Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nanoscale Adv ; 1(7): 2571-2579, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-36132715

RESUMEN

Carbon Dots (CDs) are innovative materials which have potential applications in many fields, including nanomedicine, energy and catalysis. Here CDs were produced by the alkali-assisted ultrasonic route and characterized by several techniques to determine their composition and properties. Fluorescence nanoscopy using single-molecule localization microscopy shows that they have very good photophysical properties and a remarkable blinking behaviour at 405 nm. Moreover, these CDs are a safe material, non-toxic towards different cell lines (cancer and non-cancer cells) even at very high concentration, reflecting an excellent biocompatibility. Photothermia, i.e. their heating capacity under laser irradiation, was evaluated at two wavelengths and at several power densities. The resulting temperature increment was high (5 < ΔT < 45 °C) and appropriate for biomedical applications. Bioimaging and photothermia were then performed on E. coli, a Gram(-) bacterium, incubated with CDs. Remarkably, by photothermia at 680 nm (0.3, 1 and 1.9 W cm-2) or 808 nm (1.9 W cm-2), CDs are able to eradicate bacteria in their exponential and stationary phases. Images obtained by 3D super-resolution microscopy clearly show the different CD distributions in surviving bacteria after mild photothermal treatment. These results confirm that CDs are multifunctional materials with a wide range of biomedical applications.

2.
RSC Adv ; 8(21): 11785-11798, 2018 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35558550

RESUMEN

ZnO-ZnS 1D hetero-nanostructures were prepared by an easy and scalable processing route. It consists of ZnO nanorod electrodeposition on ITO substrate and surface sulfidation by ion exchange in an aqueous Na2S solution. Increasing the treatment contact time (t c) from 8 to 48 h involves different ZnS growth mechanisms leading to different structural and microstructural rod characteristics, even if the overall size does not change significantly. Grazing X-ray diffraction, high-resolution microscopy, energy-dispersive spectrometry and X-ray photoelectron spectroscopy describe the outer surface layer as a poly- and nanocrystalline ZnS blende shell whose thickness and roughness increase with t c. The ZnO wurtzite-ZnS blende interface goes from continuous and dense, at short t c, to discontinuous and porous at long t c, indicating that ZnS formation proceeds in a more complex way than a simple S2-/O2- ion exchange over the treatment time. This feature has significant consequences for the photoelectrochemical performance of these materials when they are used as photoanodes in a typical light-assisted water splitting experiment. A photocurrent (J p) fluctuation of 45% for less than 5 min of operation is observed for the sample prepared with a long sulfidation time while it does not exceed 15% for that obtained with a short one, underlining the importance of the material processing conditions on the preparation of valuable photoanodes.

3.
J Mater Chem B ; 5(17): 3154-3162, 2017 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32263713

RESUMEN

Human serum albumin (HSA), the most abundant plasma protein in human blood, is a natural transport vehicle with multiple ligand binding sites. It, therefore, constitutes an attractive candidate for drug delivery. Targeting may occur via the most known interaction of the protein with the neonatal Fc receptor (FcRn). Here, we investigate another HSA delivery path, involving the transferrin receptor, and we elaborate a maghemite-HSA nanohybrid, opening up new opportunities for medical applications. Fluorescence spectrophotometric titration and size-exclusion chromatography were used to substantiate, in cell-free assays, an interaction between HSA and the transferrin receptor R1. This occurs with a dissociation constant, KD of 6.7 nM. This interaction was confirmed in HeLa cell culture where, by confocal microscopy, rhodamine-labeled HSA is shown to be internalized. HSA was then covalently conjugated onto maghemite nanoparticles (NPs) to give a NP-HSA nanohybrid. The therapeutic potential of this hybrid was demonstrated through its heating capacity in magnetic hyperthermia (MH) and near-infrared (NIR) photothermia (PT). In particular, the Specific Absorption Rate (SAR) in the PT Therapy (PTT) mode, using a 808 nm NIR-LASER (1 W cm-2) and at iron concentration as low as 2.5 mM, was found to be very high, equal to 1870 W g-1 with a temperature increment of 9.2 °C. The nanohybrids incubated with HeLa cells were mainly localized at the cell surface. When the PTT mode was applied under the same conditions as in vitro, mortality was higher in HeLa cells than in fibroblasts (non-malignant cells). Cytotoxicity was checked in both cell lines without the PTT mode; the nanohybrids do not seem to affect cell viability. These results make the nanohybrids very promising agents for NIR-PT and for targeting in cancer therapy, since non-malignant cells were not damaged.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA