Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 142(1): 502-511, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31814397

RESUMEN

Substituted triphenylamine (TPA) radical cations show great potential as oxidants and as spin-containing units in polymer magnets. Their properties can be further tuned by supramolecular assembly. Here, we examine how the properties of photogenerated radical cations, intrinsic to TPA macrocycles, are altered upon their self-assembly into one-dimensional columns. These macrocycles consist of two TPAs and two methylene ureas, which drive the assembly into porous organic materials. Advantageously, upon activation the crystals can undergo guest exchange in a single-crystal-to-single-crystal transformation generating a series of isoskeletal host-guest complexes whose properties can be directly compared. Photoinduced electron transfer, initiated using 365 nm light-emitting diodes, affords radicals at room temperature as observed by electron paramagnetic resonance (EPR) spectroscopy. The line shape of the EPR spectra and the quantity of radicals can be modulated by both polarity and heavy atom inclusion of the encapsulated guest. These photogenerated radicals are persistent, with half-lives between 1 and 7 d and display no degradation upon radical decay. Re-irradiation of the samples can restore the radical concentration back to a similar maximum concentration, a feature that is reproducible over several cycles. EPR simulations of a representative spectrum indicate two species, one containing two N hyperfine interactions and an additional broad signal with no resolvable hyperfine interaction. Intriguingly, TPA analogues without bromine substitution also exhibit similar quantities of photogenerated radicals, suggesting that supramolecular strategies can enable more flexibility in stable TPA radical structures. These studies will help guide the development of new photoactive materials.

2.
J Am Chem Soc ; 140(40): 13064-13070, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30212205

RESUMEN

Supramolecular assembly of urea-tethered benzophenone molecules results in the formation of remarkably persistent triplet radical pairs upon UV irradiation at room temperature, whereas no radicals were observed in solution. The factors that lead to emergent organic radicals are correlated with the microenvironment around the benzophenone carbonyl, types of proximal hydrogens, and the rigid supramolecular network. The absorption spectra of the linear analogues were rationalized using time-dependent density functional theory calculations on the crystal structure and in dimethyl sulfoxide, employing an implicit solvation model to describe structural and electronic solvent effects. Inspection of the natural transition orbitals for the more important excitation bands of the absorption spectra indicates that crystallization of the benzophenone-containing molecules should present a stark contrast in photophysical properties versus that in solution, which was indeed reflected by their quantum efficiencies upon solid-state assembly. Persistent organic radicals have prospective applications ranging from organic light-emitting diode technology to NMR polarizing agents.

3.
Chemistry ; 23(34): 8315-8319, 2017 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-28423212

RESUMEN

UV-irradiation of a self-assembled benzophenone bis-urea macrocycle generates µm amounts of radicals that persist for weeks under ambient conditions. High-field EPR and variable-temperature X-band EPR studies suggest a resonance stabilized radical pair through H-abstraction. These endogenous radicals were applied as a polarizing agent for magic angle spinning (MAS) dynamic nuclear polarization (DNP) NMR enhancement. The field-stepped DNP enhancement profile exhibits a sharp peak with a maximum enhancement of ϵon/off =4 superimposed on a nearly constant DNP enhancement of ϵon/off =2 over a broad field range. This maximum coincides with the high field EPR absorption spectrum, consistent with an Overhauser effect mechanism. DNP enhancement was observed for both the host and guests, suggesting that even low levels of endogenous radicals can facilitate the study of host-guest relationships in the solid-state.

4.
ACS Omega ; 4(5): 8290-8298, 2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31459915

RESUMEN

Herein, we examine the photochemical formation of reactive oxygen species (ROS) by a porous benzophenone-containing bis-urea host (1) to investigate the mechanism of photooxidations that occur within the confines of its nanochannels. UV irradiation of the self-assembled host in the presence of molecular oxygen generates both singlet oxygen and superoxide when suspended in solution. The efficiency of ROS generation by the host is lower than that of benzophenone (BP), which could be beneficial for reactions carried out catalytically, as ROS species react quickly and often unselectively. Superoxide formation was detected through reaction with 5,5-dimethyl-1-pyrroline N-oxide in the presence of methanol. However, it is not detected in CHCl3, as it reacts rapidly with the solvent to generate methaneperoxy and chloride anions, similar to BP. The lifetime of airborne singlet oxygen (τΔairborne) was examined at the air-solid outer surface of the host and host·quencher complexes and suggests that quenching is a surface phenomenon. The efficiency of the host and BP as catalysts was compared for the photooxidation of 1-methyl-1-cyclohexene in solution. Both the host and BP mediate the photooxidation in CHCl3, benzene, and benzene-d 6, producing primarily epoxide-derived products with low selectivity likely by both type I and type II photooxidation processes. Interestingly, in CHCl3, two chlorohydrins were also formed, reflecting the formation of chloride in this solvent. In contrast, UV irradiation of the host·guest crystals in an oxygen atmosphere produced no epoxide and appeared to favor mainly the type II processes. Photolysis afforded high conversion to only three products: an enone, a tertiary allylic alcohol, and a diol, which demonstrates the accessibility of the encapsulated reactants to oxygen and the influence of confinement on the reaction pathway.

5.
Chem Sci ; 10(9): 2670-2677, 2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30996983

RESUMEN

UV-irradiation of assembled urea-tethered triphenylamine dimers results in the formation of persistent radicals, whereas radicals generated in solution are reactive and quickly degrade. In the solid-state, high quantities of radicals (approximately 1 in 150 molecules) are formed with a half-life of one week with no significant change in the single crystal X-ray diffraction. Remarkably, after decay, re-irradiation of the solid sample regenerates the radicals to their original concentration. The photophysics upon radical generation are also altered. Both the absorption and emission are significantly quenched without external oxidation likely due to the delocalization of the radicals within the crystals. The factors that influence radical stability and generation are correlated to the rigid supramolecular framework formed by the urea tether of the triphenylamine dimer. Electrochemical evidence demonstrates that these compounds can be oxidized in solution at 1.0 V vs. SCE to generate radical cations, whose EPR spectra were compared with spectra of the solid-state photogenerated radicals. Additionally, these compounds display changes in emission due to solvent effects from fluorescence to phosphorescence. Understanding how solid-state assembly alters the photophysical properties of triphenylamines could lead to further applications of these compounds for magnetic and conductive materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA