning") to generate primitive lymph sacs. Third, lymphatic vessels emerge by a combination of mechanisms including sprouting from the lymph sacs and direct delamination of streams of cells from the cardinal veins. Our data support a new model for lymphatic vascular patterning and morphogenesis, as a basis for identifying the molecular cues governing these processes.


Asunto(s)
Linfangiogénesis , Vasos Linfáticos/embriología , Venas/embriología , Animales , Proteínas de Homeodominio/análisis , Ratones , Proteínas Supresoras de Tumor/análisis
5.
Hum Mol Genet ; 19(3): 506-16, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19933217

RESUMEN

Male development in mammals is normally initiated by the Y-linked gene Sry, which activates expression of Sox9, leading to a cascade of gene activity required for testis formation. Although defects in this genetic cascade lead to human disorders of sex development (DSD), only a dozen DSD genes have been identified, and causes of 46,XX DSD (XX maleness) other than SRY translocation are almost completely unknown. Here, we show that transgenic expression of Sox10, a close relative of Sox9, in gonads of XX mice resulted in development of testes and male physiology. The degree of sex reversal correlated with levels of Sox10 expression in different transgenic lines. Sox10 was expressed at low levels in primordial gonads of both sexes during normal mouse development, becoming male-specific during testis differentiation. SOX10 protein was able to activate transcriptional targets of SOX9, explaining at a mechanistic level its ability to direct male development. Because over-expression of SOX10 alone is able to mimic the XX DSD phenotypes associated with duplication of human chromosome 22q13, and given that human SOX10 maps to 22q13.1, our results functionally implicate SOX10 in the etiology of these DSDs.


Asunto(s)
Cromosomas Humanos Par 22/genética , Trastornos del Desarrollo Sexual , Trastornos del Desarrollo Sexual/genética , Trastornos del Desarrollo Sexual/metabolismo , Factores de Transcripción SOXE/metabolismo , Animales , Diferenciación Celular , Modelos Animales de Enfermedad , Trastornos del Desarrollo Sexual/embriología , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Transgénicos , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Factores de Transcripción SOXE/genética , Testículo/embriología , Testículo/metabolismo
6.
PLoS One ; 9(4): e94813, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24743337

RESUMEN

The Y-chromosomal gene SRY acts as the primary trigger for male sex determination in mammalian embryos. Correct regulation of SRY is critical: aberrant timing or level of Sry expression is known to disrupt testis development in mice and we hypothesize that mutations that affect regulation of human SRY may account for some of the many cases of XY gonadal dysgenesis that currently remain unexplained. However, the cis-sequences involved in regulation of Sry have not been identified, precluding a test of this hypothesis. Here, we used a transgenic mouse approach aimed at identifying mouse Sry 5' flanking regulatory sequences within 8 kb of the Sry transcription start site (TSS). To avoid problems associated with conventional pronuclear injection of transgenes, we used a published strategy designed to yield single-copy transgene integration at a defined, transcriptionally open, autosomal locus, Col1a1. None of the Sry transgenes tested was expressed at levels compatible with activation of Sox9 or XX sex reversal. Our findings indicate either that the Col1a1 locus does not provide an appropriate context for the correct expression of Sry transgenes, or that the cis-sequences required for Sry expression in the developing gonads lie beyond 8 kb 5' of the TSS.


Asunto(s)
Técnicas de Transferencia de Gen , Genes sry/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Testículo/metabolismo , Animales , Línea Celular , Colágeno Tipo I/genética , Cadena alfa 1 del Colágeno Tipo I , Sitios Genéticos/genética , Técnicas de Genotipaje , Masculino , Ratones , Sitio de Iniciación de la Transcripción , Transgenes/genética
7.
PLoS One ; 6(9): e25228, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21980401

RESUMEN

The Tmem26 gene encodes a novel protein that we have previously shown to be regulated by hedgehog signalling in the mouse limb. We now report that Tmem26 expression is spatially and temporally restricted in other regions of the mouse embryo, most notably the facial primordia. In particular, Tmem26 expression in the mesenchyme of the maxillary and nasal prominences is coincident with fusion of the primary palate. In the secondary palate, Tmem26 is expressed in the palatal shelves during their growth and fusion but is downregulated once fusion is complete. Expression was also detected at the midline of the expanding mandible and at the tips of the eyelids as they migrate across the cornea. Given the spatio-temporally restricted expression of Tmem26, we sought to uncover a functional role in embryonic development through targeted gene inactivation in the mouse. However, ubiquitous inactivation of Tmem26 led to no overt phenotype in the resulting embryos or adult mice, suggesting that TMEM26 function is dispensable for embryonic survival.


Asunto(s)
Extremidades/embriología , Glicoproteínas de Membrana/metabolismo , Hueso Paladar/embriología , Animales , Huesos Faciales/embriología , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
8.
Dev Cell ; 19(3): 440-9, 2010 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-20833365

RESUMEN

Sex determination of mammalian germ cells occurs during fetal development and depends on signals from gonadal somatic cells. Previous studies have established that retinoic acid (RA) triggers ovarian germ cells to enter meiosis and thereby commit to oogenesis, whereas in the developing testis, the enzyme CYP26B1 degrades RA and germ cells are not induced to enter meiosis. Using in vitro and in vivo models, we demonstrate that fibroblast growth factor 9 (FGF9) produced in the fetal testis acts directly on germ cells to inhibit meiosis; in addition, FGF9 maintains expression of pluripotency-related genes and upregulates markers associated with male germ cell fate. We conclude that two independent and mutually antagonistic pathways involving RA and FGF9 act in concert to determine mammalian germ cell sexual fate commitment and support a model in which the mitosis/meiosis switch is robustly controlled by both positive and negative regulatory factors.


Asunto(s)
Factor 9 de Crecimiento de Fibroblastos/fisiología , Células Germinativas/fisiología , Meiosis/fisiología , Células Madre Pluripotentes/metabolismo , Animales , Antineoplásicos/farmacología , Western Blotting , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Sistema Enzimático del Citocromo P-450/metabolismo , Femenino , Feto/citología , Feto/efectos de los fármacos , Feto/metabolismo , Técnica del Anticuerpo Fluorescente , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oogénesis/efectos de los fármacos , Oogénesis/fisiología , Ovario/embriología , Ovario/metabolismo , ARN Mensajero/genética , Ácido Retinoico 4-Hidroxilasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Testículo/embriología , Testículo/metabolismo , Tretinoina/farmacología
9.
Neurobiol Dis ; 18(2): 243-57, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15686953

RESUMEN

Mutations in the ALS2 gene, which encodes alsin, cause autosomal recessive juvenile-onset amyotrophic lateral sclerosis (ALS2) and related conditions. Using both a novel monoclonal antibody and LacZ knock-in mice, we demonstrate that alsin is widely expressed in neurons of the CNS, including the cortex, brain stem and motor neurons of the spinal cord. Interestingly, the highest levels of alsin are found in the molecular layer of the cerebellum, a brain region not previously implicated in ALS2. During development, alsin is expressed by day E9.5, but CNS expression does not become predominant until early postnatal life. At the subcellular level, alsin is tightly associated with endosomal membranes and is likely to be part of a large protein complex that may include the actin cytoskeleton. ALS2 is present in primates, rodents, fish and flies, but not in the nematode worm or yeast, and is more highly conserved than expected among mammals. Additionally, the product of a second, widely expressed gene, ALS2 C-terminal like (ALS2CL), may subserve or modulate some of the functions of alsin as an activator of Rab and Rho GTPases.


Asunto(s)
Sistema Nervioso Central/embriología , Sistema Nervioso Central/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Neuronas/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Anopheles , Proteínas Portadoras/genética , Sistema Nervioso Central/metabolismo , Corteza Cerebelosa/embriología , Corteza Cerebelosa/crecimiento & desarrollo , Corteza Cerebelosa/metabolismo , Drosophila melanogaster , Endosomas/metabolismo , Genes Reporteros/genética , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Operón Lac/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Pan troglodytes , Ratas , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Especificidad de la Especie , Takifugu , Pez Cebra , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA