Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(41): e2213026119, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36194632

RESUMEN

Supporting cells of the ovary, termed granulosa cells, are essential for ovarian differentiation and oogenesis by providing a nurturing environment for oocyte maintenance and maturation. Granulosa cells are specified in the fetal and perinatal ovary, and sufficient numbers of granulosa cells are critical for the establishment of follicles and the oocyte reserve. Identifying the cellular source from which granulosa cells and their progenitors are derived is an integral part of efforts to understand basic ovarian biology and the etiology of female infertility. In particular, the contribution of mesenchymal cells, especially perivascular cells, to ovarian development is poorly understood but is likely to be a source of new information regarding ovarian function. Here we have identified a cell population in the fetal ovary, which is a Nestin-expressing perivascular cell type. Using lineage tracing and ex vivo organ culture methods, we determined that perivascular cells are multipotent progenitors that contribute to granulosa, thecal, and pericyte cell lineages in the ovary. Maintenance of these progenitors is dependent on ovarian vasculature, likely reliant on endothelial-mesenchymal Notch signaling interactions. Depletion of Nestin+ progenitors resulted in a disruption of granulosa cell specification and in an increased number of germ cell cysts that fail to break down, leading to polyovular ovarian follicles. These findings highlight a cell population in the ovary and uncover a key role for vasculature in ovarian differentiation, which may lead to insights into the origins of female gonad dysgenesis and infertility.


Asunto(s)
Ovario , Pericitos , Animales , Femenino , Células de la Granulosa/metabolismo , Nestina/genética , Nestina/metabolismo , Oogénesis/fisiología , Folículo Ovárico , Ovario/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34074765

RESUMEN

Testicular androgen is a master endocrine factor in the establishment of external genital sex differences. The degree of androgenic exposure during development is well known to determine the fate of external genitalia on a spectrum of female- to male-specific phenotypes. However, the mechanisms of androgenic regulation underlying sex differentiation are poorly defined. Here, we show that the genomic environment for the expression of male-biased genes is conserved to acquire androgen responsiveness in both sexes. Histone H3 at lysine 27 acetylation (H3K27ac) and H3K4 monomethylation (H3K4me1) are enriched at the enhancer of male-biased genes in an androgen-independent manner. Specificity protein 1 (Sp1), acting as a collaborative transcription factor of androgen receptor, regulates H3K27ac enrichment to establish conserved transcriptional competency for male-biased genes in both sexes. Genetic manipulation of MafB, a key regulator of male-specific differentiation, and Sp1 regulatory MafB enhancer elements disrupts male-type urethral differentiation. Altogether, these findings demonstrate conservation of androgen responsiveness in both sexes, providing insights into the regulatory mechanisms underlying sexual fate during external genitalia development.


Asunto(s)
Genitales Masculinos/metabolismo , Diferenciación Sexual , Acetilación , Andrógenos , Animales , Sistemas CRISPR-Cas , Femenino , Regulación de la Expresión Génica , Histonas/metabolismo , Factor de Transcripción MafB , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , Receptores Androgénicos , Factores de Transcripción/metabolismo
3.
Annu Rev Cell Dev Biol ; 25: 457-82, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19807280

RESUMEN

A critical element of successful sexual reproduction is the generation of sexually dimorphic adult reproductive organs, the testis and ovary, which produce functional gametes. Examination of different vertebrate species shows that the adult gonad is remarkably similar in its morphology across different phylogenetic classes. Surprisingly, however, the cellular and molecular programs employed to create similar organs are not evolutionarily conserved. We highlight the mechanisms used by different vertebrate model systems to generate the somatic architecture necessary to support gametogenesis. In addition, we examine the different vertebrate patterns of germ cell migration from their site of origin to colonize the gonad and highlight their roles in sex-specific morphogenesis. We also discuss the plasticity of the adult gonad and consider how different genetic and environmental conditions can induce transitions between testis and ovary morphology.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Ovario/embriología , Testículo/embriología , Vertebrados/embriología , Animales , Movimiento Celular , Femenino , Humanos , Masculino , Morfogénesis , Ovario/metabolismo , Diferenciación Sexual , Testículo/metabolismo
4.
Biol Reprod ; 105(4): 958-975, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34007995

RESUMEN

Testis differentiation is initiated when Sry in pre-Sertoli cells directs the gonad toward a male-specific fate. Sertoli cells are essential for testis development, but cell types within the interstitial compartment, such as immune and endothelial cells, are also critical for organ formation. Our previous work implicated macrophages in fetal testis morphogenesis, but little is known about genes underlying immune cell development during organogenesis. Here, we examine the role of the immune-associated genes Mafb and Maf in mouse fetal gonad development, and we demonstrate that deletion of these genes leads to aberrant hematopoiesis manifested by supernumerary gonadal monocytes. Mafb; Maf double knockout embryos underwent initial gonadal sex determination normally, but exhibited testicular hypervascularization, testis cord formation defects, Leydig cell deficit, and a reduced number of germ cells. In general, Mafb and Maf alone were dispensable for gonad development; however, when both genes were deleted, we observed significant defects in testicular morphogenesis, indicating that Mafb and Maf work redundantly during testis differentiation. These results demonstrate previously unappreciated roles for Mafb and Maf in immune and vascular development and highlight the importance of interstitial cells in gonadal differentiation.


Asunto(s)
Factor de Transcripción MafB/genética , Células Mieloides/metabolismo , Organogénesis/genética , Proteínas Proto-Oncogénicas c-maf/genética , Testículo/embriología , Animales , Embrión de Mamíferos/embriología , Factor de Transcripción MafB/metabolismo , Masculino , Ratones , Proteínas Proto-Oncogénicas c-maf/metabolismo
5.
Development ; 144(9): 1607-1618, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28360133

RESUMEN

During early gonadogenesis, proliferating cells in the coelomic epithelium (CE) give rise to most of the somatic cells in both XX and XY gonads. Previous dye-labeling experiments showed that a single CE cell could give rise to additional CE cells and to both supporting and interstitial cell lineages, implying that cells in the CE domain are multipotent progenitors, and suggesting that an asymmetric division is involved in the acquisition of gonadal cell fates. We found that NUMB is asymmetrically localized in CE cells, suggesting that it might be involved. To test this hypothesis, we conditionally deleted Numb on a Numbl mutant background just prior to gonadogenesis. Mutant gonads showed a loss of cell polarity in the surface epithelial layers, large interior cell patches expressing the undifferentiated cell marker LHX9, and a loss of differentiated cells in somatic cell lineages. These results indicate that NUMB is necessary for establishing polarity in CE cells, and that asymmetric divisions resulting from CE polarity are required for commitment to differentiated somatic cell fates. Surprisingly, germ cells, which do not arise from the CE, were also affected in mutants, which may be a direct or indirect effect of loss of Numb.


Asunto(s)
Linaje de la Célula , Gónadas/embriología , Gónadas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Organogénesis , Animales , División Celular Asimétrica/efectos de los fármacos , Recuento de Células , Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Linaje de la Célula/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Polaridad Celular/genética , Células Cultivadas , Dipéptidos/farmacología , Embrión de Mamíferos/citología , Embrión de Mamíferos/efectos de los fármacos , Embrión de Mamíferos/metabolismo , Epitelio/embriología , Epitelio/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Gónadas/efectos de los fármacos , Gónadas/patología , Péptidos y Proteínas de Señalización Intracelular , Proteínas con Homeodominio LIM/metabolismo , Células Intersticiales del Testículo/citología , Células Intersticiales del Testículo/efectos de los fármacos , Células Intersticiales del Testículo/metabolismo , Masculino , Proteínas de la Membrana/genética , Ratones , Modelos Biológicos , Mutación/genética , Proteínas del Tejido Nervioso/genética , Organogénesis/efectos de los fármacos , Organogénesis/genética , Fenotipo , Receptores Notch/genética , Receptores Notch/metabolismo , Células de Sertoli/citología , Células de Sertoli/efectos de los fármacos , Células de Sertoli/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo
6.
Circulation ; 138(12): 1236-1252, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-29653926

RESUMEN

BACKGROUND: Fibronectin (FN) polymerization is necessary for collagen matrix deposition and is a key contributor to increased abundance of cardiac myofibroblasts (MFs) after cardiac injury. We hypothesized that interfering with FN polymerization or its genetic ablation in fibroblasts would attenuate MF and fibrosis and improve cardiac function after ischemia/reperfusion (I/R) injury. METHODS: Mouse and human MFs were used to assess the impact of the FN polymerization inhibitor (pUR4) in attenuating pathological cellular features such as proliferation, migration, extracellular matrix deposition, and associated mechanisms. To evaluate the therapeutic potential of inhibiting FN polymerization in vivo, wild-type mice received daily intraperitoneal injections of either pUR4 or control peptide (III-11C) immediately after cardiac surgery for 7 consecutive days. Mice were analyzed 7 days after I/R to assess MF markers and inflammatory cell infiltration or 4 weeks after I/R to evaluate long-term effects of FN inhibition on cardiac function and fibrosis. Furthermore, inducible, fibroblast-restricted, FN gene-ablated (Tcf21MerCreMer; Fnflox) mice were used to evaluate cell specificity of FN expression and polymerization in the heart. RESULTS: pUR4 administration on activated MFs reduced FN and collagen deposition into the extracellular matrix and attenuated cell proliferation, likely mediated through decreased c-myc signaling. pUR4 also ameliorated fibroblast migration accompanied by increased ß1 integrin internalization and reduced levels of phosphorylated focal adhesion kinase protein. In vivo, daily administration of pUR4 for 7 days after I/R significantly reduced MF markers and neutrophil infiltration. This treatment regimen also significantly attenuated myocardial dysfunction, pathological cardiac remodeling, and fibrosis up to 4 weeks after I/R. Last, inducible ablation of FN in fibroblasts after I/R resulted in significant functional cardioprotection with reduced hypertrophy and fibrosis. The addition of pUR4 to the FN-ablated mice did not confer further cardioprotection, suggesting that the salutary effects of inhibiting FN polymerization may be mediated largely through effects on FN secreted from the cardiac fibroblast lineage. CONCLUSIONS: Inhibiting FN polymerization or cardiac fibroblast gene expression attenuates pathological properties of MFs in vitro and ameliorates adverse cardiac remodeling and fibrosis in an in vivo model of heart failure. Interfering with FN polymerization may be a new therapeutic strategy for treating cardiac fibrosis and heart failure.


Asunto(s)
Fibronectinas/antagonistas & inhibidores , Insuficiencia Cardíaca/tratamiento farmacológico , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Miofibroblastos/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Colágeno/metabolismo , Modelos Animales de Enfermedad , Fibronectinas/genética , Fibronectinas/metabolismo , Fibrosis , Quinasa 1 de Adhesión Focal/metabolismo , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Humanos , Integrina beta1/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miofibroblastos/metabolismo , Miofibroblastos/patología , Infiltración Neutrófila/efectos de los fármacos , Fosforilación , Polimerizacion , Transducción de Señal/efectos de los fármacos
7.
Arterioscler Thromb Vasc Biol ; 38(3): 636-644, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29348122

RESUMEN

OBJECTIVE: Hematopoietic-derived cells have been reported in heart valves but remain poorly characterized. Interestingly, recent studies reveal infiltration of leukocytes and increased macrophages in human myxomatous mitral valves. Nevertheless, timing and contribution of macrophages in normal valves and myxomatous valve disease are still unknown. The objective is to characterize leukocytes during postnatal heart valve maturation and identify macrophage subsets in myxomatous valve disease. APPROACH AND RESULTS: Leukocytes are detected in heart valves after birth, and their numbers increase during postnatal valve development. Flow cytometry and immunostaining analysis indicate that almost all valve leukocytes are myeloid cells, consisting of at least 2 differentially localized macrophage subsets and dendritic cells. Beginning a week after birth, increased numbers of CCR2+ (C-C chemokine receptor type 2) macrophages are present, consistent with infiltrating populations of monocytes, and macrophages are localized in regions of biomechanical stress in the valve leaflets. Valve leukocytes maintain expression of CD (cluster of differentiation) 45 and do not contribute to significant numbers of endothelial or interstitial cells. Macrophage lineages were examined in aortic and mitral valves of Axin2 KO (knockout) mice that exhibit myxomatous features. Infiltrating CCR2+ monocytes and expansion of CD206-expressing macrophages are localized in regions where modified heavy chain hyaluronan is observed in myxomatous valve leaflets. Similar colocalization of modified hyaluronan and increased numbers of macrophages were observed in human myxomatous valve disease. CONCLUSIONS: Our study demonstrates the heterogeneity of myeloid cells in heart valves and highlights an alteration of macrophage subpopulations, notably an increased presence of infiltrating CCR2+ monocytes and CD206+ macrophages, in myxomatous valve disease.


Asunto(s)
Linaje de la Célula , Matriz Extracelular/patología , Enfermedades de las Válvulas Cardíacas/patología , Válvulas Cardíacas/patología , Macrófagos/patología , Factores de Edad , Anciano , Animales , Proteína Axina/genética , Proteína Axina/metabolismo , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/patología , Modelos Animales de Enfermedad , Matriz Extracelular/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Enfermedades de las Válvulas Cardíacas/genética , Enfermedades de las Válvulas Cardíacas/metabolismo , Válvulas Cardíacas/metabolismo , Humanos , Ácido Hialurónico/metabolismo , Lectinas Tipo C/metabolismo , Leucocitos/metabolismo , Leucocitos/patología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Macrófagos/metabolismo , Masculino , Receptor de Manosa , Lectinas de Unión a Manosa/metabolismo , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Persona de Mediana Edad , Mutación , Fenotipo , Receptores CCR2/metabolismo , Receptores de Superficie Celular/metabolismo
8.
Biol Reprod ; 96(5): 1060-1070, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28339687

RESUMEN

The observation of pups born from recipient and donor mice after ovariectomy followed by ovarian transplant poses the interesting possibility of an extraovarian source of oocytes. However, whether mammalian adult oocytes reside in extragonadal tissues remains elusive. Using transgenic fluorescent reporter mice and transplantation surgeries, we demonstrate the presence of both donor- and recipient-derived corpora lutea and recovery of both donor- and recipient-derived offspring from ovariectomized mice after transplantation of donor ovaries. A potential region for extraovarian oocytes is the hilum, a ligament-like structure between the ovary and the reproductive tract. Immunofluorescent confocal microscopy of mouse ovaries and reproductive tracts revealed that a population of primordial follicles resides outside the ovary within the hilum. Ovariectomy-only controls confirmed that oocytes remain in the recipient hilum after surgery. These results provide evidence that the hilum is a reserve source of follicles, which likely return to the ovary for maturation and ovulation. By identifying a new follicle reservoir, our study addresses a long-standing question in reproductive biology and contributes to new conceptual knowledge about ovarian function and fertility.


Asunto(s)
Fertilidad/fisiología , Oocitos/fisiología , Ovario/citología , Ovario/fisiología , Animales , Femenino , Genotipo , Células Germinativas , Gónadas/citología , Trasplante de Células Madre Hematopoyéticas , Ratones , Ratones Endogámicos C57BL , Folículo Ovárico/fisiología , Ovariectomía , Ovario/trasplante , Ovulación , Embarazo
9.
Reproduction ; 153(4): R151-R162, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28115580

RESUMEN

Intricate cellular and molecular interactions ensure that spermatogonial stem cells (SSCs) proceed in a step-wise differentiation process through spermatogenesis and spermiogenesis to produce sperm. SSCs lie within the seminiferous tubule compartment, which provides a nurturing environment for the development of sperm. Cells outside of the tubules, such as interstitial and peritubular cells, also help direct SSC activity. This review focuses on interstitial (interstitial macrophages, Leydig cells and vasculature) and peritubular (peritubular macrophages and peritubular myoid cells) cells and their role in regulating the SSC self-renewal and differentiation in mammals. Leydig cells, the major steroidogenic cells in the testis, influence SSCs through secreted factors, such as insulin growth factor 1 (IGF1) and colony-stimulating factor 1 (CSF1). Macrophages interact with SSCs through various potential mechanisms, such as CSF1 and retinoic acid (RA), to induce the proliferation or differentiation of SSCs respectively. Vasculature influences SSC dynamics through CSF1 and vascular endothelial growth factor (VEGF) and by regulating oxygen levels. Lastly, peritubular myoid cells produce one of the most well-known factors that is required for SSC self-renewal, glial cell line-derived neurotrophic factor (GDNF), as well as CSF1. Overall, SSC interactions with interstitial and peritubular cells are critical for SSC function and are an important underlying factor promoting male fertility.


Asunto(s)
Células Intersticiales del Testículo/citología , Espermatogonias/fisiología , Células Madre/fisiología , Animales , Diferenciación Celular , Humanos , Masculino , Células Madre/citología
10.
Proc Natl Acad Sci U S A ; 111(23): E2384-93, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24912173

RESUMEN

Organogenesis of the testis is initiated when expression of Sry in pre-Sertoli cells directs the gonad toward a male-specific fate. The cells in the early bipotential gonad undergo de novo organization to form testis cords that enclose germ cells inside tubules lined by epithelial Sertoli cells. Although Sertoli cells are a driving force in the de novo formation of testis cords, recent studies in mouse showed that reorganization of the vasculature and of interstitial cells also play critical roles in testis cord morphogenesis. However, the mechanism driving reorganization of the vasculature during fetal organogenesis remained unclear. Here we demonstrate that fetal macrophages are associated with nascent gonadal and mesonephric vasculature during the initial phases of testis morphogenesis. Macrophages mediate vascular reorganization and prune errant germ cells and somatic cells after testis architecture is established. We show that gonadal macrophages are derived from primitive yolk-sac hematopoietic progenitors and exhibit hallmarks of M2 activation status, suggestive of angiogenic and tissue remodeling functions. Depletion of macrophages resulted in impaired vascular reorganization and abnormal cord formation. These findings reveal a previously unappreciated role for macrophages in testis morphogenesis and suggest that macrophages are an intermediary between neovascularization and organ architecture during fetal organogenesis.


Asunto(s)
Macrófagos/metabolismo , Morfogénesis , Testículo/irrigación sanguínea , Testículo/embriología , Animales , Receptor 1 de Quimiocinas CX3C , Linaje de la Célula , Feto/irrigación sanguínea , Feto/citología , Feto/embriología , Citometría de Flujo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células Madre Hematopoyéticas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Confocal , Células Mieloides/metabolismo , Técnicas de Cultivo de Órganos , Receptores de Quimiocina/genética , Receptores de Quimiocina/metabolismo , Testículo/citología , Factores de Tiempo , Saco Vitelino/metabolismo
12.
PLoS Genet ; 8(3): e1002575, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22438826

RESUMEN

The divergence of distinct cell populations from multipotent progenitors is poorly understood, particularly in vivo. The gonad is an ideal place to study this process, because it originates as a bipotential primordium where multiple distinct lineages acquire sex-specific fates as the organ differentiates as a testis or an ovary. To gain a more detailed understanding of the process of gonadal differentiation at the level of the individual cell populations, we conducted microarrays on sorted cells from XX and XY mouse gonads at three time points spanning the period when the gonadal cells transition from sexually undifferentiated progenitors to their respective sex-specific fates. We analyzed supporting cells, interstitial/stromal cells, germ cells, and endothelial cells. This work identified genes specifically depleted and enriched in each lineage as it underwent sex-specific differentiation. We determined that the sexually undifferentiated germ cell and supporting cell progenitors showed lineage priming. We found that germ cell progenitors were primed with a bias toward the male fate. In contrast, supporting cells were primed with a female bias, indicative of the robust repression program involved in the commitment to XY supporting cell fate. This study provides a molecular explanation reconciling the female default and balanced models of sex determination and represents a rich resource for the field. More importantly, it yields new insights into the mechanisms by which different cell types in a single organ adopt their respective fates.


Asunto(s)
Desarrollo Embrionario/genética , Células Endoteliales , Células Germinativas , Gónadas , Células del Estroma , Animales , Diferenciación Celular , Linaje de la Célula , Células Endoteliales/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/metabolismo , Gónadas/crecimiento & desarrollo , Gónadas/metabolismo , Masculino , Ratones , Análisis por Micromatrices , Procesos de Determinación del Sexo , Células del Estroma/metabolismo
13.
Dev Biol ; 377(1): 188-201, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23391689

RESUMEN

Notch signaling components have long been detected in Sertoli and germ cells in the developing and mature testis. However, the role of this pathway in testis development and spermatogenesis remains unknown. Using reporter mice expressing green fluorescent protein following Notch receptor activation, we found that Notch signaling was active in Sertoli cells at various fetal, neonatal, and adult stages. Since Notch signaling specifies stem cell fate in many developing and mature organ systems, we hypothesized that maintenance and differentiation of gonocytes and/or spermatogonial stem cells would be modulated through this pathway in Sertoli cells. To this end, we generated mutant mice constitutively expressing the active, intracellular domain of NOTCH1 (NICD1) in Sertoli cells. We found that mutant Sertoli cells were morphologically normal before and after birth, but presented a number of functional changes that drastically affected gonocyte numbers and physiology. We observed aberrant exit of gonocytes from mitotic arrest, migration toward cord periphery, and premature differentiation before birth. These events, presumably unsupported by the cellular microenvironment, were followed by gonocyte apoptosis and near complete disappearance of the gonocytes by day 2 after birth. Molecular analysis demonstrated that these effects are correlated with a dysregulation of Sertoli-expressed genes that are required for germ cell maintenance, such as Cyp26b1 and Gdnf. Taken together, our results demonstrate that Notch signaling is active in Sertoli cells throughout development and that proper regulation of Notch signaling in Sertoli cells is required for the maintenance of gonocytes in an undifferentiated state during fetal development.


Asunto(s)
Ciclo Celular , Receptor Notch1/metabolismo , Células de Sertoli/citología , Transducción de Señal , Espermatogonias/citología , Espermatogonias/metabolismo , Envejecimiento , Animales , Apoptosis , Ciclo Celular/genética , Diferenciación Celular , Proliferación Celular , Sistema Enzimático del Citocromo P-450/metabolismo , Feto/citología , Regulación del Desarrollo de la Expresión Génica , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Integrasas/metabolismo , Masculino , Ratones , Mitosis , Especificidad de Órganos , Fenotipo , Ácido Retinoico 4-Hidroxilasa , Células de Sertoli/metabolismo , Transducción de Señal/genética
14.
Proc Natl Acad Sci U S A ; 108(1): 167-72, 2011 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-21173261

RESUMEN

The initiation of de novo testis cord organization in the fetal gonad is poorly understood. Endothelial cell migration into XY gonads initiates testis morphogenesis. However, neither the signals that regulate vascularization of the gonad nor the mechanisms through which vessels affect tissue morphogenesis are known. Here, we show that Vegf signaling is required for gonad vascularization and cord morphogenesis. We establish that interstitial cells express Vegfa and respond, by proliferation, to endothelial migration. In the absence of vasculature, four-dimensional imaging of whole organs revealed that interstitial proliferation is reduced and prevents formation of wedge-like structures that partition the gonad into cord-forming domains. Antagonizing vessel maturation also reduced proliferation. However, proliferation of mesenchymal cells was rescued by the addition of PDGF-BB. These results suggest a pathway that integrates initiation of vascular development and testis cord morphogenesis, and lead to a model in which undifferentiated mesenchyme recruits blood vessels, proliferates in response, and performs a primary function in the morphogenesis and patterning of the developing organ.


Asunto(s)
Tipificación del Cuerpo/fisiología , Endotelio Vascular/metabolismo , Mesodermo/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal/fisiología , Testículo/embriología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Becaplermina , Movimiento Celular/fisiología , Cartilla de ADN/genética , Endotelio Vascular/fisiología , Citometría de Flujo , Inmunohistoquímica , Masculino , Ratones , Ratones Transgénicos , Modelos Biológicos , Proteínas Proto-Oncogénicas c-sis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , beta-Galactosidasa
15.
Dev Cell ; 14(2): 275-86, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18267095

RESUMEN

Sex determination in Drosophila is commonly thought to be a cell-autonomous process, where each cell decides its own sexual fate based on its sex chromosome constitution (XX versus XY). This is in contrast to sex determination in mammals, which largely acts nonautonomously through cell-cell signaling. Here we examine how sexual dimorphism is created in the Drosophila gonad by investigating the formation of the pigment cell precursors, a male-specific cell type in the embryonic gonad. Surprisingly, we find that sex determination in the pigment cell precursors, as well as the male-specific somatic gonadal precursors, is non-cell autonomous. Male-specific expression of Wnt2 within the somatic gonad triggers pigment cell precursor formation from surrounding cells. Our results indicate that nonautonomous sex determination is important for creating sexual dimorphism in the Drosophila gonad, similar to the manner in which sex-specific gonad formation is controlled in mammals.


Asunto(s)
Drosophila melanogaster/embriología , Gónadas/embriología , Caracteres Sexuales , Procesos de Determinación del Sexo , Animales , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Cuerpo Adiposo/citología , Cuerpo Adiposo/metabolismo , Gónadas/citología , Masculino , Modelos Biológicos , Proteínas Nucleares/metabolismo , Especificidad de Órganos , Factor de Transcripción SOX9 , Células Madre/citología , Células Madre/metabolismo , Testículo/citología , Testículo/embriología , Testículo/metabolismo , Proteínas Wnt/metabolismo
16.
Biol Reprod ; 88(4): 91, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23467742

RESUMEN

Leydig cells are the steroidogenic lineage of the mammalian testis that produces testosterone, a key hormone required throughout male fetal and adult life for virilization and spermatogenesis. Both fetal and adult Leydig cells arise from a progenitor population in the testis interstitium but are thought to be lineage-independent of one another. Genetic evidence indicates that Notch signaling is required during fetal life to maintain a balance between differentiated Leydig cells and their progenitors, but the elusive progenitor cell type and ligands involved have not been identified. In this study, we show that the Notch pathway signals through the ligand JAG1 in perivascular interstitial cells during fetal life. In the early postnatal testis, we show that circulating levels of testosterone directly affect Notch signaling, implicating a feedback role for systemic circulating factors in the regulation of progenitor cells. Between Postnatal Days 3 and 21, as fetal Leydig cells disappear from the testis and are replaced by adult Leydig cells, the perivascular population of interstitial cells active for Notch signaling declines, consistent with distinct regulation of adult Leydig progenitors.


Asunto(s)
Células Intersticiales del Testículo/fisiología , Células Madre/fisiología , Testículo/embriología , Testosterona/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/fisiología , Feto/efectos de los fármacos , Feto/metabolismo , Feto/fisiología , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/fisiología , Proteína Jagged-1 , Células Intersticiales del Testículo/efectos de los fármacos , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores Notch/metabolismo , Receptores Notch/fisiología , Proteínas Serrate-Jagged , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Células Madre/efectos de los fármacos , Testosterona/sangre , Testosterona/farmacología
17.
Front Cell Dev Biol ; 11: 1339385, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38250327

RESUMEN

Embryonic development and adult physiology are dependent on the action of steroid hormones. In particular, the reproductive system is reliant on hormonal signaling to promote gonadal function and to ensure fertility. Here we will describe hormone receptor functions and their impacts on testicular function, focusing on a specific group of essential hormones: androgens, estrogens, progesterone, cortisol, and aldosterone. In addition to focusing on hormone receptor function and localization within the testis, we will highlight the effects of altered receptor signaling, including the consequences of reduced and excess signaling activity. These hormones act through various cellular pathways and receptor types, emphasizing the need for a multifaceted research approach to understand their critical roles in testicular function. Hormones exhibit intricate interactions with each other, as evidenced, for example, by the antagonistic effects of progesterone on mineralocorticoid receptors and cortisol's impact on androgens. In light of research findings in the field demonstrating an intricate interplay between hormones, a systems biology approach is crucial for a nuanced understanding of this complex hormonal network. This review can serve as a resource for further investigation into hormonal support of male reproductive health.

18.
Nat Commun ; 14(1): 1439, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36922518

RESUMEN

A growing body of evidence demonstrates that fetal-derived tissue-resident macrophages have developmental functions. It has been proposed that macrophages promote testicular functions, but which macrophage populations are involved is unclear. Previous studies showed that macrophages play critical roles in fetal testis morphogenesis and described two adult testicular macrophage populations, interstitial and peritubular. There has been debate regarding the hematopoietic origins of testicular macrophages and whether distinct macrophage populations promote specific testicular functions. Here our hematopoietic lineage-tracing studies in mice show that yolk-sac-derived macrophages comprise the earliest testicular macrophages, while fetal hematopoietic stem cells (HSCs) generate monocytes that colonize the gonad during a narrow time window in a Sertoli-cell-dependent manner and differentiate into adult testicular macrophages. Finally, we show that yolk-sac-derived versus HSC-derived macrophages have distinct functions during testis morphogenesis, while interstitial macrophages specifically promote adult Leydig cell steroidogenesis. Our findings provide insight into testicular macrophage origins and their tissue-specific roles.


Asunto(s)
Macrófagos , Testículo , Masculino , Animales , Ratones , Monocitos , Células Madre Hematopoyéticas , Feto
19.
Cell Death Dis ; 14(8): 501, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542070

RESUMEN

Gonadal sex determination and differentiation are controlled by somatic support cells of testes (Sertoli cells) and ovaries (granulosa cells). In testes, the epigenetic mechanism that maintains chromatin states responsible for suppressing female sexual differentiation remains unclear. Here, we show that Polycomb repressive complex 1 (PRC1) suppresses a female gene regulatory network in postnatal Sertoli cells. We genetically disrupted PRC1 function in embryonic Sertoli cells after sex determination, and we found that PRC1-depleted postnatal Sertoli cells exhibited defective proliferation and cell death, leading to the degeneration of adult testes. In adult Sertoli cells, PRC1 suppressed specific genes required for granulosa cells, thereby inactivating the female gene regulatory network. Chromatin regions associated with female-specific genes were marked by Polycomb-mediated repressive modifications: PRC1-mediated H2AK119ub and PRC2-mediated H3K27me3. Taken together, this study identifies a critical Polycomb-based mechanism that suppresses ovarian differentiation and maintains Sertoli cell fate in adult testes.


Asunto(s)
Histonas , Complejo Represivo Polycomb 1 , Femenino , Masculino , Humanos , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Histonas/genética , Histonas/metabolismo , Testículo/metabolismo , Redes Reguladoras de Genes , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Cromatina , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Diferenciación Celular/genética
20.
Dev Biol ; 352(1): 14-26, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21255566

RESUMEN

During the differentiation of the mammalian embryonic testis, two compartments are defined: the testis cords and the interstitium. The testis cords give rise to the adult seminiferous tubules, whereas steroidogenic Leydig cells and other less well characterized cell types differentiate in the interstitium (the space between testis cords). Although the process of testis cord formation is essential for male development, it is not entirely understood. It has been viewed as a Sertoli-cell driven process, but growing evidence suggests that interstitial cells play an essential role during testis formation. However, little is known about the origin of the interstitium or the molecular and cellular diversity within this early stromal compartment. To better understand the process of mammalian gonad differentiation, we have undertaken an analysis of developing interstitial/stromal cells in the early mouse testis and ovary. We have discovered molecular heterogeneity in the interstitium and have characterized new markers of distinct cell types in the gonad: MAFB, C-MAF, and VCAM1. Our results show that at least two distinct progenitor lineages give rise to the interstitial/stromal compartment of the gonad: the coelomic epithelium and specialized cells along the gonad-mesonephros border. We demonstrate that both these populations give rise to interstitial precursors that can differentiate into fetal Leydig cells. Our analysis also reveals that perivascular cells migrate into the gonad from the mesonephric border along with endothelial cells and that these vessel-associated cells likely represent an interstitial precursor lineage. This study highlights the cellular diversity of the interstitial cell population and suggests that complex cell-cell interactions among cells in the interstitium are involved in testis morphogenesis.


Asunto(s)
Linaje de la Célula , Feto/citología , Células Intersticiales del Testículo/citología , Células Madre/citología , Testículo/citología , Testículo/embriología , Animales , Diferenciación Celular , Movimiento Celular , Células Epiteliales/citología , Células Epiteliales/metabolismo , Células Intersticiales del Testículo/metabolismo , Factores de Transcripción Maf/metabolismo , Masculino , Mesonefro/citología , Mesonefro/metabolismo , Ratones , Modelos Biológicos , Morfogénesis , Células Madre/metabolismo , Testículo/irrigación sanguínea , Testículo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA