Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Genet Couns ; 32(1): 153-165, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36056622

RESUMEN

Couples at risk of transmitting a genetic disease to their offspring may experience doubts about their reproductive options. This study examines the effects of an online decision aid (DA) on the (joint) reproductive decision-making process of couples (not pregnant at time of inclusion) at risk of transmitting a genetic disease to their offspring. The primary outcome is decisional conflict, and secondary outcomes are knowledge, realistic expectations, deliberation, joint informed decision-making, and decisional self-efficacy. These outcomes were measured with a pretest-posttest design: before use (T0), after use (T1), and 2 weeks after use (T2) of the decision aid (DA). Usability of the DA was assessed at T1. Paired sample t-tests were used to compute differences between baseline and subsequent measurements. The comparisons of T0-T1 and T0-T2 indicate a significant reduction in mean decisional conflict scores with stronger effects for participants with high baseline decisional conflict scores. Furthermore, use of the DA led to increased knowledge, improved realistic expectations, and increased levels of deliberation, with higher increase in participants with low baseline scores. Decision self-efficacy only improved for participants with lower baseline scores. Participants indicated that the information in the DA was comprehensible and clearly organized. These first results indicate that this online DA is an appropriate tool to support couples at risk of transmitting a genetic disease and a desire to have (a) child(ren) in their reproductive decision-making process.


Asunto(s)
Toma de Decisiones , Técnicas de Apoyo para la Decisión , Niño , Humanos , Embarazo , Femenino , Proyectos Piloto , Reproducción , Emociones
2.
Am J Hum Genet ; 105(6): 1091-1101, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31708118

RESUMEN

The Netherlands launched a nationwide implementation study on non-invasive prenatal testing (NIPT) as a first-tier test offered to all pregnant women. This started on April 1, 2017 as the TRIDENT-2 study, licensed by the Dutch Ministry of Health. In the first year, NIPT was performed in 73,239 pregnancies (42% of all pregnancies), 7,239 (4%) chose first-trimester combined testing, and 54% did not participate. The number of trisomies 21 (239, 0.33%), 18 (49, 0.07%), and 13 (55, 0.08%) found in this study is comparable to earlier studies, but the Positive Predictive Values (PPV)-96% for trisomy 21, 98% for trisomy 18, and 53% for trisomy 13-were higher than expected. Findings other than trisomy 21, 18, or 13 were reported on request of the pregnant women; 78% of women chose to have these reported. The number of additional findings was 207 (0.36%); these included other trisomies (101, 0.18%, PPV 6%, many of the remaining 94% of cases are likely confined placental mosaics and possibly clinically significant), structural chromosomal aberrations (95, 0.16%, PPV 32%,) and complex abnormal profiles indicative of maternal malignancies (11, 0.02%, PPV 64%). The implementation of genome-wide NIPT is under debate because the benefits of detecting other fetal chromosomal aberrations must be balanced against the risks of discordant positives, parental anxiety, and a potential increase in (invasive) diagnostic procedures. Our first-year data, including clinical data and laboratory follow-up data, will fuel this debate. Furthermore, we describe how NIPT can successfully be embedded into a national screening program with a single chain for prenatal care including counseling, testing, and follow-up.


Asunto(s)
Síndrome de Down/diagnóstico , Pruebas Genéticas/métodos , Genoma Humano , Implementación de Plan de Salud , Diagnóstico Prenatal/métodos , Síndrome de la Trisomía 13/diagnóstico , Síndrome de la Trisomía 18/diagnóstico , Adolescente , Adulto , Aberraciones Cromosómicas , Síndrome de Down/epidemiología , Síndrome de Down/genética , Femenino , Estudios de Seguimiento , Humanos , Persona de Mediana Edad , Países Bajos/epidemiología , Embarazo , Primer Trimestre del Embarazo , Pronóstico , Síndrome de la Trisomía 13/epidemiología , Síndrome de la Trisomía 13/genética , Síndrome de la Trisomía 18/epidemiología , Síndrome de la Trisomía 18/genética , Adulto Joven
3.
Clin Genet ; 101(2): 149-160, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34297364

RESUMEN

Reproductive counseling in facioscapulohumeral muscular dystrophy (FSHD) can be challenging due to the complexity of its underlying genetic mechanisms and due to incomplete penetrance of the disease. Full understanding of the genetic causes and potential inheritance patterns of both distinct FSHD types is essential: FSHD1 is an autosomal dominantly inherited repeat disorder, whereas FSHD2 is a digenic disorder. This has become even more relevant now that prenatal diagnosis and preimplantation genetic diagnosis options are available for FSHD1. Pregnancy and delivery outcomes in FSHD are usually favorable, but clinicians should be aware of the risks. We aim to provide clinicians with case-based strategies for reproductive counseling in FSHD, as well as recommendations for pregnancy and delivery.


Asunto(s)
Estudios de Asociación Genética , Asesoramiento Genético , Predisposición Genética a la Enfermedad , Distrofia Muscular Facioescapulohumeral/diagnóstico , Distrofia Muscular Facioescapulohumeral/genética , Adulto , Toma de Decisiones Clínicas , Diagnóstico Diferencial , Manejo de la Enfermedad , Femenino , Estudios de Asociación Genética/métodos , Pruebas Genéticas , Humanos , Masculino , Herencia Multifactorial , Fenotipo , Embarazo , Complicaciones del Embarazo , Resultado del Embarazo , Diagnóstico Prenatal , Índice de Severidad de la Enfermedad
4.
Hum Reprod ; 37(11): 2700-2708, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36149256

RESUMEN

STUDY QUESTION: Can the embryo tracking system (ETS) increase safety, efficacy and scalability of massively parallel sequencing-based preimplantation genetic testing (PGT)? SUMMARY ANSWER: Applying ETS-PGT, the chance of sample switching is decreased, while scalability and efficacy could easily be increased substantially. WHAT IS KNOWN ALREADY: Although state-of-the-art sequencing-based PGT methods made a paradigm shift in PGT, they still require labor intensive library preparation steps that makes PGT cost prohibitive and poses risks of human errors. To increase the quality assurance, efficiency, robustness and throughput of the sequencing-based assays, barcoded DNA fragments have been used in several aspects of next-generation sequencing (NGS) approach. STUDY DESIGN, SIZE, DURATION: We developed an ETS that substantially alleviates the complexity of the current sequencing-based PGT. With (n = 693) and without (n = 192) ETS, the downstream PGT procedure was performed on both bulk DNA samples (n = 563) and whole-genome amplified (WGAed) few-cell DNA samples (n = 322). Subsequently, we compared full genome haplotype landscapes of both WGAed and bulk DNA samples containing ETS or no ETS. PARTICIPANTS/MATERIALS, SETTING, METHODS: We have devised an ETS to track embryos right after whole-genome amplification (WGA) to full genome haplotype profiles. In this study, we recruited 322 WGAed DNA samples derived from IVF embryos as well as 563 bulk DNA isolated from peripheral blood of prospective parents. To determine possible interference of the ETS in the NGS-based PGT workflow, barcoded DNA fragments were added to DNA samples prior to library preparation and compared to samples without ETS. Coverages and variants were determined. MAIN RESULTS AND THE ROLE OF CHANCE: Current PGT protocols are quality sensitive and prone to sample switching. To avoid sample switching and increase throughput of PGT by sequencing-based haplotyping, six control steps should be carried out manually and checked by a second person in a clinical setting. Here, we developed an ETS approach in which one step only in the entire PGT procedure needs the four-eyes principal. We demonstrate that ETS not only precludes error-prone manual checks but also has no effect on the genomic landscape of preimplantation embryos. Importantly, our approach increases efficacy and throughput of the state-of-the-art PGT methods. LIMITATIONS, REASONS FOR CAUTION: Even though the ETS simplified sequencing-based PGT by avoiding potential errors in six steps in the protocol, if the initial assignment is not performed correctly, it could lead to cross-contamination. However, this can be detected in silico following downstream ETS analysis. Although we demonstrated an approach to evaluate purity of the ETS fragment, it is recommended to perform a pre-PGT quality control assay of the ETS amplicons with non-human DNA, such that the purity of each ETS molecule can be determined prior to ETS-PGT. WIDER IMPLICATIONS OF THE FINDINGS: The ETS-PGT approach notably increases efficacy and scalability of PGT. ETS-PGT has broad applicative value, as it can be tailored to any single- and few-cell sequencing approach where the starting specimen is scarce, as opposed to other methods that require a large number of cells as the input. Moreover, ETS-PGT could easily be adapted to any sequencing-based diagnostic method, including PGT for structural rearrangements and aneuploidies by low-pass sequencing as well as non-invasive prenatal testing. STUDY FUNDING/COMPETING INTEREST(S): M.Z.E. is supported by the EVA (Erfelijkheid Voortplanting & Aanleg) specialty program (grant no. KP111513) of Maastricht University Medical Centre (MUMC+), and the Horizon 2020 innovation (ERIN) (grant no. EU952516) of the European Commission. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Diagnóstico Preimplantación , Embarazo , Femenino , Humanos , Diagnóstico Preimplantación/métodos , Estudios Prospectivos , Pruebas Genéticas/métodos , Blastocisto , Secuenciación de Nucleótidos de Alto Rendimiento
5.
RNA ; 25(9): 1130-1149, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31175170

RESUMEN

Minor intron splicing plays a central role in human embryonic development and survival. Indeed, biallelic mutations in RNU4ATAC, transcribed into the minor spliceosomal U4atac snRNA, are responsible for three rare autosomal recessive multimalformation disorders named Taybi-Linder (TALS/MOPD1), Roifman (RFMN), and Lowry-Wood (LWS) syndromes, which associate numerous overlapping signs of varying severity. Although RNA-seq experiments have been conducted on a few RFMN patient cells, none have been performed in TALS, and more generally no in-depth transcriptomic analysis of the ∼700 human genes containing a minor (U12-type) intron had been published as yet. We thus sequenced RNA from cells derived from five skin, three amniotic fluid, and one blood biosamples obtained from seven unrelated TALS cases and from age- and sex-matched controls. This allowed us to describe for the first time the mRNA expression and splicing profile of genes containing U12-type introns, in the context of a functional minor spliceosome. Concerning RNU4ATAC-mutated patients, we show that as expected, they display distinct U12-type intron splicing profiles compared to controls, but that rather unexpectedly mRNA expression levels are mostly unchanged. Furthermore, although U12-type intron missplicing concerns most of the expressed U12 genes, the level of U12-type intron retention is surprisingly low in fibroblasts and amniocytes, and much more pronounced in blood cells. Interestingly, we found several occurrences of introns that can be spliced using either U2, U12, or a combination of both types of splice site consensus sequences, with a shift towards splicing using preferentially U2 sites in TALS patients' cells compared to controls.


Asunto(s)
Enanismo/genética , Retardo del Crecimiento Fetal/genética , Microcefalia/genética , Osteocondrodisplasias/genética , Empalme del ARN/genética , Transcriptoma/genética , Adulto , Anciano , Secuencia de Bases/genética , Preescolar , Secuencia de Consenso/genética , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Lactante , Intrones/genética , Masculino , Persona de Mediana Edad , ARN/genética , ARN Mensajero/genética , ARN Nuclear Pequeño/genética , Empalmosomas/genética , Adulto Joven
6.
Genet Med ; 23(6): 1125-1136, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33742171

RESUMEN

PURPOSE: Consanguineous couples are at increased risk of being heterozygous for the same autosomal recessive (AR) disorder(s), with a 25% risk of affected offspring as a consequence. Until recently, comprehensive preconception carrier testing (PCT) for AR disorders was unavailable in routine diagnostics. Here we developed and implemented such a test in routine clinical care. METHODS: We performed exome sequencing (ES) for 100 consanguineous couples. For each couple, rare variants that could give rise to biallelic variants in offspring were selected. These variants were subsequently filtered against a gene panel consisting of ~2,000 genes associated with known AR disorders (OMIM-based). Remaining variants were classified according to American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines, after which only likely pathogenic and pathogenic (class IV/V) variants, present in both partners, were reported. RESULTS: In 28 of 100 tested consanguineous couples (28%), likely pathogenic and pathogenic variants not previously known in the couple or their family were reported conferring 25% risk of affected offspring. CONCLUSION: ES-based PCT provides a powerful diagnostic tool to identify AR disease carrier status in consanguineous couples. Outcomes provided significant reproductive choices for a higher proportion of these couples than previous tests.


Asunto(s)
Exoma , Familia , Consanguinidad , Exoma/genética , Heterocigoto , Secuenciación del Exoma
7.
Hum Reprod ; 36(11): 2824-2839, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34562078

RESUMEN

Liquid biopsy is the process of sampling and analyzing body fluids, which enables non-invasive monitoring of complex biological systems in vivo. Liquid biopsy has myriad applications in health and disease as a wide variety of components, ranging from circulating cells to cell-free nucleic acid molecules, can be analyzed. Here, we review different components of liquid biopsy, survey state-of-the-art, non-invasive methods for detecting those components, demonstrate their clinical applications and discuss ethical considerations. Furthermore, we emphasize the importance of artificial intelligence in analyzing liquid biopsy data with the aim of developing ethically-responsible non-invasive technologies that can enhance individualized healthcare. While previous reviews have mainly focused on cancer, this review primarily highlights applications of liquid biopsy in reproductive medicine.


Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias , Medicina Reproductiva , Inteligencia Artificial , Biomarcadores de Tumor , Biopsia , Humanos , Biopsia Líquida
8.
Hum Mol Genet ; 27(20): 3475-3487, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29931299

RESUMEN

Proteoglycans are among the most abundant and structurally complex biomacromolecules and play critical roles in connective tissues. They are composed of a core protein onto which glycosaminoglycan (GAG) side chains are attached via a linker region. Biallelic mutations in B3GALT6, encoding one of the linker region glycosyltransferases, are known to cause either spondyloepimetaphyseal dysplasia (SEMD) or a severe pleiotropic form of Ehlers-Danlos syndromes (EDS). This study provides clinical, molecular and biochemical data on 12 patients with biallelic B3GALT6 mutations. Notably, all patients have features of both EDS and SEMD. In addition, some patients have severe and potential life-threatening complications such as aortic dilatation and aneurysm, cervical spine instability and respiratory insufficiency. Whole-exome sequencing, next generation panel sequencing and direct sequencing identified biallelic B3GALT6 mutations in all patients. We show that these mutations reduce the amount of ß3GalT6 protein and lead to a complete loss of galactosyltransferase activity. In turn, this leads to deficient GAG synthesis, and ultrastructural abnormalities in collagen fibril organization. In conclusion, this study redefines the phenotype associated with B3GALT6 mutations on the basis of clinical, molecular and biochemical data in 12 patients, and provides an in-depth assessment of ß3GalT6 activity and GAG synthesis to better understand this rare condition.


Asunto(s)
Síndrome de Ehlers-Danlos/genética , Secuenciación del Exoma , Galactosiltransferasas/genética , Mutación , Fenotipo , Adulto , Niño , Preescolar , Síndrome de Ehlers-Danlos/enzimología , Síndrome de Ehlers-Danlos/patología , Pruebas de Enzimas , Femenino , Galactosiltransferasas/metabolismo , Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Masculino
9.
Breast Cancer Res Treat ; 181(1): 77-86, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32236826

RESUMEN

PURPOSE: We assessed the uptake of fertility preservation (FP), recovery of ovarian function (OFR) after chemotherapy, live birth after breast cancer, and breast cancer outcomes in women with early-stage breast cancer. METHODS: Women aged below 41 years and referred to our center for FP counseling between 2008 and 2015 were included. Data on patient and tumor characteristics, ovarian function, cryopreservation (embryo/oocyte) and transfer, live birth, and disease-free survival were collected. Kaplan-Meier analyses were performed for time-to-event analyses including competing risk analyses, and patients with versus without FP were compared using the logrank test. RESULTS: Of 118 counseled women with a median age of 31 years (range 19-40), 34 (29%) chose FP. Women who chose FP had less often children, more often a male partner and more often favorable tumor characteristics. The 5-year OFR rate was 92% for the total group of counseled patients. In total, 26 women gave birth. The 5-year live birth rate was 27% for the total group of counseled patients. Only three women applied for transfer of their cryopreserved embryo(s), in two combined with preimplantation genetic diagnosis (PGD) because of BRCA1-mutation carrier ship. The 5-year disease-free survival rate was 91% versus 88%, for patients with versus without FP (P = 0.42). CONCLUSIONS: Remarkably, most women achieved OFR, probably related to the young age at diagnosis. Most pregnancies occurred spontaneously, two of three women applied for embryo transfer because of the opportunity to apply for PGD.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Carcinoma Ductal de Mama/tratamiento farmacológico , Carcinoma Lobular/tratamiento farmacológico , Preservación de la Fertilidad/métodos , Adulto , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patología , Carcinoma Lobular/metabolismo , Carcinoma Lobular/patología , Femenino , Estudios de Seguimiento , Humanos , Nacimiento Vivo , Invasividad Neoplásica , Embarazo , Pronóstico , Estudios Prospectivos , Receptor ErbB-2/metabolismo , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismo , Tasa de Supervivencia , Adulto Joven
10.
Hum Reprod ; 34(8): 1608-1619, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31348829

RESUMEN

STUDY QUESTION: Can reduced representation genome sequencing offer an alternative to single nucleotide polymorphism (SNP) arrays as a generic and genome-wide approach for comprehensive preimplantation genetic testing for monogenic disorders (PGT-M), aneuploidy (PGT-A) and structural rearrangements (PGT-SR) in human embryo biopsy samples? SUMMARY ANSWER: Reduced representation genome sequencing, with OnePGT, offers a generic, next-generation sequencing-based approach for automated haplotyping and copy-number assessment, both combined or independently, in human single blastomere and trophectoderm samples. WHAT IS KNOWN ALREADY: Genome-wide haplotyping strategies, such as karyomapping and haplarithmisis, have paved the way for comprehensive PGT, i.e. leveraging PGT-M, PGT-A and PGT-SR in a single workflow. These methods are based upon SNP array technology. STUDY DESIGN, SIZE, DURATION: This multi-centre verification study evaluated the concordance of PGT results for a total of 225 embryos, including 189 originally tested for a monogenic disorder and 36 tested for a translocation. Concordance for whole chromosome aneuploidies was also evaluated where whole genome copy-number reference data were available. Data analysts were kept blind to the results from the reference PGT method. PARTICIPANTS/MATERIALS, SETTING, METHODS: Leftover blastomere/trophectoderm whole genome amplified (WGA) material was used, or secondary trophectoderm biopsies were WGA. A reduced representation library from WGA DNA together with bulk DNA from phasing references was processed across two study sites with the Agilent OnePGT solution. Libraries were sequenced on an Illumina NextSeq500 system, and data were analysed with Agilent Alissa OnePGT software. The embedded PGT-M pipeline utilises the principles of haplarithmisis to deduce haplotype inheritance whereas both the PGT-A and PGT-SR pipelines are based upon read-count analysis in order to evaluate embryonic ploidy. Concordance analysis was performed for both analysis strategies against the reference PGT method. MAIN RESULTS AND THE ROLE OF CHANCE: PGT-M analysis was performed on 189 samples. For nine samples, the data quality was too poor to analyse further, and for 20 samples, no result could be obtained mainly due to biological limitations of the haplotyping approach, such as co-localisation of meiotic crossover events and nullisomy for the chromosome of interest. For the remaining 160 samples, 100% concordance was obtained between OnePGT and the reference PGT-M method. Equally for PGT-SR, 100% concordance for all 36 embryos tested was demonstrated. Moreover, with embryos originally analysed for PGT-M or PGT-SR for which genome-wide copy-number reference data were available, 100% concordance was shown for whole chromosome copy-number calls (PGT-A). LIMITATIONS, REASONS FOR CAUTION: Inherent to haplotyping methodologies, processing of additional family members is still required. Biological limitations caused inconclusive results in 10% of cases. WIDER IMPLICATIONS OF THE FINDINGS: Employment of OnePGT for PGT-M, PGT-SR, PGT-A or combined as comprehensive PGT offers a scalable platform, which is inherently generic and thereby, eliminates the need for family-specific design and optimisation. It can be considered as both an improvement and complement to the current methodologies for PGT. STUDY FUNDING/COMPETING INTEREST(S): Agilent Technologies, the KU Leuven (C1/018 to J.R.V. and T.V.) and the Horizon 2020 WIDENLIFE (692065 to J.R.V. and T.V). H.M. is supported by the Research Foundation Flanders (FWO, 11A7119N). M.Z.E, J.R.V. and T.V. are co-inventors on patent applications: ZL910050-PCT/EP2011/060211- WO/2011/157846 'Methods for haplotyping single cells' and ZL913096-PCT/EP2014/068315 'Haplotyping and copy-number typing using polymorphic variant allelic frequencies'. T.V. and J.R.V. are co-inventors on patent application: ZL912076-PCT/EP2013/070858 'High-throughput genotyping by sequencing'. Haplarithmisis ('Haplotyping and copy-number typing using polymorphic variant allelic frequencies') has been licensed to Agilent Technologies. The following patents are pending for OnePGT: US2016275239, AU2014345516, CA2928013, CN105874081, EP3066213 and WO2015067796. OnePGT is a registered trademark. D.L., J.T. and R.L.R. report personal fees during the conduct of the study and outside the submitted work from Agilent Technologies. S.H. and K.O.F. report personal fees and other during the conduct of the study and outside the submitted work from Agilent Technologies. J.A. reports personal fees and other during the conduct of the study from Agilent Technologies and personal fees from Agilent Technologies and UZ Leuven outside the submitted work. B.D. reports grants from IWT/VLAIO, personal fees during the conduct of the study from Agilent Technologies and personal fees and other outside the submitted work from Agilent Technologies. In addition, B.D. has a patent 20160275239 - Genetic Analysis Method pending. The remaining authors have no conflicts of interest.


Asunto(s)
Pruebas Genéticas/métodos , Haplotipos , Diagnóstico Preimplantación/métodos , Técnicas de Cultivo de Embriones , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Embarazo
11.
J Genet Couns ; 28(3): 533-542, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30629779

RESUMEN

A nationwide pretest-posttest study was conducted in all clinical genetic centres in the Netherlands, to evaluate the effects of an online decision aid to support persons who have a genetic predisposition to cancer and their partners in making an informed decision regarding reproductive options. Main outcomes (decisional conflict, knowledge, realistic expectations, level of deliberation, and decision self-efficacy) were measured before use (T0), immediately after use (T1), and at 2 weeks (T2) after use of the decision aid. Paired sample t tests were used to compute differences between the first and subsequent measurements. T0-T1 and T0-T2 comparisons indicate a significant reduction in mean decisional conflict scores with stronger effects for participants with high baseline decisional conflict. Furthermore, use of the decision aid resulted in increased knowledge levels and improved realistic expectations. Level of deliberation only increased for participants with lower baseline levels of deliberation. Decision self-efficacy increased for those with low baseline scores, whereas those with high baseline scores showed a reduction at T2. It can be concluded that use of the decision aid resulted in several positive outcomes indicative of informed decision-making. The decision aid is an appropriate and highly appreciated tool to be used in addition to reproductive counseling.


Asunto(s)
Técnicas de Apoyo para la Decisión , Predisposición Genética a la Enfermedad , Neoplasias/genética , Sistemas en Línea , Participación del Paciente , Reproducción , Adulto , Femenino , Humanos , Masculino , Países Bajos , Parejas Sexuales
12.
Br J Cancer ; 119: 357-363, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29937543

RESUMEN

BACKGROUND: The effect of in vitro fertilisation (IVF) on breast cancer risk for BRCA1/2 mutation carriers is rarely examined. As carriers may increasingly undergo IVF as part of preimplantation genetic diagnosis (PGD), we examined the impact of ovarian stimulation for IVF on breast cancer risk in BRCA1/2 mutation carriers. METHODS: The study population consisted of 1550 BRCA1 and 964 BRCA2 mutation carriers, derived from the nationwide HEBON study and the nationwide PGD registry. Questionnaires, clinical records and linkages with the Netherlands Cancer Registry were used to collect data on IVF exposure, risk-reducing surgeries and cancer diagnosis, respectively. Time-dependent Cox regression analyses were conducted, stratified for birth cohort and adjusted for subfertility. RESULTS: Of the 2514 BRCA1/2 mutation carriers, 3% (n = 76) were exposed to ovarian stimulation for IVF. In total, 938 BRCA1/2 mutation carriers (37.3%) were diagnosed with breast cancer. IVF exposure was not associated with risk of breast cancer (HR: 0.79, 95% CI: 0.46-1.36). Similar results were found for the subgroups of subfertile women (n = 232; HR: 0.73, 95% CI: 0.39-1.37) and BRCA1 mutation carriers (HR: 1.12, 95% CI: 0.60-2.09). In addition, age at and recency of first IVF treatment were not associated with breast cancer risk. CONCLUSION: No evidence was found for an association between ovarian stimulation for IVF and breast cancer risk in BRCA1/2 mutation carriers.


Asunto(s)
Neoplasias de la Mama/etiología , Fertilización In Vitro/efectos adversos , Genes BRCA1 , Genes BRCA2 , Heterocigoto , Mutación , Inducción de la Ovulación , Adulto , Anciano , Neoplasias de la Mama/genética , Femenino , Humanos , Persona de Mediana Edad , Modelos de Riesgos Proporcionales , Riesgo
13.
Hum Reprod ; 33(7): 1331-1341, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29850888

RESUMEN

STUDY QUESTION: Does germline selection (besides random genetic drift) play a role during the transmission of heteroplasmic pathogenic mitochondrial DNA (mtDNA) mutations in humans? SUMMARY ANSWER: We conclude that inheritance of mtDNA is mutation-specific and governed by a combination of random genetic drift and negative and/or positive selection. WHAT IS KNOWN ALREADY: mtDNA inherits maternally through a genetic bottleneck, but the underlying mechanisms are largely unknown. Although random genetic drift is recognized as an important mechanism, selection mechanisms are thought to play a role as well. STUDY DESIGN, SIZE, DURATION: We determined the mtDNA mutation loads in 160 available oocytes, zygotes, and blastomeres of five carriers of the m.3243A>G mutation, one carrier of the m.8993T>G mutation, and one carrier of the m.14487T>C mutation. PARTICIPANTS/MATERIALS, SETTING, METHODS: Mutation loads were determined in PGD samples using PCR assays and analysed mathematically to test for random sampling effects. In addition, a meta-analysis has been performed on mutation load transmission data in the literature to confirm the results of the PGD samples. MAIN RESULTS AND THE ROLE OF CHANCE: By applying the Kimura distribution, which assumes random mechanisms, we found that mtDNA segregations patterns could be explained by variable bottleneck sizes among all our carriers (moment estimates ranging from 10 to 145). Marked differences in the bottleneck size would determine the probability that a carrier produces offspring with mutations markedly different than her own. We investigated whether bottleneck sizes might also be influenced by non-random mechanisms. We noted a consistent absence of high mutation loads in all our m.3243A>G carriers, indicating non-random events. To test this, we fitted a standard and a truncated Kimura distribution to the m.3243A>G segregation data. A Kimura distribution truncated at 76.5% heteroplasmy has a significantly better fit (P-value = 0.005) than the standard Kimura distribution. For the m.8993T>G mutation, we suspect a skewed mutation load distribution in the offspring. To test this hypothesis, we performed a meta-analysis on published blood mutation levels of offspring-mother (O-M) transmission for the m.3243A>G and m.8993T>G mutations. This analysis revealed some evidence that the O-M ratios for the m.8993T>G mutation are different from zero (P-value <0.001), while for the m.3243A>G mutation there was little evidence that the O-M ratios are non-zero. Lastly, for the m.14487T>G mutation, where the whole range of mutation loads was represented, we found no indications for selective events during its transmission. LARGE SCALE DATA: All data are included in the Results section of this article. LIMITATIONS, REASON FOR CAUTION: The availability of human material for the mutations is scarce, requiring additional samples to confirm our findings. WIDER IMPLICATIONS OF THE FINDINGS: Our data show that non-random mechanisms are involved during mtDNA segregation. We aimed to provide the mechanisms underlying these selection events. One explanation for selection against high m.3243A>G mutation loads could be, as previously reported, a pronounced oxidative phosphorylation (OXPHOS) deficiency at high mutation loads, which prohibits oogenesis (e.g. progression through meiosis). No maximum mutation loads of the m.8993T>G mutation seem to exist, as the OXPHOS deficiency is less severe, even at levels close to 100%. In contrast, high mutation loads seem to be favoured, probably because they lead to an increased mitochondrial membrane potential (MMP), a hallmark on which healthy mitochondria are being selected. This hypothesis could provide a possible explanation for the skewed segregation pattern observed. Our findings are corroborated by the segregation pattern of the m.14487T>C mutation, which does not affect OXPHOS and MMP significantly, and its transmission is therefore predominantly determined by random genetic drift. Our conclusion is that mutation-specific selection mechanisms occur during mtDNA inheritance, which has implications for PGD and mitochondrial replacement therapy. STUDY FUNDING/COMPETING INTEREST(S): This work has been funded by GROW-School of Oncology and Developmental Biology. The authors declare no competing interests.


Asunto(s)
Blastómeros/metabolismo , ADN Mitocondrial/genética , Mutación de Línea Germinal , Oocitos/metabolismo , Adulto , ADN Mitocondrial/metabolismo , Femenino , Células Germinativas/metabolismo , Humanos , Masculino , Fosforilación Oxidativa
14.
J Med Genet ; 54(10): 693-697, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28668821

RESUMEN

BACKGROUND: Preimplantation genetic diagnosis (PGD) is a reproductive strategy for mitochondrial DNA (mtDNA) mutation carriers, strongly reducing their risk of affected offspring. Embryos either without the mutation or with mutation load below the phenotypic threshold are transferred to the uterus. Because of incidental heteroplasmy deviations in single blastomere and the relatively limited data available, we so far preferred relying on two blastomeres rather than one. Considering the negative effect of a two-blastomere biopsy protocol compared with a single-blastomere biopsy protocol on live birth delivery rate, we re-evaluated the error rate in our current dataset. METHODS: For the m.3243A>G mutation, sufficient embryos/blastomeres were available for a powerful analysis. The diagnostic error rate, defined as a potential false-negative result, based on a threshold of 15%, was determined in 294 single blastomeres analysed in 73 embryos of 9 female m.3243A>G mutation carriers. RESULTS: Only one out of 294 single blastomeres (0.34%) would have resulted in a false-negative diagnosis. False-positive diagnoses were not detected. CONCLUSION: Our findings support a single-blastomere biopsy PGD protocol for the m.3243A>G mutation as the diagnostic error rate is very low. As in the early preimplantation embryo no mtDNA replication seems to occur and the mtDNA is divided randomly among the daughter cells, we conclude this result to be independent of the specific mutation and therefore applicable to all mtDNA mutations.


Asunto(s)
Blastómeros , ADN Mitocondrial/genética , Pruebas Genéticas/métodos , Diagnóstico Preimplantación/métodos , Biopsia , Blastocisto , Errores Diagnósticos , Femenino , Heterocigoto , Humanos , Mutación , Embarazo
15.
J Med Genet ; 54(2): 73-83, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27450679

RESUMEN

BACKGROUND: Severe, disease-causing germline mitochondrial (mt)DNA mutations are maternally inherited or arise de novo. Strategies to prevent transmission are generally available, but depend on recurrence risks, ranging from high/unpredictable for many familial mtDNA point mutations to very low for sporadic, large-scale single mtDNA deletions. Comprehensive data are lacking for de novo mtDNA point mutations, often leading to misconceptions and incorrect counselling regarding recurrence risk and reproductive options. We aim to study the relevance and recurrence risk of apparently de novo mtDNA point mutations. METHODS: Systematic study of prenatal diagnosis (PND) and recurrence of mtDNA point mutations in families with de novo cases, including new and published data. 'De novo' based on the absence of the mutation in multiple (postmitotic) maternal tissues is preferred, but mutations absent in maternal blood only were also included. RESULTS: In our series of 105 index patients (33 children and 72 adults) with (likely) pathogenic mtDNA point mutations, the de novo frequency was 24.6%, the majority being paediatric. PND was performed in subsequent pregnancies of mothers of four de novo cases. A fifth mother opted for preimplantation genetic diagnosis because of a coexisting Mendelian genetic disorder. The mtDNA mutation was absent in all four prenatal samples and all 11 oocytes/embryos tested. A literature survey revealed 137 de novo cases, but PND was only performed for 9 (including 1 unpublished) mothers. In one, recurrence occurred in two subsequent pregnancies, presumably due to germline mosaicism. CONCLUSIONS: De novo mtDNA point mutations are a common cause of mtDNA disease. Recurrence risk is low. This is relevant for genetic counselling, particularly for reproductive options. PND can be offered for reassurance.


Asunto(s)
ADN Mitocondrial/genética , Enfermedades Genéticas Congénitas/diagnóstico , Herencia Materna/genética , Diagnóstico Prenatal , Adulto , Niño , Femenino , Asesoramiento Genético , Humanos , Masculino , Oocitos/metabolismo , Mutación Puntual/genética , Embarazo , Diagnóstico Preimplantación
16.
J Assist Reprod Genet ; 35(11): 1995-2002, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30187425

RESUMEN

PURPOSE: We aim to evaluate the safety of PGD. We focus on the congenital malformation rate and additionally report on adverse perinatal outcome. METHODS: We collated data from a large group of singletons and multiples born after PGD between 1995 and 2014. Data on congenital malformation rates in live born children and terminated pregnancies, misdiagnosis rate, birth parameters, perinatal mortality, and hospital admissions were prospectively collected by questionnaires. RESULTS: Four hundred thirty-nine pregnancies in 381 women resulted in 364 live born children. Nine children (2.5%) had major malformations. This percentage is consistent with other PGD cohorts and comparable to the prevalence reported by the European Surveillance of Congenital Anomalies (EUROCAT). We reported one misdiagnosis resulting in a spontaneous abortion of a fetus with an unbalanced chromosome pattern. 20% of the children were born premature (< 37 weeks) and less than 15% had a low birth weight. The incidence of hospital admissions is in line with prematurity and low birth weight rate. One child from a twin, one child from a triplet, and one singleton died at 23, 32, and 37 weeks of gestation respectively. CONCLUSIONS: We found no evidence that PGD treatment increases the risk on congenital malformations or adverse perinatal outcome. TRIAL REGISTRATION NUMBER: NCT 2 149485.


Asunto(s)
Anomalías Congénitas/diagnóstico , Pruebas Genéticas/métodos , Atención Perinatal , Diagnóstico Preimplantación/efectos adversos , Adulto , Niño , Anomalías Congénitas/etiología , Errores Diagnósticos , Femenino , Estudios de Seguimiento , Humanos , Recién Nacido , Masculino , Embarazo , Estudios Prospectivos , Factores de Tiempo
17.
Am J Med Genet B Neuropsychiatr Genet ; 177(1): 35-39, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29095566

RESUMEN

A consistent feature of predictive testing guidelines for Huntington's disease (HD) is the recommendation not to undertake predictive tests on those < 18 years. Exceptions are made but the extent of, and reasons for, deviation from the guidelines are unknown. The UK Huntington's Prediction Consortium has collected data annually on predictive tests undertaken from the 23 UK genetic centers. DNA analysis for HD in the Netherlands is centralized in the Laboratory for Diagnostic Genome Analysis in Leiden. In the UK, 60 tests were performed on minors between 1994 and 2015 representing 0.63% of the total number of tests performed. In the Netherlands, 23 tests were performed on minors between 1997 and 2016. The majority of the tests were performed on those aged 16 and 17 years for both countries (23% and 57% for the UK, and 26% and 57% for the Netherlands). Data on the reasons for testing were identified for 36 UK and 22 Netherlands cases and included: close to the age of 18 years, pregnancy, currently in local authority care and likely to have less support available after 18 years, person never having the capacity to consent and other miscellaneous reasons. This study documents the extent of HD testing of minors in the UK and the Netherlands and suggests that, in general, the recommendation is being followed. We provide some empirical evidence as to reasons why clinicians have departed from the recommendation. We do not advise changing the recommendation but suggest that testing of minors continues to be monitored.


Asunto(s)
Pruebas Genéticas/métodos , Pruebas Genéticas/normas , Enfermedad de Huntington/diagnóstico , Adolescente , Femenino , Pruebas Genéticas/ética , Humanos , Masculino , Menores , Países Bajos/epidemiología , Reino Unido/epidemiología
18.
Genet Med ; 19(5): 583-592, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28492530

RESUMEN

PURPOSE: Whole-exome sequencing (WES) provides the possibility of genome-wide preconception carrier screening (PCS). Here, we propose a filter strategy to rapidly identify the majority of relevant pathogenic mutations. METHODS: Our strategy was developed using WES data from eight consanguineous and five fictive nonconsanguineous couples and was subsequently applied to 20 other fictive nonconsanguineous couples. Presumably pathogenic variants based on frequency and database annotations or generic characteristics and mutation type were selected in genes shared by the couple and in the female's X-chromosome. Unclassified variants were not included. RESULTS: This yielded an average of 29 (19-51) variants in genes shared by the consanguineous couples and 15 (6-30) shared by the nonconsanguineous couples. For X-linked variants, the numbers per female were 3 (1-5) and 1 (0-3), respectively. Remaining variants were verified manually. The majority were able to be quickly discarded, effectively leaving true pathogenic variants. CONCLUSION: We conclude that WES is applicable for PCS, both for consanguineous and nonconsanguineous couples, with the remaining number of variants being manageable in a clinical setting. The addition of gene panels for filtering was not favorable because it resulted in missing pathogenic variants. It is important to develop and continuously curate databases with pathogenic mutations to further increase the sensitivity of WES-based PCS.Genet Med advance online publication 27 October 2016.


Asunto(s)
Secuenciación del Exoma/métodos , Tamización de Portadores Genéticos/métodos , Consanguinidad , Femenino , Genes Ligados a X , Humanos , Masculino , Mutación , Padres
19.
Hum Reprod ; 32(3): 698-703, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28122886

RESUMEN

We report on the first PGD performed for the m.14487 T>C mitochondrial DNA (mtDNA) mutation in the MT-ND6 gene, associated with Leigh syndrome. The female carrier gave birth to a healthy baby boy at age 42. This case adds to the successes of PGD for mtDNA mutations.


Asunto(s)
ADN Mitocondrial/genética , Enfermedad de Leigh/diagnóstico , Mutación , Femenino , Humanos , Recién Nacido , Enfermedad de Leigh/genética , Masculino , Mitocondrias/genética , Linaje , Embarazo , Diagnóstico Preimplantación , Resultado del Tratamiento
20.
Nat Rev Genet ; 12(9): 657-63, 2011 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-21850045

RESUMEN

Prenatal screening strategies are undergoing rapid changes owing to the introduction of new testing techniques. The overall tendency is towards broadening the scope of prenatal testing through increasingly sensitive ultrasound scans and genome-wide molecular tests. In addition, non-invasive prenatal diagnosis is likely to be introduced in the near future. These developments raise important ethical questions concerning meaningful reproductive choice, the autonomy rights of future children, equity of access and the proportionality of testing.


Asunto(s)
Aberraciones Cromosómicas , Estudios de Asociación Genética/métodos , Tamizaje Neonatal/ética , Aborto Eugénico , Aneuploidia , Niño , Ética Médica , Femenino , Pruebas Genéticas , Humanos , Recién Nacido , Cariotipificación , Derechos del Paciente/ética , Embarazo , Diagnóstico Prenatal/ética , Diagnóstico Prenatal/métodos , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA