RESUMEN
Thiamin and its phosphate derivatives are ubiquitous molecules involved as essential cofactors in many cellular processes. The de novo biosynthesis of thiamin employs the parallel synthesis of 4-methyl-5-(2-hydroxyethyl)thiazole (THZ-P) and 4-amino-2-methyl-5(diphosphooxymethyl) pyrimidine (HMP) pyrophosphate (HMP-PP), which are coupled to generate thiamin phosphate. Most organisms that can biosynthesize thiamin employ a kinase (HMPK or ThiD) to generate HMP-PP. In nearly all cases, this enzyme is bifunctional and can also salvage free HMP, producing HMP-P, the monophosphate precursor of HMP-PP. Here we present high-resolution crystal structures of an HMPK from Acinetobacter baumannii (AbHMPK), both unliganded and with pyridoxal 5-phosphate (PLP) noncovalently bound. Despite the similarity between HMPK and pyridoxal kinase enzymes, our kinetics analysis indicates that AbHMPK accepts HMP exclusively as a substrate and cannot turn over pyridoxal, pyridoxamine, or pyridoxine nor does it display phosphatase activity. PLP does, however, act as a weak inhibitor of AbHMPK with an IC50 of 768 µM. Surprisingly, unlike other HMPKs, AbHMPK catalyzes only the phosphorylation of HMP and does not generate the diphosphate HMP-PP. This suggests that an additional kinase is present in A. baumannii, or an alternative mechanism is in operation to complete the biosynthesis of thiamin.
RESUMEN
Human uridine 5'-monophosphate synthase (HsUMPS) is a bifunctional enzyme that catalyzes the final two steps in de novo pyrimidine biosynthesis. The individual orotate phosphoribosyl transferase and orotidine monophosphate domains have been well characterized, but little is known about the overall structure of the protein and how the organization of domains impacts function. Using a combination of chromatography, electron microscopy, and complementary biophysical methods, we report herein that HsUMPS can be observed in two structurally distinct states, an enzymatically active dimeric form and a nonactive multimeric form. These two states readily interconvert to reach an equilibrium that is sensitive to perturbations of the active site and the presence of substrate. We determined that the smaller molecular weight form of HsUMPS is an S-shaped dimer that can self-assemble into relatively well-ordered globular condensates. Our analysis suggests that the transition between dimer and multimer is driven primarily by oligomerization of the orotate phosphoribosyl transferase domain. While the cellular distribution of HsUMPS is unaffected, quantification by mass spectrometry revealed that de novo pyrimidine biosynthesis is dysregulated when this protein is unable to assemble into inactive condensates. Taken together, our data suggest that HsUMPS self-assembles into biomolecular condensates as a means to store metabolic potential for the regulation of metabolic rates.
Asunto(s)
Condensados Biomoleculares , Orotato Fosforribosiltransferasa , Orotidina-5'-Fosfato Descarboxilasa , Uridina Monofosfato , Humanos , Orotato Fosforribosiltransferasa/metabolismo , Orotidina-5'-Fosfato Descarboxilasa/metabolismo , Pirimidinas/biosíntesis , Uridina , Uridina Monofosfato/metabolismoRESUMEN
MOTIVATION: The elucidation of dysfunctional cellular processes that can induce the onset of a disease is a challenging issue from both the experimental and computational perspectives. Here we introduce a novel computational method based on the coupling between fuzzy logic modeling and a global optimization algorithm, whose aims are to (1) predict the emergent dynamical behaviors of highly heterogeneous systems in unperturbed and perturbed conditions, regardless of the availability of quantitative parameters, and (2) determine a minimal set of system components whose perturbation can lead to a desired system response, therefore facilitating the design of a more appropriate experimental strategy. RESULTS: We applied this method to investigate what drives K-ras-induced cancer cells, displaying the typical Warburg effect, to death or survival upon progressive glucose depletion. The optimization analysis allowed to identify new combinations of stimuli that maximize pro-apoptotic processes. Namely, our results provide different evidences of an important protective role for protein kinase A in cancer cells under several cellular stress conditions mimicking tumor behavior. The predictive power of this method could facilitate the assessment of the response of other complex heterogeneous systems to drugs or mutations in fields as medicine and pharmacology, therefore paving the way for the development of novel therapeutic treatments. AVAILABILITY AND IMPLEMENTATION: The source code of FUMOSO is available under the GPL 2.0 license on GitHub at the following URL: https://github.com/aresio/FUMOSO. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)
Neoplasias , Programas Informáticos , Algoritmos , Humanos , MutaciónRESUMEN
Cancer cells often rely on glycolysis to obtain energy and support anabolic growth. Several studies showed that glycolytic cells are susceptible to cell death when subjected to low glucose availability or to lack of glucose. However, some cancer cells, including glycolytic ones, can efficiently acquire higher tolerance to glucose depletion, leading to their survival and aggressiveness. Although increased resistance to glucose starvation has been shown to be a consequence of signaling pathways and compensatory metabolic routes activation, the full repertoire of the underlying molecular alterations remain elusive. Using omics and computational analyses, we found that cyclic adenosine monophosphate-Protein Kinase A (cAMP-PKA) axis activation is fundamental for cancer cell resistance to glucose starvation and anoikis. Notably, here we show that such a PKA-dependent survival is mediated by parallel activation of autophagy and glutamine utilization that in concert concur to attenuate the endoplasmic reticulum (ER) stress and to sustain cell anabolism. Indeed, the inhibition of PKA-mediated autophagy or glutamine metabolism increased the level of cell death, suggesting that the induction of autophagy and metabolic rewiring by PKA is important for cancer cellular survival under glucose starvation. Importantly, both processes actively participate to cancer cell survival mediated by suspension-activated PKA as well. In addition we identify also a PKA/Src mechanism capable to protect cancer cells from anoikis. Our results reveal for the first time the role of the versatile PKA in cancer cells survival under chronic glucose starvation and anoikis and may be a novel potential target for cancer treatment.
Asunto(s)
Autofagia/genética , Proteínas Quinasas Dependientes de AMP Cíclico/biosíntesis , AMP Cíclico/genética , Neoplasias/genética , Animales , Anoicis/genética , Línea Celular Tumoral , Supervivencia Celular/genética , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Estrés del Retículo Endoplásmico , Glucosa/deficiencia , Glucosa/metabolismo , Glutamina/metabolismo , Glucólisis , Humanos , Ratones , Neoplasias/metabolismo , Inanición , TranscriptomaRESUMEN
During the past decade, a heightened understanding of metabolic pathways in cancer has significantly increased. It is recognized that many tumor cells are genetically programmed and have involved an abnormal metabolic state. Interestingly, this increased metabolic autonomy generates dependence on various nutrients such as glucose and glutamine. Both of these components participate in various facets of metabolic activity that allow for energy production, synthesis of biomass, antioxidant defense, and the regulation of cell signaling. Here, we outline the emerging data on glutamine metabolism and address the molecular mechanisms underlying glutamine-induced cell survival. We also discuss novel therapeutic strategies to exploit glutamine addiction of certain cancer cell lines.
Asunto(s)
Glutamina/metabolismo , Neoplasias/metabolismo , Animales , Metabolismo Energético/fisiología , Humanos , Transducción de Señal/fisiologíaRESUMEN
Previously, we demonstrated that A549, a human lung cancer cell line, could be adapted to the free radical nitric oxide (NOâ). NOâ is known to be over expressed in human tumors. The original cell line, A549 (parent), and the newly adapted A549-HNO (which has a more aggressive phenotype) serve as a useful model system to study the biology of NOâ. To see if tumor cells can similarly be adapted to any free radical with the same outcome, herein we successfully adapted A549 cells to high levels of hydrogen peroxide (HHP). A549-HHP, the resulting cell line, was more resistant and grew better then the parent cell line, and showed the following characteristics: (1) resistance to hydrogen peroxide, (2) resistance to NOâ, (3) growth with and without hydrogen peroxide, and (4) resistance to doxorubicin. Gene chip analysis was used to determine the global gene expression changes between A549-parent and A549-HHP and revealed significant changes in the expression of over 1,700 genes. This gene profile was markedly different from that obtained from the A549-HNO cell line. The mitochondrial DNA content of the A549-HHP line determined by quantitative PCR favored a change for a more anaerobic metabolic profile. Our findings suggest that any free radical can induce resistance to other free radicals; this is especially important given that radiation therapy and many chemotherapeutic agents exert their effect via free radicals. Utilizing this model system to better understand the role of free radicals in tumor biology will help to develop new therapeutic approaches to treat lung cancer.
Asunto(s)
Adaptación Fisiológica , Adenocarcinoma/metabolismo , Peróxido de Hidrógeno/farmacología , Neoplasias Pulmonares/metabolismo , Adenocarcinoma/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , ADN Mitocondrial , Doxorrubicina/farmacología , Resistencia a Medicamentos/efectos de los fármacos , Resistencia a Medicamentos/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/genéticaRESUMEN
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related death and the search for a resolutive therapy is still a challenge. Since KRAS is commonly mutated in PDAC and is one of the main drivers of PDAC progression, its inhibition should be a key strategy for treatment, especially considering the recent development of specific KRAS inhibitors. Nevertheless, the effects of KRAS inhibition can be increased through the co-inhibition of other nodes important for cancer development. One of them could be the hexosamine biosynthetic pathway (HBP), whose enhancement is considered fundamental for PDAC. Here, we demonstrate that PDAC cells expressing oncogenic KRAS, owing to an increase in the HBP flux, become strongly reliant on HBP for both proliferation and survival. In particular, upon treatment with two different compounds, 2-deoxyglucose and FR054, inhibiting both HBP and protein N-glycosylation, these cells undergo apoptosis significantly more than PDAC cells expressing wild-type KRAS. Importantly, we also show that the combined treatment between FR054 and the pan-RAS inhibitor BI-2852 has an additive negative effect on cell proliferation and survival by means of the suppression of both Akt activity and cyclin D1 expression. Thus, co-inhibition of HBP and oncogenic RAS may represent a novel therapy for PDAC patients.
Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Adenocarcinoma/patología , Animales , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular , Humanos , SmegmamorphaRESUMEN
Nucleotides are essential to cell growth and survival, providing cells with building blocks for DNA and RNA, energy carriers, and cofactors. Mitochondria have a critical role in the production of intracellular ATP and participate in the generation of intermediates necessary for biosynthesis of macromolecules such as purines and pyrimidines. In this review, we highlight the role of purine and mitochondrial metabolism in cancer and how their intersection influences cancer progression, especially in ovarian cancer. Additionally, we address the importance of metabolic rewiring in cancer and how the evolving landscape of purine synthesis and mitochondria inhibitors can be potentially exploited for cancer treatment.
Asunto(s)
Mitocondrias/metabolismo , Neoplasias/metabolismo , Purinas/metabolismo , ADN/metabolismo , Humanos , Pirimidinas/metabolismo , ARN/metabolismoRESUMEN
Regulator of chromosome condensation 2 (RCC2) is a protein located in the centrosome, which ensures that cell division proceeds properly. Previous reports show that RCC2 is overexpressed in some cancers and could play a key role in tumor development, but the mechanisms concerning how this occurs are not understood. Furthermore, no evidence exists regarding its role in esophageal cancer. We studied the relevance of RCC2 in esophageal cancer growth and its regulation on Sox2, an important transcription factor promoting esophageal cancer. RCC2 was overexpressed in esophageal tumors compared with normal tissue, and this overexpression was associated with tumorigenicity by increasing cell proliferation, anchorage-independent growth, and migration. These oncogenic effects were accompanied by overexpression of Sox2. RCC2 upregulated and stabilized Sox2 expression and its target genes by inhibiting ubiquitination-mediated proteasome degradation. Likewise, RCC2 increased the transcriptional activity and promoter binding of Sox2. In vivo studies indicated that RCC2 and Sox2 were overexpressed in esophageal tumors compared with normal tissue, and this upregulation occurs in the esophageal basal cell layer for both proteins. In conditional knockout mice, RCC2 deletion decreased the tumor nodule formation and progression in the esophagus compared with wild-type mice. Proliferating cell nuclear antigen expression, a cell proliferation marker, was also downregulated in RCC2 knockout mice. Overall, our data show for the first time that RCC2 is an important protein for the stabilization and transcriptional activation of Sox2 and further promotion of malignancy in esophageal cancer. IMPLICATIONS: This study shows that RCC2 controls Sox2 expression and transcriptional activity to mediate esophageal cancer formation.
Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Neoplasias Esofágicas/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Transcripción SOXB1/metabolismo , Animales , Proliferación Celular , Neoplasias Esofágicas/patología , Humanos , Ratones , Ratones NoqueadosRESUMEN
BACKGROUND: Of the genes that control mitochondrial biogenesis and function, ERRα emerges as a druggable metabolic target to be exploited for cancer therapy. Of the genes mutated in cancer, TP53 remains the most elusive to target. A clear understanding of how mitochondrial druggable targets can be accessed to exploit the underlying mechanism(s) explaining how p53-deficient tumors promote cell survival remains elusive. METHODS: We performed protein-protein interaction studies to demonstrate that ERRα binds to p53. Moreover, we used gene silencing and pharmacological approaches in tandem with quantitative proteomics analysis by SWATH-MS to investigate the role of the ERRα/p53 complex in mitochondrial biogenesis and function in colon cancer. Finally, we designed in vitro and in vivo studies to investigate the possibility of targeting colon cancers that exhibit defects in p53. RESULTS: Here, we are the first to identify a direct protein-protein interaction between the ligand-binding domain (LBD) of ERRα and the C-terminal domain (CTD) of p53. ERRα binds to p53 regardless of p53 mutational status. Furthermore, we show that the ERRα and p53 complex cooperatively control mitochondrial biogenesis and function. Targeting ERRα creates mitochondrial metabolic stresses, such as production of reactive oxygen species (ROS) and mitochondrial membrane permeabilization (MMP), leading to a greater cytotoxic effect that is dependent on the presence of p53. Pharmacological inhibition of ERRα impairs the growth of p53-deficient cells and of p53 mutant patient-derived colon xenografts (PDX). CONCLUSIONS: Therefore, our data suggest that by using the status of the p53 protein as a selection criterion, the ERRα/p53 transcriptional axis can be exploited as a metabolic vulnerability.
RESUMEN
Different evidence has indicated metabolic rewiring as a necessity for pancreatic cancer (PC) growth, invasion, and chemotherapy resistance. A relevant role has been assigned to glucose metabolism. In particular, an enhanced flux through the Hexosamine Biosynthetic Pathway (HBP) has been tightly linked to PC development. Here, we show that enhancement of the HBP, through the upregulation of the enzyme Phosphoacetylglucosamine Mutase 3 (PGM3), is associated with the onset of gemcitabine (GEM) resistance in PC. Indeed, mRNA profiles of GEM sensitive and resistant patient-derived tumor xenografts (PDXs) indicate that PGM3 expression is specifically increased in GEM-resistant PDXs. Of note, PGM3 results also overexpressed in human PC tissues as compared to paired adjacent normal tissues and its higher expression in PC patients is associated with worse median overall survival (OS). Strikingly, genetic or pharmacological PGM3 inhibition reduces PC cell growth, migration, invasion, in vivo tumor growth and enhances GEM sensitivity. Thus, combined treatment between a specific inhibitor of PGM3, named FR054, and GEM results in a potent reduction of xenograft tumor growth without any obvious side effects in normal tissues. Mechanistically, PGM3 inhibition, reducing protein glycosylation, causes a sustained Unfolded Protein Response (UPR), a significant attenuation of the pro-tumorigenic Epidermal Growth Factor Receptor (EGFR)-Akt axis, and finally cell death. In conclusion this study identifies the HBP as a metabolic pathway involved in GEM resistance and provides a strong rationale for a PC therapy addressing the combined treatment with the PGM3 inhibitor and GEM.
Asunto(s)
Desoxicitidina/análogos & derivados , Resistencia a Antineoplásicos , Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Respuesta de Proteína Desplegada/efectos de los fármacos , Animales , Línea Celular Tumoral , Desoxicitidina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Hexosaminas/genética , Hexosaminas/metabolismo , Humanos , Ratones , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Respuesta de Proteína Desplegada/genética , Ensayos Antitumor por Modelo de Xenoinjerto , GemcitabinaRESUMEN
Transcriptional regulators include a superfamily of nuclear proteins referred to as co-activators and co-repressors, both of which are involved in controlling the functions of several nuclear receptors (NRs). The Nuclear Receptor Signaling Atlas (NURSA) has cataloged the composition of NRs, co-regulators, and ligands present in the human cell and their effort has been identified in more than 600 potential molecules. Given the importance of co-regulators in steroid, retinoid, and thyroid hormone signaling networks, hypothesizing that NRs/co-regulators are implicated in a wide range of pathologies are tempting. The co-activators known as peroxisome proliferator-activated receptor gamma co-activator 1 (PGC-1) and their key nuclear partner, the estrogen-related receptor (ERR), are emerging as pivotal transcriptional signatures that regulate an extremely broad repertoire of mitochondrial and metabolic genes, making them very attractive drug targets for cancer. Several studies have provided an increased understanding of the functional and structural biology of nuclear complexes. However, more comprehensive work is needed to create different avenues to explore the therapeutic potential of NRs/co-activators in precision oncology. Here, we discuss the emerging data associated with the structure, function, and molecular biology of the PGC-1/ERR network and address how the concepts evolving from these studies have deepened our understanding of how to develop more effective treatment strategies. We present an overview that underscores new biological insights into PGC-1/ERR to improve cancer outcomes against therapeutic resistance. Finally, we discuss the importance of exploiting new technologies such as single-particle cryo-electron microscopy (cryo-EM) to develop a high-resolution biological structure of PGC-1/ERR, focusing on novel drug discovery for precision oncology.