RESUMEN
BACKGROUND: Advances in hematopoietic cell transplantation (HCT) have led to marked improvements in survival. However, adolescents and young adults (AYAs) who undergo HCT are at high risk of developing sarcopenia (loss of skeletal muscle mass) due to the impact of HCT-related exposures on the developing musculoskeletal system. HCT survivors who have sarcopenia also have excess lifetime risk of non-relapse mortality. Therefore, interventions that increase skeletal muscle mass, metabolism, strength, and function are needed to improve health in AYA HCT survivors. Skeletal muscle is highly reliant on mitochondrial energy production, as reflected by oxidative phosphorylation (OXPHOS) capacity. Exercise is one approach to target skeletal muscle mitochondrial OXPHOS, and in turn improve muscle function and strength. Another approach is to use "exercise enhancers", such as nicotinamide riboside (NR), a safe and well-tolerated precursor of nicotinamide adenine dinucleotide (NAD+), a cofactor that in turn impacts muscle energy production. Interventions combining exercise with exercise enhancers like NR hold promise, but have not yet been rigorously tested in AYA HCT survivors. METHODS/DESIGN: We will perform a randomized controlled trial testing 16 weeks of in-home aerobic and resistance exercise and NR in AYA HCT survivors, with a primary outcome of muscle strength via dynamometry and a key secondary outcome of cardiovascular fitness via cardiopulmonary exercise testing. We will also test the effects of these interventions on i) muscle mass via dual energy x-ray absorptiometry; ii) muscle mitochondrial OXPHOS via an innovative non-invasive MRI-based technique, and iii) circulating correlates of NAD+ metabolism via metabolomics. Eighty AYAs (ages 15-30y) will be recruited 6-24 months post-HCT and randomized to 1 of 4 arms: exercise + NR, exercise alone, NR alone, or control. Outcomes will be collected at baseline and after the 16-week intervention. DISCUSSION: We expect that exercise with NR will produce larger changes than exercise alone in key outcomes, and that changes will be mediated by increases in muscle OXPHOS. We will apply the insights gained from this trial to develop individualized, evidence-supported precision initiatives that will reduce chronic disease burden in high-risk cancer survivors. TRIAL REGISTRATION: ClinicalTrials.gov, NCT05194397. Registered January 18, 2022, https://clinicaltrials.gov/ct2/show/NCT05194397 {2a}.
Asunto(s)
Ejercicio Físico , Trasplante de Células Madre Hematopoyéticas , Sarcopenia , Adolescente , Adulto , Suplementos Dietéticos , Ejercicio Físico/fisiología , Humanos , Músculo Esquelético , NAD/metabolismo , NAD/farmacología , Niacinamida/análogos & derivados , Compuestos de Piridinio , Calidad de Vida , Sobrevivientes , Adulto JovenRESUMEN
INTRODUCTION: Friedreich's Ataxia (FRDA) is a multi-system disorder caused by frataxin deficiency. FRDA-related diabetes mellitus (DM) is common. Frataxin supports skeletal muscle mitochondrial oxidative phosphorylation (OXPHOS) capacity, a mediator of insulin sensitivity. Our objective was to test the association between skeletal muscle health and insulin sensitivity and secretion in adults with FRDA without DM. METHODS: Case-control study (NCT02920671). Glucose and insulin metabolism (stable-isotope oral glucose tolerance tests), body composition (dual-energy x-ray absorptiometry), physical activity (self-report), and skeletal muscle OXPHOS capacity (creatine chemical exchange saturation transfer MRI) were assessed. RESULTS: Participants included 11 individuals with FRDA (4 female), median age 27y (IQR 23, 39), BMI 26.9kg/m2 (24.1, 29.4), and 24 controls (11 female), 29y (26, 39), 24.4kg/m2 (21.8, 27.0). Fasting glucose was higher in FRDA (91 vs. 83mg/dL (5.0 vs. 4.6mmol/L), p<0.05). Individuals with FRDA had lower insulin sensitivity (WBISI 2.8 vs. 5.3, p<0.01), higher post-prandial insulin secretion (insulin secretory rate iAUC 30-180 minutes, 24,652 vs. 17,858, p<0.05), and more suppressed post-prandial endogenous glucose production (-0.9% vs. 26.9% of fasting EGP, p<0.05). In regression analyses, lower OXPHOS and inactivity explained some of the difference in insulin sensitivity. More visceral fat contributed to lower insulin sensitivity independent of FRDA. Insulin secretion accounting for sensitivity (disposition index) was not different. CONCLUSIONS: Lower mitochondrial OXPHOS capacity, inactivity, and visceral adiposity contribute to lower insulin sensitivity in FRDA. Higher insulin secretion appears compensatory, and when inadequate, could herald DM. Further studies are needed to determine if muscle- or adipose-focused interventions could delay FRDA-related DM.
RESUMEN
Friedreich's ataxia (FRDA) is a progressive disorder caused by insufficient expression of frataxin, which plays a critical role in assembly of iron-sulfur centers in mitochondria. Individuals are cognitively normal but display a loss of motor coordination and cardiac abnormalities. Many ultimately develop heart failure. Administration of nicotinamide adenine dinucleotide-positive (NAD+) precursors has shown promise in human mitochondrial myopathy and rodent models of heart failure, including mice lacking frataxin in cardiomyocytes. We studied mice with systemic knockdown of frataxin (shFxn), which display motor deficits and early mortality with cardiac hypertrophy. Hearts in these mice do not "fail" per se but become hyperdynamic with small chamber sizes. Data from an ongoing natural history study indicate that hyperdynamic hearts are observed in young individuals with FRDA, suggesting that the mouse model could reflect early pathology. Administering nicotinamide mononucleotide or riboside to shFxn mice increases survival, modestly improves cardiac hypertrophy, and limits increases in ejection fraction. Mechanistically, most of the transcriptional and metabolic changes induced by frataxin knockdown are insensitive to NAD+ precursor administration, but glutathione levels are increased, suggesting improved antioxidant capacity. Overall, our findings indicate that NAD+ precursors are modestly cardioprotective in this model of FRDA and warrant further investigation.
Asunto(s)
Modelos Animales de Enfermedad , Frataxina , Ataxia de Friedreich , Proteínas de Unión a Hierro , NAD , Animales , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/patología , Ataxia de Friedreich/genética , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Ratones , Humanos , NAD/metabolismo , Fenotipo , Masculino , Cardiomegalia/metabolismo , Cardiomegalia/patología , Mononucleótido de Nicotinamida/farmacología , Niacinamida/análogos & derivados , Niacinamida/farmacología , Femenino , Técnicas de Silenciamiento del Gen , Compuestos de Piridinio , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patologíaRESUMEN
Context: Hypothalamic obesity is a rare, treatment-resistant form of obesity. In preliminary studies, the hypothalamic hormone oxytocin (OXT) has shown promise as a potential weight loss therapy. Objective: To determine whether 8 weeks of intranasal OXT (vs 8 weeks of placebo) promotes weight loss in children, adolescents, and young adults with hypothalamic obesity. Methods: This randomized, double-blind, placebo-controlled, crossover pilot trial (NCT02849743), conducted at an outpatient academic medical center, included patients aged 10 to 35 years with hypothalamic obesity from hypothalamic/pituitary tumors. Participants received intranasal OXT (Syntocinon, 40 USP units/mL, 4â IU/spray) vs excipient-matched placebo, 16 to 24â IU 3 times daily at mealtimes. Weight loss attributable to OXT vs placebo and safety (adverse events) were assessed. Results: Of 13 individuals randomized (54% female, 31% pre-pubertal, median age 15.3 years, IQR 13.3-20.6), 10 completed the entire study. We observed a nonsignificant within-subject weight change of -0.6â kg (95% CI: -2.7, 1.5) attributable to OXT vs placebo. A subset (2/18 screened, 5/13 randomized) had prolonged QTc interval on electrocardiography prior to screening and/or in both treatment conditions. Overall, OXT was well-tolerated, and adverse events (epistaxis and nasal irritation, headache, nausea/vomiting, and changes in heart rate, blood pressure, and QTc interval) were similar between OXT and placebo. In exploratory analyses, benefits of OXT for anxiety and impulsivity were observed. Conclusion: In this pilot study in hypothalamic obesity, we did not detect a significant impact of intranasal OXT on body weight. OXT was well-tolerated, so future larger studies could examine different dosing, combination therapies, and potential psychosocial benefits.
RESUMEN
AIMS: Friedreich's Ataxia (FRDA) is a progressive neuromuscular disorder typically caused by GAA triplet repeat expansions in both frataxin gene alleles. FRDA can be complicated by diabetes mellitus (DM). The objective of this study was to describe the prevalence of, risk factors for, and management practices of FRDA-related DM. METHODS: FACOMS, a prospective, multi-site natural history study, includes 1,104 individuals. Extracted data included the presence of DM and other co-morbidities, genetic diagnosis, and markers of disease severity. We performed detailed medical record review and a survey for the subset of individuals with FRDA-related DM followed at one FACOMS site, Children's Hospital of Philadelphia. RESULTS: FRDA-related DM was reported by 8.7% of individuals. Age, severe disease, and FRDA cardiac complications were positively associated with DM risk. FRDA-related DM was generally well-controlled, as reflected by HbA1c, though diabetic ketoacidosis did occur. Insulin is the mainstay of treatment (64-74% overall); in adults, metformin use was common and newer glucose-lowering agents were used rarely. CONCLUSIONS: Clinical factors identify individuals at increased risk for FRDA-related DM. Future studies should test strategies for FRDA-related DM screening and management, in particular the potential role for novel glucose-lowering therapies in preventing or delaying FRDA-related cardiac disease.
Asunto(s)
Diabetes Mellitus , Ataxia de Friedreich , Adulto , Niño , Diabetes Mellitus/epidemiología , Diabetes Mellitus/genética , Cetoacidosis Diabética/complicaciones , Ataxia de Friedreich/complicaciones , Ataxia de Friedreich/epidemiología , Glucosa , Humanos , Proteínas de Unión a Hierro/genética , Estudios Prospectivos , Factores de Riesgo , Expansión de Repetición de TrinucleótidoRESUMEN
Introduction: Friedreich's Ataxia (FRDA) is a progressive neurological disorder caused by mutations in both alleles of the frataxin (FXN) gene. Impaired bone health is a complication of other disorders affecting mobility, but there is little information regarding bone health in FRDA. Methods: Dual energy X-ray absorptiometry (DXA) scan-based assessments of areal bone mineral density (aBMD) in individuals with FRDA were abstracted from four studies at the Children's Hospital of Philadelphia (CHOP). Disease outcomes, including the modified FRDA Rating Scale (mFARS), were abstracted from the FRDA Clinical Outcomes Measures Study (FACOMS), a longitudinal natural history study. A survey regarding bone health and fractures was sent to individuals in FACOMS-CHOP. Results: Adults with FRDA (n = 24) have lower mean whole body (WB) (-0.45 vs. 0.33, p = 0.008) and femoral neck (FN) (-0.71 vs. 0.004, p = 0.02) aBMD Z-scores than healthy controls (n = 24). Children with FRDA (n = 10) have a lower WB-less-head (-2.2 vs. 0.19, p < 0.0001) and FN (-1.1 vs. 0.04, p = 0.01) aBMD than a reference population (n = 30). In adults, lower FN aBMD correlated with functional disease severity, as reflected by mFARS (R = -0.56, p = 0.04). Of 137 survey respondents (median age 27 y, 50% female), 70 (51%) reported using wheelchairs as their primary ambulatory device: of these, 20 (29%) reported a history of potentially pathologic fracture and 11 (16%) had undergone DXA scans. Conclusions: Low aBMD is prevalent in FRDA, but few of even the highest risk individuals are undergoing screening. Our findings highlight potential missed opportunities for the screening and treatment of low aBMD in FRDA.
RESUMEN
Friedreich's ataxia (FRDA) is an inherited disorder caused by reduced levels of frataxin (FXN), which is required for iron-sulfur cluster biogenesis. Neurological and cardiac comorbidities are prominent and have been a major focus of study. Skeletal muscle has received less attention despite indications that FXN loss affects it. Here, we show that lean mass is lower, whereas body mass index is unaltered, in separate cohorts of adults and children with FRDA. In adults, lower lean mass correlated with disease severity. To further investigate FXN loss in skeletal muscle, we used a transgenic mouse model of whole-body inducible and progressive FXN depletion. There was little impact of FXN loss when FXN was approximately 20% of control levels. When residual FXN was approximately 5% of control levels, muscle mass was lower along with absolute grip strength. When we examined mechanisms that can affect muscle mass, only global protein translation was lower, accompanied by integrated stress response (ISR) activation. Also in mice, aerobic exercise training, initiated prior to the muscle mass difference, improved running capacity, yet, muscle mass and the ISR remained as in untrained mice. Thus, FXN loss can lead to lower lean mass, with ISR activation, both of which are insensitive to exercise training.
Asunto(s)
Ataxia de Friedreich , Proteínas de Unión a Hierro , Animales , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Ratones , Ratones Transgénicos , Músculo Esquelético/metabolismo , FrataxinaRESUMEN
BACKGROUND: Friedreich's ataxia (FRDA) is a neurodegenerative disease caused by decreased expression of frataxin, a protein involved in many cellular metabolic processes, including mitochondrial oxidative phosphorylation (OXPHOS). Our objective was to assess skeletal muscle oxidative metabolism in vivo in adults with FRDA as compared to adults without FRDA using chemical exchange saturation transfer (CrCEST) MRI, which measures free creatine (Cr) over time following an in-magnet plantar flexion exercise. METHODS: Participants included adults with FRDA (n = 11) and healthy adults (n = 25). All underwent 3-Tesla CrCEST MRI of the calf before and after in-scanner plantar flexion exercise. Participants also underwent whole-body dual-energy X-ray absorptiometry (DXA) scans to measure body composition and completed questionnaires to assess physical activity. RESULTS: We found prolonged post-exercise exponential decline in CrCEST (τCr) in the lateral gastrocnemius (LG, 274 s vs. 138 s, p = 0.01) in adults with FRDA (vs. healthy adults), likely reflecting decreased OXPHOS capacity. Adults with FRDA (vs. healthy adults) also engaged different muscle groups during exercise, as indicated by muscle group-specific changes in creatine with exercise (∆CrCEST), possibly reflecting decreased coordination. Across all participants, increased adiposity and decreased usual physical activity were associated with smaller ∆CrCEST. CONCLUSION: In FRDA, CrCEST MRI may be a useful biomarker of muscle-group-specific decline in OXPHOS capacity that can be leveraged to track within-participant changes over time. Appropriate participant selection and further optimization of the exercise stimulus will enhance the utility of this technique.