Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Small ; 20(9): e2305034, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37867212

RESUMEN

Light-responsive microactuators composed of vertically aligned carbon nanotube (CNT) forests mixed with poly(N-isopropylacrylamide) (PNIPAM) hydrogel composites are studied. The benefit of this composite is that CNTs act as a black absorber to efficiently capture radiative heating and trigger PNIPAM contraction. In addition, CNT forests can be patterned accurately using lithography to span structures ranging from a few micrometers to several millimeters in size, and these CNT-PNIPAM composites can achieve response times as fast as 15 ms. The kinetics of these microactuators are investigated through detailed analysis of high-speed videos. These are compared to a theoretical model for the deswelling dynamics, which combines thermal convection and polymer diffusion, and shows that polymer diffusion is the rate-limiting factor in this system. Applications of such CNT/hydrogel actuators as microswimmers are discussed, with light-actuating micro-jellyfish designs exemplified, and >1500 cycles demonstrated.

2.
Small ; 20(14): e2308869, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37988637

RESUMEN

Solar power represents an abundant and readily available source of renewable energy. However, its intermittent nature necessitates external energy storage solutions, which can often be expensive, bulky, and associated with energy conversion losses. This study introduces the concept of a photo-accelerated battery that seamlessly integrates energy harvesting and storage functions within a single device. In this research, a novel approach for crafting photocathodes is presented using hydrogenated vanadium pentoxide (H:V2O5) nanofibers. This method enhances optical activity, electronic conductivity, and ion diffusion rates within photo-accelerated Li-ion batteries. This study findings reveal that H:V2O5 exhibits notable improvements in specific capacity under both dark and illuminated conditions. Furthermore, it demonstrates enhanced diffusion kinetics and charge storage performance when exposed to light, as compared to pristine counterparts. This strategy of defect engineering holds great promise for the development of high-performance photocathodes in future energy storage applications.

3.
Nano Lett ; 23(22): 10391-10397, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37943575

RESUMEN

Lithium-sulfur batteries (LiSBs) are promising next-generation batteries because of their low cost and high theoretical energy densities. Despite remarkable advances over the decades, polysulfide (PS) shuttling during battery cycling remains a challenge in the development of commercial LiSBs and is accelerated under practical conditions. Herein, we report a permselective ionic shield between the electrodes that blocks PS shuttles and passes Li ions to high-performance LiSBs. This shield is easily built onto the separator by ionic complexation and intermolecular bonding of functional polymers, thereby improving the battery performance and safety. The LiSB with the developed shield delivers a remarkable discharge capacity of 917 mAh g-1 after 1000 cycles at 2 C. In addition, the behavior of LiSBs under practical conditions that can realize a high energy density is investigated to achieve the optimal balance in this system. This study provides new insights into the imminent development of separators for practical LiSBs.

4.
Nano Lett ; 23(16): 7288-7296, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37552026

RESUMEN

Photobatteries, batteries with a light-sensitive electrode, have recently been proposed as a way of simultaneously capturing and storing solar energy in a single device. Despite reports of photocharging with multiple different electrode materials, the overall mechanism of operation remains poorly understood. Here, we use operando optical reflection microscopy to investigate light-induced charging in LixV2O5 electrodes. We image the electrode, at the single-particle level, under three conditions: (a) with a closed circuit and light but no electronic power source (photocharging), (b) during galvanostatic cycling with light (photoenhanced), and (c) with heat but no light (thermal). We demonstrate that light can indeed drive lithiation changes in LixV2O5 while maintaining charge neutrality, possibly via a combination of faradaic and nonfaradaic effects taking place in individual particles. Our results provide an addition to the photobattery mechanistic model highlighting that both intercalation-based charging and lithium concentration polarization effects contribute to the increased photocharging capacity.

5.
Nat Mater ; 21(3): 352-358, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34764430

RESUMEN

Cellulose nanocrystals are renewable plant-based colloidal particles capable of forming photonic films by solvent-evaporation-driven self-assembly. So far, the cellulose nanocrystal self-assembly process has been studied only at a small scale, neglecting the limitations and challenges posed by the continuous deposition processes that are required to exploit this sustainable material in an industrial context. Here, we addressed these limitations by using roll-to-roll deposition to produce large-area photonic films, which required optimization of the formulation of the cellulose nanocrystal suspension and the deposition and drying conditions. Furthermore, we showed how metre-long structurally coloured films can be processed into effect pigments and glitters that are dispersible, even in water-based formulations. These promising effect pigments are an industrially relevant cellulose-based alternative to current products that are either micro-polluting (for example, non-biodegradable microplastic glitters) or based on carcinogenic, unsustainable or unethically sourced compounds (for example, titania or mica).


Asunto(s)
Celulosa , Nanopartículas , Nanopartículas/química , Plásticos , Solventes , Agua/química
6.
Proc Natl Acad Sci U S A ; 117(35): 21155-21161, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32817417

RESUMEN

Ultrathick battery electrodes are appealing as they reduce the fraction of inactive battery parts such as current collectors and separators. However, thick electrodes are difficult to dry and tend to crack or flake during production. Moreover, the electrochemical performance of thick electrodes is constrained by ion and electron transport as well as fast capacity degradation. Here, we report a thermally induced phase separation (TIPS) process for fabricating thick Li-ion battery electrodes, which incorporates the electrolyte directly in the electrode and alleviates the need to dry the electrode. The proposed TIPS process creates a bicontinuous electrolyte and electrode network with excellent ion and electron transport, respectively, and consequently achieves better rate performance. Using this process, electrodes with areal capacities of more than 30 mAh/cm2 are demonstrated. Capacity retentions of 87% are attained over 500 cycles in full cells with 1-mm-thick anodes and cathodes. Finally, we verified the scalability of the TIPS process by coating thick electrodes continuously on a pilot-scale roll-to-roll coating tool.

7.
Small ; 18(38): e2202785, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35988148

RESUMEN

Off-grid power sources are becoming increasingly important for applications ranging from autonomous sensor networks to fighting energy poverty. Interactions of light with certain classes of battery and capacitor materials have recently gained attention to enhance the rate performance or to even charge energy storage devices directly with light. Interestingly, these devices have the potential to reduce the volume and cost of autonomous power sources. Here, a light-enhanced magnesium (Mg)-ion capacitor is shown. The latter is interesting because of the large natural abundance of Mg and its ability to operate in low cost and non-flammable aqueous electrolytes. Photoelectrodes using a combination of vanadium dioxide and reduced graphene oxide can achieve capacitance enhancements of up to 56% under light exposure alongside a 21% higher energy density of 20.5 mAh kg-1 .

8.
Chemistry ; 28(42): e202201220, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35608397

RESUMEN

Controlling redox activity of judiciously appended redox units on a photo-sensitive molecular core is an effective strategy for visible light energy harvesting and storage. The first example of a photosensitizer - electron donor coordination compound in which the photoinduced electron transfer step is used for light to electrical energy conversion and storage is reported. A photo-responsive Ru-diimine module conjugated with redox-active catechol groups in [Ru(II)(phenanthroline-5,6-diolate)3 ]4- photosensitizer can mediate photoinduced catechol to dione oxidation in the presence of a sacrificial electron acceptor or at the surface of an electrode. Under potentiostatic condition, visible light triggered current density enhancement confirmed the light harvesting ability of this photosensitizer. Upon implementation in galvanostatic charge-discharge of a Li battery configuration, the storage capacity was found to be increased by 100 %, under 470 nm illumination with output power of 4.0 mW/cm-2 . This proof-of-concept molecular system marks an important milestone towards a new generation of molecular photo-rechargeable materials.

9.
Nano Lett ; 21(8): 3527-3532, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33856814

RESUMEN

Solar energy is one of the most actively pursued renewable energy sources, but like many other sustainable energy sources, its intermittent character means solar cells have to be connected to an energy storage system to balance production and demand. To improve the efficiency of this energy conversion and storage process, photobatteries have recently been proposed where one of the battery electrodes is made from a photoactive material that can directly be charged by light without using solar cells. Here, we present photorechargeable lithium-ion batteries (Photo-LIBs) using photocathodes based on vanadium pentoxide nanofibers mixed with P3HT and rGO additives. These photocathodes support the photocharge separation and transportation process needed to recharge. The proposed Photo-LIBs show capacity enhancements of more than 57% under illumination and can be charged to ∼2.82 V using light and achieve conversion efficiencies of ∼2.6% for 455 nm illumination and ∼0.22% for 1 sun illumination.

10.
Nano Lett ; 20(8): 5967-5974, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32589038

RESUMEN

Off-grid energy storage devices are becoming increasingly important to power distributed applications, such as the Internet of things, and smart city ubiquitous sensor systems. To date, this has been achieved by combining an energy storage device, e.g., a battery or capacitor with an energy harvester, e.g., a solar cell. However, this approach inherently increases the device footprint and the output voltages of energy harvesters often do not match those required by energy storage device. Here we propose the first photo-rechargeable zinc-ion capacitors, where graphitic carbon nitride acts simultaneously as the capacitor electrode and light harvesting material. This approach allows light to be used to recharge the capacitor directly and they can be operated in a continuous light powered mode. These capacitors show a photo-rechargeable specific capacitance of ∼11377 mF g-1, a photo-charging voltage response of ∼850 mV, and a cyclability with ∼90% capacitance retention over 1000 cycles.

11.
Proc Natl Acad Sci U S A ; 114(28): 7403-7407, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28652321

RESUMEN

The evolutionary origins of metabolism, in particular the emergence of the sugar phosphates that constitute glycolysis, the pentose phosphate pathway, and the RNA and DNA backbone, are largely unknown. In cells, a major source of glucose and the large sugar phosphates is gluconeogenesis. This ancient anabolic pathway (re-)builds carbon bonds as cleaved in glycolysis in an aldol condensation of the unstable catabolites glyceraldehyde 3-phosphate and dihydroxyacetone phosphate, forming the much more stable fructose 1,6-bisphosphate. We here report the discovery of a nonenzymatic counterpart to this reaction. The in-ice nonenzymatic aldol addition leads to the continuous accumulation of fructose 1,6-bisphosphate in a permanently frozen solution as followed over months. Moreover, the in-ice reaction is accelerated by simple amino acids, in particular glycine and lysine. Revealing that gluconeogenesis may be of nonenzymatic origin, our results shed light on how glucose anabolism could have emerged in early life forms. Furthermore, the amino acid acceleration of a key cellular anabolic reaction may indicate a link between prebiotic chemistry and the nature of the first metabolic enzymes.


Asunto(s)
Fructosadifosfatos/metabolismo , Gluconeogénesis , Hielo , Aminoácidos/química , Fructosa-Bifosfato Aldolasa/química , Glucosa/química , Glucólisis , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Vía de Pentosa Fosfato , Fosforilación , Fosfatos de Azúcar/química , Temperatura , Factores de Tiempo
12.
Nano Lett ; 19(1): 228-234, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30521349

RESUMEN

The benefits of nanosize active particles in Li-ion batteries are currently ambiguous. They are acclaimed for enhancing the cyclability of certain electrode materials and for improving rate performance. However, at the same time, nanoparticles are criticized for causing side reactions as well as for their low packing density and, therefore, poor volumetric battery performance. This paper demonstrates for the first time that self-assembly can be used to pack nanoparticles into dense battery electrodes with up to 4-fold higher volumetric capacities. Furthermore, despite the dense packing of the self-assembled electrodes, they retain a higher volumetric capacity than randomly dispersed nanoparticles up to rates of 5 C. Finally, we did not observe substential degradation in capacity after 1000 cycles, and post-mortem analysis indicates that the self-assembled structures are maintained during cycling. Therefore, the proposed self-assembled electrodes profit from the advantages of nanostructured battery materials without compromising the volumetric performance.

13.
Small ; 15(45): e1901201, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31544336

RESUMEN

Controlling the arrangement and interface of nanoparticles is essential to achieve good transfer of charge, heat, or mechanical load. This is particularly challenging in systems requiring hybrid nanoparticle mixtures such as combinations of organic and inorganic materials. This work presents a process to coat vertically aligned carbon nanotube (CNT) forests with metal oxide nanoparticles using microwave-assisted hydrothermal synthesis. Hydrothermal processes normally damage delicate CNT forests, which is addressed here by a combination of lithographic patterning, transfer printing, and reduction of the synthesis time. This process is applied for the fabrication of structured Li-ion battery (LIB) electrodes where the aligned CNTs provide a straight electron transport path through the electrode and the hydrothermal coating process is used to coat the CNTs with conversion anode materials for LIBs. These nanoparticles are anchored on the surface of the CNTs and batteries fabricated following this process show a fourfold longer cyclability. Finally, this process is used to create thick electrodes (350 µm) with a gravimetric capacity of over 900 mAh g-1 .

14.
Nano Lett ; 18(3): 1856-1862, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29425044

RESUMEN

Emerging autonomous electronic devices require increasingly compact energy generation and storage solutions. Merging these two functionalities in a single device would significantly increase their volumetric performance, however this is challenging due to material and manufacturing incompatibilities between energy harvesting and storage materials. Here we demonstrate that organic-inorganic hybrid perovskites can both generate and store energy in a rechargeable device termed a photobattery. This photobattery relies on highly photoactive two-dimensional lead halide perovskites to simultaneously achieve photocharging and Li-ion storage. Integrating these functionalities provides simple autonomous power solutions while retaining capacities of up to 100 mAh/g and efficiencies similar to electrodes using a mixture of batteries and solar materials.

15.
Biomed Microdevices ; 20(3): 73, 2018 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-30105633

RESUMEN

In the ever advancing field of minimally invasive surgery, flexible instruments with local degrees of freedom are needed to navigate through the intricate topologies of the human body. Although cable or concentric tube driven solutions have proven their merits in this field, they are inadequate for realizing small bending radii and suffer from friction, which is detrimental when automation is envisioned. Soft robotic actuators with locally actuated degrees of freedom are foreseen to fill in this void, where elastic inflatable actuators are very promising due to their S3-principle, being Small, Soft and Safe. This paper reports on the characterization of a chip-on-tip endoscope, consisting out of a soft robotic pneumatic bending microactuator equipped with a 1.1 × 1.1 mm2 CMOS camera. As such, the total diameter of the endoscope measures 1.66 mm. To show the feasibility of using this system in a surgical environment, a preliminary test on an eye mock-up is conducted.


Asunto(s)
Endoscopios , Procedimientos Quirúrgicos Robotizados/instrumentación , Robótica , Encéfalo/diagnóstico por imagen , Encéfalo/ultraestructura , Diseño de Equipo , Ojo/diagnóstico por imagen , Estudios de Factibilidad , Humanos
16.
Nanotechnology ; 29(36): 365708, 2018 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-29916810

RESUMEN

Some assemblies of nanomaterials, like carbon nanotube (CNT) sheet or film, always show outstanding and anisotropic thermal properties. However, there is still a lack of comprehensive thermal conductivity (κ) characterizations on CNT sheets, as well as a lack of estimations of their true contributions on thermal enhancement of polymer composites when used as additives. Always, these characterizations were hindered by the low heat capacity, anisotropic thermal properties or low electrical conductivity of assemblies and their nanocomposites. The transient κ measurement and calculations were also hampered by accurate determination of parameters, like specific heat capacity, density and cross-section, which could be difficult and controversial for nanomaterials, like CNT sheets. Here, to measure anisotropic κ of CNT sheets directly with high fidelity, we modified the conventional steady-state method by measuring under vacuum and by infrared camera, and then comparing temperature profiles on both reference standard material and a CNT sheet sample. The highly anisotropic thermal conductivities of CNT sheets were characterized comprehensively, with κ/ρ in alignment direction as ∼95 mW m2 K-1 kg-1. Furthermore, by comparing the measured thermal properties of different CNT-epoxy resin composites, the heat conduction pathway created by the CNT hierarchical network was demonstrated to remain intact after the in situ polymerization and curing process. The reliable and direct κ measurement rituals used here, dedicated to nanomaterials, will be also essential to assist in assemblies' application to heat dissipation and composite thermal enhancement.

17.
Small ; 12(32): 4393-403, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27378165

RESUMEN

High-throughput fabrication of microstructured surfaces with multi-directional, re-entrant, or otherwise curved features is becoming increasingly important for applications such as phase change heat transfer, adhesive gripping, and control of electromagnetic waves. Toward this goal, curved microstructures of aligned carbon nanotubes (CNTs) can be fabricated by engineered variation of the CNT growth rate within each microstructure, for example by patterning of the CNT growth catalyst partially upon a layer which retards the CNT growth rate. This study develops a finite-element simulation framework for predictive synthesis of complex CNT microarchitectures by this strain-engineered growth process. The simulation is informed by parametric measurements of the CNT growth kinetics, and the anisotropic mechanical properties of the CNTs, and predicts the shape of CNT microstructures with impressive fidelity. Moreover, the simulation calculates the internal stress distribution that results from extreme deformation of the CNT structures during growth, and shows that delamination of the interface between the differentially growing segments occurs at a critical shear stress. Guided by these insights, experiments are performed to study the time- and geometry-depended stress development, and it is demonstrated that corrugating the interface between the segments of each microstructure mitigates the interface failure. This study presents a methodology for 3D microstructure design based on "pixels" that prescribe directionality to the resulting microstructure, and show that this framework enables the predictive synthesis of more complex architectures including twisted and truss-like forms.

18.
Proc Natl Acad Sci U S A ; 110(3): 848-52, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23271809

RESUMEN

Many bacteria on earth exist in surface-attached communities known as biofilms. These films are responsible for manifold problems, including hospital-acquired infections and biofouling, but they can also be beneficial. Biofilm growth depends on the transport of nutrients and waste, for which diffusion is thought to be the main source of transport. However, diffusion is ineffective for transport over large distances and thus should limit growth. Nevertheless, biofilms can grow to be very large. Here we report the presence of a remarkable network of well-defined channels that form in wild-type Bacillus subtilis biofilms and provide a system for enhanced transport. We observe that these channels have high permeability to liquid flow and facilitate the transport of liquid through the biofilm. In addition, we find that spatial variations in evaporative flux from the surface of these biofilms provide a driving force for the flow of liquid in the channels. These channels offer a remarkably simple system for liquid transport, and their discovery provides insight into the physiology and growth of biofilms.


Asunto(s)
Biopelículas , Agar , Acuaporinas/fisiología , Bacillus subtilis/fisiología , Proteínas Bacterianas/fisiología , Biopelículas/crecimiento & desarrollo , Transporte Biológico Activo , Fenómenos Biofísicos , Permeabilidad , Presión , Temperatura , Agua/metabolismo
19.
Nano Lett ; 15(9): 6095-101, 2015 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-26236949

RESUMEN

Solution-processed organo-lead halide perovskites are produced with sharp, color-pure electroluminescence that can be tuned from blue to green region of visible spectrum (425-570 nm). This was accomplished by controlling the halide composition of CH3NH3Pb(BrxCl1-x)3 [0 ≤ x ≤ 1] perovskites. The bandgap and lattice parameters change monotonically with composition. The films possess remarkably sharp band edges and a clean bandgap, with a single optically active phase. These chloride-bromide perovskites can potentially be used in optoelectronic devices like solar cells and light emitting diodes (LEDs). Here we demonstrate high color-purity, tunable LEDs with narrow emission full width at half maxima (FWHM) and low turn on voltages using thin-films of these perovskite materials, including a blue CH3NH3PbCl3 perovskite LED with a narrow emission FWHM of 5 nm.

20.
Chemphyschem ; 16(16): 3418-24, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26312569

RESUMEN

Hierarchical superstructures formed by self-assembled nanoparticles exhibit interesting electrochemical properties that can potentially be exploited in Li-ion batteries (LIBs) as possible electrode materials. In this work, we tested two different morphologies of CuS superstructures for electrodes, namely, tubular dandelion-like and ball-like assemblies, both of which are composed of similar small covellite nanoparticles. These two CuS morphologies are characterized by their markedly different electrochemical performances, suggesting that their complex structures/morphologies influence the electrochemical properties. At 1.12 A g(-1), the cells made with CuS tubular structures delivered about 420 mAh g(-1), and at 0.56 A g(-1), the capacity was as high as about 500 mAh g(-1) with good capacity retention. Their ease of preparation and processing, together with good electrochemical performance, make CuS tubular dandelion-like clusters attractive for developing low-cost LIBs based on conversion reactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA