Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell ; 154(1): 185-96, 2013 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-23827682

RESUMEN

The evolution of human anatomical features likely involved changes in gene regulation during development. However, the nature and extent of human-specific developmental regulatory functions remain unknown. We obtained a genome-wide view of cis-regulatory evolution in human embryonic tissues by comparing the histone modification H3K27ac, which provides a quantitative readout of promoter and enhancer activity, during human, rhesus, and mouse limb development. Based on increased H3K27ac, we find that 13% of promoters and 11% of enhancers have gained activity on the human lineage since the human-rhesus divergence. These gains largely arose by modification of ancestral regulatory activities in the limb or potential co-option from other tissues and are likely to have heterogeneous genetic causes. Most enhancers that exhibit gain of activity in humans originated in mammals. Gains at promoters and enhancers in the human limb are associated with increased gene expression, suggesting they include molecular drivers of human morphological evolution.


Asunto(s)
Evolución Biológica , Elementos de Facilitación Genéticos , Extremidades/embriología , Regulación del Desarrollo de la Expresión Génica , Regiones Promotoras Genéticas , Acetilación , Animales , Genética Médica , Estudio de Asociación del Genoma Completo , Histonas/metabolismo , Humanos , Macaca mulatta/embriología , Ratones/embriología , Organogénesis , Transcriptoma
2.
Nucleic Acids Res ; 45(D1): D865-D876, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-27899602

RESUMEN

Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human Phenotype Ontology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology.


Asunto(s)
Ontologías Biológicas , Biología Computacional , Genómica , Fenotipo , Algoritmos , Biología Computacional/métodos , Estudios de Asociación Genética/métodos , Genómica/métodos , Humanos , Medicina de Precisión/métodos , Enfermedades Raras/diagnóstico , Enfermedades Raras/etiología , Programas Informáticos , Investigación Biomédica Traslacional/métodos
3.
Genome Res ; 23(8): 1224-34, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23704192

RESUMEN

Cohesin is implicated in establishing tissue-specific DNA loops that target enhancers to promoters, and also localizes to sites bound by the insulator protein CTCF, which blocks enhancer-promoter communication. However, cohesin-associated interactions have not been characterized on a genome-wide scale. Here we performed chromatin interaction analysis with paired-end tag sequencing (ChIA-PET) of the cohesin subunit SMC1A in developing mouse limb. We identified 2264 SMC1A interactions, of which 1491 (65%) involved sites co-occupied by CTCF. SMC1A participates in tissue-specific enhancer-promoter interactions and interactions that demarcate regions of correlated regulatory output. In contrast to previous studies, we also identified interactions between promoters and distal sites that are maintained in multiple tissues but are poised in embryonic stem cells and resolve to tissue-specific activated or repressed chromatin states in the mouse embryo. Our results reveal the diversity of cohesin-associated interactions in the genome and highlight their role in establishing the regulatory architecture of development.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Animales , Sitios de Unión , Factor de Unión a CCCTC , Inmunoprecipitación de Cromatina , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Genoma , Histonas/metabolismo , Esbozos de los Miembros/metabolismo , Ratones , Ratones Endogámicos C57BL , Especificidad de Órganos , Regiones Promotoras Genéticas , Subunidades de Proteína/metabolismo , Proteínas Represoras/metabolismo , Cohesinas
4.
Genome Res ; 22(6): 1069-80, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22421546

RESUMEN

The regulatory elements that direct tissue-specific gene expression in the developing mammalian embryo remain largely unknown. Although chromatin profiling has proven to be a powerful method for mapping regulatory sequences in cultured cells, chromatin states characteristic of active developmental enhancers have not been directly identified in embryonic tissues. Here we use whole-transcriptome analysis coupled with genome-wide profiling of H3K27ac and H3K27me3 to map chromatin states and enhancers in mouse embryonic forelimb and hindlimb. We show that gene-expression differences between forelimb and hindlimb, and between limb and other embryonic cell types, are correlated with tissue-specific H3K27ac signatures at promoters and distal sites. Using H3K27ac profiles, we identified 28,377 putative enhancers, many of which are likely to be limb specific based on strong enrichment near genes highly expressed in the limb and comparisons with tissue-specific EP300 sites and known enhancers. We describe a chromatin state signature associated with active developmental enhancers, defined by high levels of H3K27ac marking, nucleosome displacement, hypersensitivity to sonication, and strong depletion of H3K27me3. We also find that some developmental enhancers exhibit components of this signature, including hypersensitivity, H3K27ac enrichment, and H3K27me3 depletion, at lower levels in tissues in which they are not active. Our results establish histone modification profiling as a tool for developmental enhancer discovery, and suggest that enhancers maintain an open chromatin state in multiple embryonic tissues independent of their activity level.


Asunto(s)
Cromatina/genética , Elementos de Facilitación Genéticos , Extremidades/embriología , Regulación del Desarrollo de la Expresión Génica , Animales , Proteína p300 Asociada a E1A/genética , Proteína p300 Asociada a E1A/metabolismo , Embrión de Mamíferos , Extremidades/fisiología , Perfilación de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Ratones , Nucleosomas/metabolismo , Especificidad de Órganos/genética
5.
Yale J Biol Med ; 84(3): 243-6, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21966042

RESUMEN

Looking for a job? Not even sure what kind of job you are looking for? Don't wait until all your experiments are wrapped up and your manuscript is in press. While slaving away doing research, it is easy to lose sight of what comes next. But graduate students and postdoctoral researchers should start planning the next chapter of their careers before the end is in sight. This article highlights different online resources for choosing a career and finding a job.


Asunto(s)
Selección de Profesión , Internet , Humanos , Técnicas de Planificación , Motor de Búsqueda , Sociedades/organización & administración , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA