Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
BMC Plant Biol ; 22(1): 329, 2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35804328

RESUMEN

A biosynthetic precursor of tetrapyrrol, 5-aminolevulinic acid (ALA), is widely used in agricultural production, as an exogenous regulatory substance that effectively regulates plant growth. Previous studies have shown that heme and chlorophyll accumulate in plants under salt stress, when treated with exogenous ALA. In this study, we explored the regulatory role of heme in plants, by spraying 25 mg L-1 ALA onto the leaves of cucumber seedlings treated with heme synthesis inhibitor (2,2'-dipyridyl, DPD) and heme scavenger (hemopexin, Hx), under 50 mmol L-1 NaCl stress. The results showed that NaCl alone and DPD + Hx treatments to cucumber seedlings subjected to salt stress adversely affected their growth, by decreasing biomass accumulation, root activity, and root morphology. In addition, these treatments induced an increase in membrane lipid oxidation, as well as enhancement of anti-oxidase activities, proline content, and glutamate betaine. However, exogenous ALA application increased the plant growth and root architecture indices under NaCl stress, owing to a lack of heme in the seedlings. In addition, cucumber seedlings treated with DPD and Hx showed inhibition of growth under salt stress, but exogenous ALA effectively improved cucumber seedling growth as well as the physiological characteristics; moreover, the regulation of ALA in plants was weakened when heme synthesis was inhibited. Heme biosynthesis and metabolism genes, HEMH and HO1, which are involved in the ALA metabolic pathway, were upregulated under salinity conditions, when ferrochelatase activity was inhibited. Application of exogenous ALA increased the heme content in the leaves. Thus, exogenous ALA may supplement the substrates for heme synthesis. These results indicated that heme plays a vital role in the response of plants to salinity stress. In conclusion, heme is involved in ALA-mediated alleviation of damage caused to cucumber seedlings and acts as a positive regulator of plant adaption.


Asunto(s)
Cucumis sativus , Plantones , Ácido Aminolevulínico/metabolismo , Ácido Aminolevulínico/farmacología , Antioxidantes/metabolismo , Cucumis sativus/genética , Hemo/metabolismo , Hemo/farmacología , Hojas de la Planta/metabolismo , Estrés Salino , Tolerancia a la Sal/genética , Plantones/genética , Cloruro de Sodio/metabolismo , Cloruro de Sodio/farmacología , Estrés Fisiológico/genética
2.
Ecotoxicol Environ Saf ; 227: 112879, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34649142

RESUMEN

Cinnamic acid (CA), one of the main autotoxins secreted by cucumber roots during continuous cropping, inhibits plant growth and reduces yield. Silicon (Si) is an environmentally friendly element that alleviates abiotic stresses in plants, but the mechanism underlying its resistance to autotoxicity remain unclear. Here, we used 0.8 mmol L-1 CA to study the effects of Si application on the growth, chlorophyll fluorescence, and ascorbate-glutathione (AsA-GSH) cycle of cucumber seedlings under CA inducing conditions. Our results indicated that CA significantly induced photoinhibition and overaccumulation of reactive oxygen species (ROS), thereby inhibiting cucumber growth. Treatment with 1.0 mmol L-1 Si improved plant height, stem diameter and biomass accumulation, and protected the photosynthetic electron transport function of photosystem II in the presence of CA. Similarly, Si application maintained the ROS status by increasing ascorbate (AsA) and glutathione (GSH) production, as well as the ratios of AsA/DHA and GSH/GSSG in both leaves and roots during CA stress. In addition, Si application in CA-treated seedlings enhanced the activity of key enzymes such as ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST), and the transcription of several enzyme genes (CsAPX, CsMDHAR and CsGR) from the AsA-GSH cycle. These results suggest that exogenous Si enhances CA tolerance in cucumber seedlings by protecting photosystem II activity, upregulating AsA-GSH pathway, and reducing ROS levels.


Asunto(s)
Cucumis sativus , Silicio , Cinamatos , Glutatión , Complejo de Proteína del Fotosistema II , Hojas de la Planta
3.
BMC Plant Biol ; 20(1): 480, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33087071

RESUMEN

BACKGROUND: Hydrogen sulfide (H2S) is a gas signal molecule involved in regulating plants tolerance to heavy metals stress. In this study, we investigated the role of H2S in cadmium-(Cd-) induced cell death of root tips of cucumber seedlings. RESULTS: The results showed that the application of 200 µM Cd caused cell death, increased the content of reactive oxygen species (ROS), chromatin condensation, the release of Cytochrome c (Cyt c) from mitochondria and activated caspase-3-like protease. Pretreatment of seedlings with 100 µM sodium hydrogen sulfide (NaHS, a H2S donor) effectively alleviated the growth inhibition and reduced cell death of root tips caused by Cd stress. Additionally, NaHS + Cd treatment could decrease the ROS level and enhanced antioxidant enzyme activity. Pretreatment with NaHS also inhibited the release of Cyt c from the mitochondria, the opening of the mitochondrial permeability transition pore (MPTP), and the activity of caspase-3-like protease in the root tips of cucumber seedling under Cd stress. CONCLUSION: H2S inhibited Cd-induced cell death in cucumber root tips by reducing ROS accumulation, activating the antioxidant system, inhibiting mitochondrial Cyt c release and reducing the opening of the MPTP. The results suggest that H2S is a negative regulator of Cd-induced cell death in the root tips of cucumber seedling.


Asunto(s)
Cadmio/toxicidad , Muerte Celular/efectos de los fármacos , Cucumis sativus/efectos de los fármacos , Sulfuro de Hidrógeno/metabolismo , Meristema/efectos de los fármacos , Cucumis sativus/metabolismo , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo
4.
BMC Plant Biol ; 20(1): 102, 2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32138654

RESUMEN

BACKGROUND: Brassinolide (BR), as a new type of plant hormones, is involved in the processes of plant growth and stress response. Previous studies have reported the roles of BR in regulating plant developmental processes and also response tolerance to abiotic stresses in plants. The main purpose of our study was to explore whether nitric oxide (NO) plays a role in the process of BR-induced adventitious root formation in cucumber (Cucumis sativus L.). RESULTS: Exogenous application of 1 µM BR significantly promoted adventitious rooting, while high concentrations of BR (2-8 µM) effectively inhibited adventitious rooting. NO donor (S-nitroso-N-acerylpenicillamine, SNAP) promoted the occurrence of adventitious roots. Simultaneously, BR and SNAP applied together significantly promoted adventitious rooting and the combined effect was superior to the application of BR or SNAP alone. Moreover, NO scavenger (c-PTIO) and inhibitors (L-NAME and Tungstate) inhibited the positive effects of BR on adventitious rooting. BR at 1 µM also increased endogenous NO content, NO synthase (NOS-like) and Nitrate reductase (NR) activities, while BRz (a specific BR biosynthesis inhibitor) decreased these effects. In addition, the relative expression level of NR was up-regulated by BR and SNAP, whereas BRz down-regulated it. The application of NO inhibitor (Tungstate) in BR also inhibited the up-regulation of NR. CONCLUSION: BR promoted the formation of adventitious roots by inducing the production of endogenous NO in cucumber.


Asunto(s)
Brasinoesteroides/farmacología , Cucumis sativus/crecimiento & desarrollo , Óxido Nítrico/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/crecimiento & desarrollo , Esteroides Heterocíclicos/farmacología , Brasinoesteroides/administración & dosificación , Cucumis sativus/efectos de los fármacos , Óxido Nítrico/administración & dosificación , Raíces de Plantas/efectos de los fármacos , Esteroides Heterocíclicos/administración & dosificación
5.
Int J Mol Sci ; 20(5)2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30823363

RESUMEN

Calcium and ethylene are essential in plant growth and development. In this study, we investigated the effects of calcium and ethylene on adventitious root formation in cucumber explants under salt stress. The results revealed that 10 µM calcium chloride (CaCl2) or 0.1 µM ethrel (ethylene donor) treatment have a maximum biological effect on promoting the adventitious rooting in cucumber under salt stress. Meanwhile, we investigated that removal of ethylene suppressed calcium ion (Ca2+)-induced the formation of adventitious root under salt stress indicated that ethylene participates in this process. Moreover, the application of Ca2+ promoted the activities of 1-aminocyclopropane-l-carboxylic acid synthase (ACS) and ACC Oxidase (ACO), as well as the production of 1-aminocyclopropane-l-carboxylic acid (ACC) and ethylene under salt stress. Furthermore, we discovered that Ca2+ greatly up-regulated the expression level of CsACS3, CsACO1 and CsACO2 under salt stress. Meanwhile, Ca2+ significantly down-regulated CsETR1, CsETR2, CsERS, and CsCTR1, but positively up-regulated the expression of CsEIN2 and CsEIN3 under salt stress; however, the application of Ca2+ chelators or channel inhibitors could obviously reverse the effects of Ca2+ on the expression of the above genes. These results indicated that Ca2+ played a vital role in promoting the adventitious root development in cucumber under salt stress through regulating endogenous ethylene synthesis and activating the ethylene signal transduction pathway.


Asunto(s)
Calcio/metabolismo , Cucumis sativus/metabolismo , Etilenos/metabolismo , Raíces de Plantas/metabolismo , Estrés Salino , Cucumis sativus/genética , Cucumis sativus/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Transducción de Señal
6.
BMC Plant Biol ; 18(1): 363, 2018 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-30563462

RESUMEN

BACKGROUND: Bud sport mutants of apple (Malus domestica Borkh.) trees with a highly blushed colouring pattern are mainly caused by the accumulation of anthocyanins in the fruit skin. Hormones are important factors modulating anthocyanin accumulation. However, a good understanding of the interplay between hormones and anthocyanin synthesis in apples, especially in mutants at the molecular level, remains elusive. Here, physiological and comparative transcriptome approaches were used to reveal the molecular basis of color pigmentation in the skin of 'Red Delicious' (G0) and its mutants, including 'Starking Red' (G1), 'Starkrimson' (G2), 'Campbell Redchief' (G3) and 'Vallee spur' (G4). RESULTS: Pigmentation in the skin gradually proliferated from G0 to G4. The anthocyanin content was higher in the mutants than in 'Red Delicious'. The activation of early phenylpropanoid biosynthesis genes, including ASP3, PAL, 4CL, PER, CHS, CYP98A and F3'H, was more responsible for anthocyanin accumulation in mutants at the color break stage. In addition, IAA and ABA had a positive regulatory effect on the synthesis of anthocyanins, while GA had the reverse effect. The down-regulation of AACT1, HMGS, HMGR, MVK, MVD2, IDI1 and FPPS2 involved in terpenoid biosynthesis influences anthocyanin accumulation by positively regulating transcripts of AUX1 and SAUR that contribute to the synthesis of IAA, GID2 to GA, PP2C and SnRK2 to ABA. Furthermore, MYB and bHLH members, which are highly correlated (r=0.882-0.980) with anthocyanin content, modulated anthocyanin accumulation by regulating the transcription of structural genes, including CHS and F3'H, involved in the flavonoid biosynthesis pathway. CONCLUSIONS: The present comprehensive transcriptome analyses contribute to the understanding of the the relationship between hormones and anthocyanin synthesis as well as the molecular mechanism involved in apple skin pigmentation.


Asunto(s)
Antocianinas/metabolismo , Frutas/metabolismo , Malus/genética , Malus/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Antocianinas/genética , Flavonoides/genética , Flavonoides/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Mutación , Pigmentación/genética , Reguladores del Crecimiento de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Terpenos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
BMC Plant Biol ; 17(1): 22, 2017 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-28114905

RESUMEN

BACKGROUND: In northwest of China, mini Chinese cabbage (Brassica pekinensis) is highly valued by consumers, and is widely cultivated during winter in solar-greenhouses where low light (LL) fluence (between 85 and 150 µmol m-2 s-1 in day) is a major abiotic stress factor limiting plant growth and crop productivity. The mechanisms with which various NH4+: NO3- ratios affected growth and photosynthesis of mini Chinese cabbage under normal (200 µmol m-2 s-1) and low (100 µmol m-2 s-1) light conditions was investigated. The four solutions with different ratios of NH4+: NO3- applied were 0:100, 10:90, 15:85 and 25:75 with the set up in a glasshouse in hydroponic culture. The most appropriate NH4+: NO3- ratio that improved the tolerance of mini Chinese cabbage seedlings to LL was found in our current study. RESULTS: Under low light, the application of NH4+: NO3- (10:90) significantly stimulated growth compared to only NO3- by increasing leaf area, canopy spread, biomass accumulation, and net photosynthetic rate. The increase in net photosynthetic rate was associated with an increase in: 1) maximum and effective quantum yield of PSII; 2) activities of Calvin cycle enzymes; and 3) levels of mRNA relative expression of several genes involved in Calvin cycle. In addition, glucose, fructose, sucrose, starch and total carbohydrate, which are the products of CO2 assimilation, accumulated most in the cabbage leaves that were supplied with NH4+: NO3- (10:90) under LL condition. Low light reduced the carbohydrate: nitrogen (C: N) ratio while the application of NH4+: NO3- (10:90) alleviated the negative effect of LL on C: N ratio mainly by increasing total carbohydrate contents. CONCLUSIONS: The application of NH4+:NO3- (10:90) increased rbcL, rbcS, FBA, FBPase and TK expression and/or activities, enhanced photosynthesis, carbohydrate accumulation and improved the tolerance of mini Chinese cabbage seedlings to LL. The results of this study would provide theoretical basis and technical guidance for mini Chinese cabbage production. In practical production, the ratio of NH4+:NO3- should be adjusted with respect to light fluence for successful growing of mini Chinese cabbage.


Asunto(s)
Compuestos de Amonio/metabolismo , Brassica/metabolismo , Nitratos/metabolismo , Plantones/efectos de la radiación , Compuestos de Amonio/análisis , Brassica/crecimiento & desarrollo , Brassica/efectos de la radiación , China , Clorofila/metabolismo , Luz , Nitratos/análisis , Fotosíntesis/efectos de la radiación , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Plantones/crecimiento & desarrollo , Plantones/metabolismo
8.
Mol Genet Genomics ; 292(6): 1307-1322, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28710562

RESUMEN

Drought stress is a major problem around the world and there is still little molecular mechanism about how fruit crops deal with moderate drought stress. Here, the physiological and phosphoproteomic responses of drought-sensitive genotype (M26) and drought-tolerant genotype (MBB) under moderate drought stress were investigated. Our results of the physiology analysis indicated that the MBB genotype could produce more osmosis-regulating substances. Furthermore, phosphoproteins from leaves of both genotypes under moderate drought stress were analyzed using the isobaric tags for relative and absolute quantification technology. A total of 595 unique phosphopeptides, 682 phosphorylated sites, and 446 phosphoproteins were quantitatively analyzed in the two genotypes. Five and thirty-five phosphoproteins with the phosphorylation levels significantly changed (PLSC) were identified in M26 and MBB, respectively. Among these, four PLSC phosphoproteins were common to both genotypes, perhaps indicating a partial overlap of the mechanisms to moderate drought stress. Gene ontology analyses revealed that the PLSC phosphoproteins represent a unique combination of metabolism, transcription, translation, and protein processing, suggesting that the response in apple to moderate drought stress encompasses a new and unique homeostasis of major cellular processes. The basic trend was an increase in protein and organic molecules abundance related to drought. These increases were higher in MBB than in M26. Our study is the first to address the phosphoproteome of apple rootstocks in response to moderate drought stress, and provide insights into the molecular regulation mechanisms of apple rootstock under moderate drought stress.


Asunto(s)
Sequías , Genotipo , Malus/genética , Fosfoproteínas/genética , Estrés Fisiológico , Secuencia de Aminoácidos , Cromatografía Liquida , Electroforesis en Gel de Poliacrilamida , Genes de Plantas , Malus/fisiología , Fosforilación , Reacción en Cadena en Tiempo Real de la Polimerasa , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
9.
Planta ; 246(3): 537-552, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28550410

RESUMEN

MAIN CONCLUSION: Exogenously applied 2% fructose is the most appropriate carbon source that enhances photosynthesis and growth of grape plantlets compared with the same concentrations of sucrose and glucose. The role of the sugars was regulated by the expression of key candidate genes related to hormones, key metabolic enzymes, and sugar metabolism of grape plantlets ( Vitis vinifera L.) grown in vitro. The addition of sugars including sucrose, glucose, and fructose is known to be very helpful for the development of grape (V. vinifera L.) plantlets in vitro. However, the mechanisms by which these sugars regulate plant development and sugar metabolism are poorly understood. In grape plantlets, sugar metabolism and hormone synthesis undergo special regulation. In the present study, transcriptomic analyses were performed on grape (V. vinifera L., cv. Red Globe) plantlets in an in vitro system, in which the plantlets were grown in 2% each of sucrose (S20), glucose (G20), and fructose (F20). The sugar metabolism and hormone synthesis of the plantlets were analyzed. In addition, 95.72-97.29% high-quality 125 bp reads were further analyzed out of which 52.65-60.80% were mapped to exonic regions, 13.13-28.38% to intronic regions, and 11.59-28.99% to intergenic regions. The F20, G20, and S20 displayed elevated sucrose synthase (SS) activities; relative chlorophyll contents; Rubisco activity; and IAA and zeatin (ZT) contents. We found F20 improved the growth and development of the plantlets better than G20 and S20. Sugar metabolism was a complex process, which depended on the balanced expression of key potential candidate genes related to hormones (TCP15, LOG3, IPT3, ETR1, HK2, HK3, CKX7, SPY, GH3s, MYBH, AGB1, MKK2, PP2C, PYL, ABF, SnRK, etc.), key metabolic enzymes (SUS, SPS, A/V-INV, and G6PDH), and sugar metabolism (BETAFRUCT4 and AMY). Moreover, sugar and starch metabolism controls the generation of plant hormone transduction pathway signaling molecules. Our dataset advances our knowledge of the genes involved in sugar metabolism and improves the understanding of complex regulatory networks involved in signal transduction in grape plantlets.


Asunto(s)
Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal/efectos de los fármacos , Azúcares/farmacología , Vitis/efectos de los fármacos , Clorofila/análisis , Fructosa/farmacología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/fisiología , Glucosa/farmacología , Técnicas In Vitro , Reguladores del Crecimiento de las Plantas/fisiología , Hojas de la Planta/química , Hojas de la Planta/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN , Transducción de Señal/fisiología , Sacarosa/farmacología , Vitis/genética , Vitis/metabolismo , Vitis/fisiología
10.
PLoS One ; 16(9): e0250678, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34473720

RESUMEN

Apricot bud gall mite, Acalitus phloeocoptes (Nalepa), is a destructive arthropod pest that causes significant economic losses to apricot trees worldwide. The current study explores the ways to understand the mode of dispersal of A. phloeocoptes, the development and ultrastructure of apricot bud gall, and the role of phytohormones in the formation of the apricot bud galls. The results demonstrated that the starch granules in the bud axon were extended at the onset of the attack. During the later stages of the attack, the cytoplasm was found to deteriorate in infected tissues. Furthermore, we have observed that the accumulation of large amounts of cytokinin (zeatin, ZT) and auxin (indoleacetic acid, IAA) led to rapid bud proliferation during rapid growth period, while abscisic acid (ABA) controls the development of gall buds and plays a vital role in gall bud maturity. The reduction of gibberellic acid (GA3) content led to rapid lignification at the later phase of bud development. Overall, our results have revealed that the mechanism underlying the interaction of apricot bud gall with its parasite and have provided reliable information for designing valuable Apricot breeding programs. This study will be quite useful for pest management and will provide a comprehensive evaluation of ecology-based cost-effective control, life history and demographic parameters of A. phloeocoptes.


Asunto(s)
Ácaros/patogenicidad , Reguladores del Crecimiento de las Plantas/metabolismo , Prunus armeniaca/parasitología , Almidón/metabolismo , Ácido Abscísico/metabolismo , Animales , Citocininas/metabolismo , Femenino , Giberelinas/metabolismo , Interacciones Huésped-Parásitos , Ácidos Indolacéticos/metabolismo , Masculino , Fitomejoramiento , Prunus armeniaca/fisiología
11.
PeerJ ; 9: e10887, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33868797

RESUMEN

The mechanisms involved in adventitious root formation reflect the adaptability of plants to the environment. Moreover, the rooting process is regulated by endogenous hormone signals. Ethylene, a signaling hormone molecule, has been shown to play an essential role in the process of root development. In the present study, in order to explore the relationship between the ethylene-induced adventitious rooting process and photosynthesis and energy metabolism, the iTRAQ technique and proteomic analysis were employed to ascertain the expression of different proteins that occur during adventitious rooting in cucumber (Cucumis sativus L.) seedlings. Out of the 5,014 differentially expressed proteins (DEPs), there were 115 identified DEPs, among which 24 were considered related to adventitious root development. Most of the identified proteins were related to carbon and energy metabolism, photosynthesis, transcription, translation and amino acid metabolism. Subsequently, we focused on S-adenosylmethionine synthase (SAMS) and ATP synthase subunit a (AtpA). Our findings suggest that the key enzyme, SAMS, upstream of ethylene synthesis, is directly involved in adventitious root development in cucumber. Meanwhile, AtpA may be positively correlated with photosynthetic capacity during adventitious root development. Moreover, endogenous ethylene synthesis, photosynthesis, carbon assimilation capacity, and energy material metabolism were enhanced by exogenous ethylene application during adventitious rooting. In conclusion, endogenous ethylene synthesis can be improved by exogenous ethylene additions to stimulate the induction and formation of adventitious roots. Moreover, photosynthesis and starch degradation were enhanced by ethylene treatment to provide more energy and carbon sources for the rooting process.

12.
Front Plant Sci ; 12: 683868, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220904

RESUMEN

5-Aminolevulinic acid (ALA) plays an important role in plant growth and development. It can also be used to enhance crop resistance to environmental stresses and improve the color and internal quality of fruits. However, there are limited reports regarding the effects of ALA on tomato fruit color and its regulatory mechanisms. Therefore, in this study, the effects of exogenous ALA on the quality and coloration of tomato fruits were examined. Tomato (Solanum lycopersicum "Yuanwei No. 1") fruit surfaces were treated with different concentrations of ALA (0, 100, and 200 mg⋅L-1) on the 24th day after fruit setting (mature green fruit stage), and the content of soluble sugar, titratable acid, soluble protein, vitamin C, and total free amino acids, as well as amino acid components, intermediates of lycopene synthetic and metabolic pathways, and ALA metabolic pathway derivatives were determined during fruit ripening. The relative expression levels of genes involved in lycopene synthesis and metabolism and those involved in ALA metabolism were also analyzed. The results indicated that exogenous ALA (200 mg⋅L-1) increased the contents of soluble sugars, soluble proteins, total free amino acids, and vitamin C as well as 11 kinds of amino acid components in tomato fruits and reduced the content of titratable acids, thus improving the quality of tomato fruits harvested 4 days earlier than those of the control plants. In addition, exogenous ALA markedly improved carotenoid biosynthesis by upregulating the gene expression levels of geranylgeranyl diphosphate synthase, phytoene synthase 1, phytoene desaturase, and lycopene ß-cyclase. Furthermore, exogenous ALA inhibited chlorophyll synthesis by downregulating the genes expression levels of Mg-chelatase and protochlorophyllide oxidoreductase. These findings suggest that supplementation with 200 mg⋅L-1 ALA not only enhances the nutritional quality and color of the fruit but also promotes early fruit maturation in tomato.

13.
PeerJ ; 8: e9270, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32676218

RESUMEN

Cadmium (Cd2 +) is among the toxic non-essential heavy metals that adversely affect plants metabolic processes and the safety of produce. However, plant hormones can improve plant's tolerance to various stresses. This study investigated the effect of exogenous abscisic acid (ABA) on the biochemical and physiological processes and food safety of cadmium (Cd2 +)-sensitive lettuce genotype (Lüsu). Seedlings were subjected to five treatments: [(i) Control (untreated plants), (ii) 100 µM CdCl2, (iii) 100 µM CdCl2+10 µg L-1 ABA (iv) 10 µg L-1 ABA, and (v) 0.01 g L-1 ABA-inhibitor (fluridone)] for fourteen days in hydroponic system. The 100 µM CdCl2 increased the contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA), decreased photosynthesis and plant biomass. Moreover, it decreased the contents of essential nutrients (except copper) in the leaves but increased the contents of toxic Cd2 + in the leaves and roots of the plants. Foliar application of fluridone (0.01 g L-1) also caused oxidative stress by increasing the contents of H2O2 and MDA. It also decreased the contents of nutrient elements in the leaves of the plants. However, exogenous ABA (10 µg L-1) mitigated the Cd2 +-induced stress, increased antioxidant enzymes activities, photosynthesis and plant biomass under CdCl2 treatment. Remarkably, exogenous ABA increased the contents of essential nutrient elements but decreased the Cd2 + content in leaves under the CdCl2 treatment. Our results have demonstrated that foliar application of ABA mitigates Cd2 + stress and increases the nutritional quality and food safety of Cd2 +-sensitive lettuce genotype under CdCl2 treatment.

14.
Funct Plant Biol ; 47(5): 473, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32248893

RESUMEN

Optimal plant growth in many species is achieved when the two major forms of N are supplied at a particular ratio. In this pot experiment, the effects of five different ammonium:nitrate ratios (ANRs) (0:100, 12.5:87.5, 25:75, 37.5:62.5, and 50:50) on photosynthesis efficiency in chilli pepper (Capsicum annuum L.) plants were evaluated. The results showed that an ANR of 25:75 increased the contents of chl a, leaf area and dry matter, whereas chl b content was not affected by the ANRs. Regarding chlorophyll fluorescence, an ANR of 25:75 also enhanced the actual photochemical efficiency, photochemical quenching and maximum photosynthetic rate. However, the 0:100 and 50:50 ANRs resulted in higher values for nonphotochemical quenching. An inhibition of maximal photochemical efficiency was found when 50% NH4+ was supplied at the later stage of plant growth. The addition of 25% or 37.5% NH4+ was beneficial for gas exchange parameters and the 25% NH4+ optimised the thylakoid of chloroplasts. Compared with nitrate alone, 12.5-50% NH4+ upregulated glutamate dehydrogenase (GDH), the large subunit and the small subunit of Rubisco. It can be concluded that the 25:75 ANR accelerated N assimilation through active GDH, which provides a material basis for chloroplast and Rubisco formation, resulting in the increased photosynthetic rate and enhanced growth in chilli pepper.

15.
Funct Plant Biol ; 47(4): 303-317, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32122461

RESUMEN

Optimal plant growth in many species is achieved when the two major forms of N are supplied at a particular ratio. In this pot experiment, the effects of five different ammonium:nitrate ratios (ANRs) (0:100, 12.5:87.5, 25:75, 37.5:62.5, and 50:50) on photosynthesis efficiency in chilli pepper (Capsicum annuum L.) plants were evaluated. The results showed that an ANR of 25:75 increased the contents of chl a, leaf area and dry matter, whereas chl b content was not affected by the ANRs. Regarding chlorophyll fluorescence, an ANR of 25:75 also enhanced the actual photochemical efficiency, photochemical quenching and maximum photosynthetic rate. However, the 0:100 and 50:50 ANRs resulted in higher values for nonphotochemical quenching. An inhibition of maximal photochemical efficiency was found when 50% NH4+ was supplied at the later stage of plant growth. The addition of 25% or 37.5% NH4+ was beneficial for gas exchange parameters and the 25% NH4+ optimised the thylakoid of chloroplasts. Compared with nitrate alone, 12.5­50% NH4+ upregulated glutamate dehydrogenase (GDH), the large subunit and the small subunit of Rubisco. It can be concluded that the 25:75 ANR accelerated N assimilation through active GDH, which provides a material basis for chloroplast and Rubisco formation, resulting in the increased photosynthetic rate and enhanced growth in chilli pepper.


Asunto(s)
Compuestos de Amonio , Capsicum , Compuestos de Amonio/metabolismo , Cloroplastos/metabolismo , Fotosíntesis , Hojas de la Planta
16.
PeerJ ; 7: e7530, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31497397

RESUMEN

This study was conducted to determine the root tolerance and biochemical responses of four Chinese Lactuca sativa L. genotypes (Lüsu, Lümeng, Yidali and Anyan) to cadmium (Cd2+) stress. Twenty-eight days old seedlings were exposed to Hoagland's nutrient solution supplied with or without 100 µM CdCl2 and monitored for seven days in a climate controlled room. The 100 µM CdCl2 significantly (P < 0.001) decreased all the root morphological indexes of the four genotypes. However, Yidali, which possessed the smallest root system, exhibited greater root tolerance to Cd2+ by having the highest tolerance indexes for root volume (46%), surface area (61%), projected area (74%) and numbers of root forks (63%) and root tips (58%). Moreover, Cd2+ stress also caused increases in H2O2 contents in the roots but the increase was least in Yidali which showed greater root tolerance to Cd2+stress. The effect of Cd2+ stress on the contents of hormones in the roots depended on the genotypes. Under Cd2+ stress, abscisic acid correlated positively with indole-3-acetic acid (r = 0.669*), gibberellic acid (r = 0.630*) and cytokinin (r = 0.785**). The antioxidant enzyme activities and proline responses of the four genotypes to Cd2+ stress were similar. The SOD activity was decreased whiles the CAT and POD activities, as well as the contents of proline increased in all the genotypes under the stress condition. These results suggest that lettuce genotypes with smaller root systems could be more tolerant to Cd2+ stress compared to those with larger root systems.

17.
Plants (Basel) ; 8(11)2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-31717921

RESUMEN

Low light intensity is common in northern China due to fog or haze, and causes stress for crop plants. To solve the problem of low light intensity stress on the growth and development of vegetable crops in China, new cropping strategies must be developed. We previously showed that an appropriate ratio of ammonium and nitrate (NH4+:NO3-) can alleviate the effect of low light stress on plants, although it is not clear what mechanism is involved in this alleviation. We propose the hypothesis that an appropriate ammonium/nitrate ratio (10:90) can induce NO synthesis to regulate the AsA-GSH cycle in mini Chinese cabbage seedlings under low light intensity. To test the hypothesis, we conducted a series of hydroponic experiments. The results indicated that, under low light intensity conditions, appropriate NH4+:NO3- (N, NH4+:NO3- = 10:90) decreased the contents of malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide anion (O2-) in leaves compared with nitrate treatment. Exogenous nitric oxide (SNP) had the same effects on MDA, H2O2, and O2-. However, with the addition of a NO scavenger (hemoglobin, Hb) and NO inhibitors (N-nitro-l-arginine methyl ester, L-NAME), NaN3 (NR inhibitor) significantly increased the contents of MDA, H2O2, and O2-. The application of N solution enhanced the AsA-GSH cycle by increasing the activities of ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and ascorbate oxidase (AAO), compared with control (NH4+:NO3- = 0:100). Meanwhile, exogenous SNP significantly increased the above indicators. All these effects of N on AsA-GSH cycle were inhibited by the addition of Hb, L-NAME and NaN3 in N solution. The results also revealed that the N and SNP treatments upregulated the relative expression level of GR, MDHAR1, APXT, DHAR2, and AAO gene in mini Chinese cabbage leaves under low light stress. These results demonstrated that the appropriate NH4+:NO3- (10:90) induced NO synthesis which regulates the AsA-GSH cycle in mini Chinese cabbage seedlings under low light stress.

18.
PeerJ ; 7: e6521, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30842905

RESUMEN

Anthocyanin is an important parameter for evaluating the quality of wine grapes. However, the effects of different light intensities on anthocyanin synthesis in grape berry skin and its regulation mechanisms are still unclear. In this experiment, clusters of wine grape cv. 'Marselan' were bagged using fruit bags with different light transmittance of 50%, 15%, 5%, and 0, designated as treatment A, B, C and D, respectively. Fruits that were not bagged were used as the control, designated as CK. The anthocyanin composition and concentration, as well as gene expression profiles in the berry skin were determined. The results showed that the degree of coloration of the berry skin reduced with the decrease of the light transmittance, and the veraison was postponed for 10 days in D when compared with the CK. Total anthocyanin concentration in the berry skin treated with D decreased by 51.50% compared with CK at the harvest stage. A total of 24 and 21 anthocyanins were detected in CK and D, respectively. Among them, Malvidin-3-O-coumaroylglucoside (trans), which showed a significant positive correlation with the total concentration of anthocyanins at the harvest stage (r = 0.775) and was not detected in D, was presumed to be light-induced anthocyanin. Other anthocyanins which were both synthesized in CK and D were considered to be light-independent anthocyanins. Among them, Malvidin-3-O-coumaroylglucoside (cis) and Malvidin-3-O-acetylglucoside were typical representatives. Remarkably, the synthesis of light-inducible anthocyanins and light-independent anthocyanins were regulated by different candidate structural genes involved in flavonoid biosynthesis pathway and members of MYB and bHLH transcription factors.

19.
J Agric Food Chem ; 65(38): 8475-8488, 2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28841370

RESUMEN

Carotenoids are considered to be crucial elements in many fields and, furthermore, the significant factor in pepper leaves under low light and chilling temperature. However, little literature focused on the method to determinate and extract the contents of carotenoid compositions in pepper leaves. Therefore, a time-saving and highly sensitive reversed-phase high-performance liquid chromatography method for separation and quantification of 10 carotenoids was developed, and an optimized technological process for carotenoid composition extraction in pepper leaves was established for the first time. Our final method concluded that six xanthophylls eluted after about 9-26 min. In contrast, four carotenes showed higher retention times after nearly 28-40 min, which significantly shortened time and improved efficiency. Meanwhile, we suggested that 8 mL of 20% KOH-methanol solution should be added to perform saponification at 60 °C for 30 min. The ratio of solid-liquid was 1:8, and the ultrasound-assisted extraction time was 40 min.


Asunto(s)
Capsicum/química , Carotenoides/química , Extractos Vegetales/química , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa , Hojas de la Planta/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA