Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
2.
Biochim Biophys Acta ; 1862(9): 1495-503, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27216978

RESUMEN

Alcoholic liver diseases arise from complex phenotypes involving many genetic factors. It is quite common to find hyperhomocysteinemia in chronic alcoholic liver diseases, mainly due to deregulation of hepatic homocysteine metabolism. Dyrk1A, involved in homocysteine metabolism at different crossroads, is decreased in liver of hyperhomocysteinemic mice. Here, we hypothesized that Dyrk1A contributes to alcohol-induced hepatic impairment in mice. Control, hyperhomocysteinemic and mice overexpressing Dyrk1A were fed using a Lieber-DeCarli liquid diet with or without ethanol (5% v/v ethanol) for one month, and liver histological examination and liver biochemical function tests were performed. Plasma alanine aminotransferase and homocysteine levels were significantly decreased in mice overexpressing Dyrk1A compared to control mice with or without alcohol administration. On the contrary, the mean plasma alanine aminotransferase and homocysteine levels were significantly higher in hyperhomocysteinemic mice than that of control mice after alcohol administration. Paraoxonase 1 and CYP2E1, two phase I xenobiotic metabolizing enzymes, were found increased in the three groups of mice after alcohol administration. However, NQO1, a phase II enzyme, was only found increased in hyperhomocysteinemic mice after alcohol exposure, suggesting a greater effect of alcohol in liver of hyperhomocysteinemic mice. We observed positive correlations between hepatic alcohol dehydrogenase activity, Dyrk1A and ADH4 protein levels. Importantly, a deleterious effect of alcohol consumption on hepatic Dyrk1A protein level was found. Our study reveals on the one hand a role of Dyrk1A in ethanol metabolism and on the other hand a deleterious effect of alcohol administration on hepatic Dyrk1A level.


Asunto(s)
Etanol/metabolismo , Hepatopatías Alcohólicas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Alanina Transaminasa/sangre , Animales , Arildialquilfosfatasa/metabolismo , Cistationina betasintasa/deficiencia , Cistationina betasintasa/genética , Cistationina betasintasa/metabolismo , Modelos Animales de Enfermedad , Etanol/administración & dosificación , Etanol/toxicidad , Femenino , Homocisteína/metabolismo , Humanos , Hiperhomocisteinemia/etiología , Hiperhomocisteinemia/genética , Hiperhomocisteinemia/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Hepatopatías Alcohólicas/complicaciones , Hepatopatías Alcohólicas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Triglicéridos/metabolismo , Regulación hacia Arriba , Quinasas DyrK
3.
J Neurosci ; 35(41): 13843-52, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26468184

RESUMEN

Down syndrome (DS) is a relatively common genetic condition caused by the triplication of human chromosome 21. No therapies currently exist for the rescue of neurocognitive impairment in DS. This review presents exciting findings showing that it is possible to restore brain development and cognitive performance in mouse models of DS with therapies that can also apply to humans. This knowledge provides a potential breakthrough for the prevention of intellectual disability in DS.


Asunto(s)
Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/terapia , Síndrome de Down/complicaciones , Animales , Cromosomas Humanos Par 21/genética , Modelos Animales de Enfermedad , Síndrome de Down/genética , Humanos , Ratones
4.
Diabetologia ; 57(5): 960-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24477974

RESUMEN

AIMS/HYPOTHESIS: Growth factors and nutrients are important regulators of pancreatic beta cell mass and function. However, the signalling pathways by which these factors modulate these processes have not yet been fully elucidated. DYRK1A (also named minibrain/MNB) is a member of the dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) family that has been conserved across evolution. A significant amount of data implicates DYRK1A in brain growth and function, as well as in neurodegenerative processes in Alzheimer's disease and Down's syndrome. We investigated here whether DYRK1A would be an attractive candidate for beta cell growth modulation. METHODS: To study the role of DYRK1A in beta cell growth, we used Dyrk1a-deficient mice. RESULTS: We show that DYRK1A is expressed in pancreatic islets and provide evidence that changes in Dyrk1a gene dosage in mice strongly modulate glycaemia and circulating insulin levels. Specifically, Dyrk1a-haploinsufficient mice show severe glucose intolerance, reduced beta cell mass and decreased beta cell proliferation. CONCLUSIONS/INTERPRETATION: Taken together, our data indicate that DYRK1A is a critical kinase for beta cell growth as Dyrk1a-haploinsufficient mice show a diabetic profile.


Asunto(s)
Diabetes Mellitus Experimental/genética , Células Secretoras de Insulina/citología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Animales , Proliferación Celular , Haploinsuficiencia , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/citología , Masculino , Ratones , Ratones Transgénicos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Transducción de Señal , Quinasas DyrK
5.
Biochim Biophys Acta ; 1832(6): 718-28, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23429073

RESUMEN

Hyperhomocysteinemia, characterized by high plasma homocysteine levels, is recognized as an independent risk factor for cardiovascular diseases. The increased synthesis of homocysteine, a product of methionine metabolism involving B vitamins, and its slower intracellular utilization cause increased flux into the blood. Plasma homocysteine level is an important reflection of hepatic methionine metabolism and the rate of processes modified by B vitamins as well as different enzyme activity. Lowering homocysteine might offer therapeutic benefits. However, approximately 50% of hyperhomocysteinemic patients due to cystathionine-beta-synthase deficiency are biochemically responsive to pharmacological doses of B vitamins. Therefore, effective treatments to reduce homocysteine levels are needed, and gene therapy could provide a novel approach. We recently showed that hepatic expression of DYRK1A, a serine/threonine kinase, is negatively correlated with plasma homocysteine levels in cystathionine-beta-synthase deficient mice, a mouse model of hyperhomocysteinemia. Therefore, Dyrk1a is a good candidate for gene therapy to normalize homocysteine levels. We then used an adenoviral construct designed to restrict expression of DYRK1A to hepatocytes, and found decreased plasma homocysteine levels after hepatocyte-specific Dyrk1a gene transfer in hyperhomocysteinemic mice. The elevation of pyridoxal phosphate was consistent with the increase in cystathionine-beta-synthase activity. Commensurate with the decreased plasma homocysteine levels, targeted hepatic expression of DYRK1A resulted in elevated plasma paraoxonase-1 activity and apolipoprotein A-I levels, and rescued the Akt/GSK3 signaling pathways in aorta of mice, which can prevent homocysteine-induced endothelial dysfunction. These results demonstrate that hepatocyte-restricted Dyrk1a gene transfer can offer a useful therapeutic targets for the development of new selective homocysteine lowering therapy.


Asunto(s)
Aorta/metabolismo , Apolipoproteína A-I/sangre , Terapia Genética , Hepatocitos/metabolismo , Homocisteína , Proteínas Serina-Treonina Quinasas/biosíntesis , Proteínas Tirosina Quinasas/biosíntesis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Aorta/patología , Cistationina betasintasa/genética , Cistationina betasintasa/metabolismo , Homocisteína/sangre , Hiperhomocisteinemia/sangre , Hiperhomocisteinemia/genética , Hiperhomocisteinemia/terapia , Ratones , Ratones Mutantes , Especificidad de Órganos/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Transducción Genética , Quinasas DyrK
6.
Neurobiol Dis ; 69: 65-75, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24801365

RESUMEN

Cognitive deficits in Down syndrome (DS) have been linked to increased synaptic inhibition, leading to an imbalance of excitation/inhibition (E/I). Various mouse models and studies from human brains have implicated an HSA21 gene, the serine/threonine kinase DYRK1A, as a candidate for inducing cognitive dysfunction. Here, consequences of alterations in Dyrk1a dosage were assessed in mouse models with varying copy numbers of Dyrk1a: mBACtgDyrk1a, Ts65Dn and Dp(16)1Yey (with 3 gene copies) and Dyrk1a(+/-) (one functional copy). Molecular (i.e. immunoblotting/immunohistochemistry) and behavioral analyses (e.g., rotarod, Morris water maze, Y-maze) were performed in mBACtgDyrk1a mice. Increased expression of DYRK1A in mBACtgDyrk1a induced molecular alterations in synaptic plasticity pathways, particularly expression changes in GABAergic and glutaminergic related proteins. Similar alterations were observed in models with partial trisomy of MMU16, Ts65Dn and Dp(16)1Yey, and were reversed in the Dyrk1a(+/-) model. Dyrk1a overexpression produced an increased number and signal intensity of GAD67 positive neurons, indicating enhanced inhibition pathways in three different models: mBACtgDyrk1a, hYACtgDyrk1a and Dp(16)1Yey. Functionally, Dyrk1a overexpression protected mice from PTZ-induced seizures related to GABAergic neuron plasticity. Our study shows that DYRK1A overexpression affects pathways involved in synaptogenesis and synaptic plasticity and influences E/I balance toward inhibition. Inhibition of DYRK1A activity offers a therapeutic target for DS, but its inhibition/activation may also be relevant for other psychiatric diseases with E/I balance alterations.


Asunto(s)
Dosificación de Gen , Aprendizaje , Inhibición Neural/genética , Plasticidad Neuronal/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Animales , Modelos Animales de Enfermedad , Síndrome de Down/genética , Síndrome de Down/fisiopatología , Síndrome de Down/psicología , Humanos , Aprendizaje/fisiología , Masculino , Memoria/fisiología , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/genética , Actividad Motora/fisiología , Inhibición Neural/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Convulsiones/genética , Convulsiones/fisiopatología , Sinapsis/genética , Sinapsis/fisiología , Quinasas DyrK
7.
Anal Biochem ; 449: 172-8, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24374000

RESUMEN

Down syndrome is the most common aneuploidy. It is caused by the presence of an extra copy of chromosome 21. Several studies indicate that aberrant expression of the kinase Dyrk1a (dual-specificity tyrosine phosphorylation-regulated kinase 1a) is implicated in Down syndrome, in particular in the onset of mental retardation. Moreover, elevated Dyrk1a activity may also be a risk factor for other neurodegenerative disorders such as Alzheimer's disease. Over the past years, Dyrk1a has appeared as a potential drug target. Availability of sensitive and quantitative enzyme assays is of prime importance to understand the role of Dyrk1a and to develop specific inhibitors. Here, we describe a new method to measure Dyrk1a activity based on the separation and quantification of specific fluorescent peptides (substrate and phosphorylated product) by high-performance liquid chromatography (HPLC). Kinetic and mechanistic analyses using well-known inhibitors of Dyrk1a confirmed the reliability of this approach. In addition, this assay was further validated using brain extracts of mice models expressing different copies of the Dyrk1a gene. Our results indicate that this novel Dyrk1a assay is simple, sensitive, and specific. It avoids the use of radioactivity-based approaches that, until now, have been widely employed to measure Dyrk1a activity.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Síndrome de Down/enzimología , Pruebas de Enzimas/métodos , Proteínas Serina-Treonina Quinasas/análisis , Proteínas Tirosina Quinasas/análisis , Secuencia de Aminoácidos , Animales , Encéfalo/enzimología , Fluoresceína/análisis , Fluorescencia , Colorantes Fluorescentes/análisis , Humanos , Ratones , Datos de Secuencia Molecular , Péptidos/análisis , Péptidos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Reproducibilidad de los Resultados , Quinasas DyrK
8.
Curr Opin Obstet Gynecol ; 26(2): 92-103, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24573065

RESUMEN

PURPOSE OF REVIEW: Down syndrome affects more than 5 million people globally. During the last 10 years, there has been a dramatic increase in the research efforts focused on therapeutic interventions to improve learning and memory in Down syndrome. RECENT FINDINGS: This review summarizes the different functional abnormalities targeted by researchers in mouse models of Down syndrome. Three main strategies have been used: neural stem cell implantation; environmental enrichment and physical exercise; and pharmacotherapy. Pharmacological targets include the choline pathway, GABA and NMDA receptors, DYRK1A protein, oxidative stress and pathways involved in development and neurogenesis. Many strategies have improved learning and memory as well as electrophysiological and molecular alterations in affected animals. To date, eight molecules have been tested in human adult clinical trials. No studies have yet been performed on infants. However, compelling studies reveal that permanent brain alterations originate during fetal life in Down syndrome. Early prenatal diagnosis offers a 28 weeks window to positively impact brain development and improve postnatal cognitive outcome in affected individuals. Only a few approaches (Epigallocatechine gallate, NAP/SAL, fluoxetine, and apigenin) have been used to treat mice in utero; these showed therapeutic effects that persisted to adulthood. SUMMARY: In this article, we discuss the challenges, recent progress, and lessons learned that pave the way for new therapeutic approaches in Down syndrome.


Asunto(s)
Síndrome de Down/terapia , Terapia Molecular Dirigida , Células-Madre Neurales , Neurogénesis/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Atención Prenatal , Trasplante de Células Madre , Animales , Animales Recién Nacidos , Apigenina/farmacología , Catequina/análogos & derivados , Catequina/farmacología , Colina/metabolismo , Modelos Animales de Enfermedad , Síndrome de Down/tratamiento farmacológico , Síndrome de Down/genética , Femenino , Fluoxetina/farmacología , Humanos , Ratones , Ratones Transgénicos , Terapia Molecular Dirigida/métodos , Terapia Molecular Dirigida/tendencias , Estrés Oxidativo/efectos de los fármacos , Embarazo , Atención Prenatal/métodos , Atención Prenatal/tendencias , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Receptores de GABA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal/efectos de los fármacos , Quinasas DyrK
9.
Mol Genet Metab ; 110(3): 371-7, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23920041

RESUMEN

BACKGROUND AND AIMS: Down syndrome is caused by trisomy of all or part of human chromosome 21. Individuals with Down syndrome present some metabolic abnormalities involving lipoproteins, notably lower high-density lipoprotein levels associated with altered lecithin:cholesterol acyltransferase activity and apolipoprotein A-I levels. DYRK1A is a kinase overexpressed in Down syndrome that can activate the STAT3 pathway, which is involved in lecithin:cholesterol acyltransferase expression. Therefore, we characterized the role of DYRK1A overexpression on lecithin:cholesterol acyltransferase activity and expression in mouse models. METHODS: Effects of Dyrk1a overexpression were examined in mice overexpressing Dyrk1a by ELISA, chemical analyses and Western blotting. RESULTS: Overexpression of DYRK1A decreased plasma lecithin:cholesterol acyltransferase activity and hepatic STAT3 activation, which was associated with activation of SHP2, a tyrosine phosphatase. Although hepatic apolipoprotein E and D levels were increased in mice overexpressing DYRK1A, decreased plasma lecithin:cholesterol acyltransferase activity was associated with decreased hepatic and plasma apolipoprotein A-I levels. High-density lipoprotein-cholesterol levels were also decreased in plasma despite similar total cholesterol and non-high-density lipoprotein-cholesterol levels. CONCLUSIONS: We identified the role of DYRK1A overexpression on altered lipoprotein metabolism.


Asunto(s)
Apolipoproteína A-I/sangre , Expresión Génica , Fosfatidilcolina-Esterol O-Aciltransferasa/sangre , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Animales , Apolipoproteínas D/metabolismo , Apolipoproteínas E/metabolismo , HDL-Colesterol/sangre , Activación Enzimática , Masculino , Ratones , Ratones Transgénicos , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Factor de Transcripción STAT3/metabolismo , Quinasas DyrK
10.
Mol Genet Metab ; 105(3): 484-8, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22178546

RESUMEN

BACKGROUND AND AIMS: Among cardiovascular risk factor, people with Down syndrome have a lower plasma homocysteine level. In a previous study, we have shown that DYRK1A (dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1a), a serine/threonine kinase found on human chromosome 21, is implicated on homocysteine metabolism regulation. Indeed, mice that overexpress in liver this kinase have a lower plasma homocysteine level concomitant with an increased hepatic S-adenosyhomocysteine hydrolase (SAHH) activity, which depends on the activation of NAD(P)H:quinone oxidoreductase-1 (NQO1). Since NQO1 gene transcription is under the control of NRF2 and AhR, the aim of the present study was to analyze the effect of DYRK1A overexpression in mice onto NRF2 and AhR signaling pathways. METHODS: Effects of DYRK1A overexpression were examined in mice overexpressing Dyrk1a treated with an inhibitor, harmine, by real-time quantitative reverse-transcription polymerase reaction and western blotting. RESULTS: We found that overexpression of DYRK1A increases the nuclear NRF2 quantity, concomitant with the activation of ERK1/2. We also show that the overexpression of Dyrk1a has no effect on PI3K/AKT activation, and AhR signaling pathway in liver of mice. CONCLUSIONS: Our results reveal a link between DYRK1A and NRF2 signaling pathway.


Asunto(s)
NAD(P)H Deshidrogenasa (Quinona)/biosíntesis , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Femenino , Harmina/farmacología , Homocisteína/metabolismo , Hígado/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Transgénicos , Proteínas Quinasas Activadas por Mitógenos/biosíntesis , Proteínas Quinasas Activadas por Mitógenos/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Factor 2 Relacionado con NF-E2/biosíntesis , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Quinasas DyrK
11.
Hum Mol Genet ; 18(8): 1405-14, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19218269

RESUMEN

The molecular mechanisms that lead to the cognitive defects characteristic of Down syndrome (DS), the most frequent cause of mental retardation, have remained elusive. Here we use a transgenic DS mouse model (152F7 line) to show that DYRK1A gene dosage imbalance deregulates chromosomal clusters of genes located near neuron-restrictive silencer factor (REST/NRSF) binding sites. We found that Dyrk1a binds the SWI/SNF complex known to interact with REST/NRSF. The mutation of a REST/NRSF binding site in the promoter of the REST/NRSF target gene L1cam modifies the transcriptional effect of Dyrk1a-dosage imbalance on L1cam. Dyrk1a dosage imbalance perturbs Rest/Nrsf levels with decreased Rest/Nrsf expression in embryonic neurons and increased expression in adult neurons. Using transcriptome analysis of embryonic brain subregions of transgenic 152F7 mouse line, we identified a coordinated deregulation of multiple genes that are responsible for dendritic growth impairment present in DS. Similarly, Dyrk1a overexpression in primary mouse cortical neurons induced severe reduction of the dendritic growth and dendritic complexity. We propose that DYRK1A overexpression-related neuronal gene deregulation via disturbance of REST/NRSF levels, and the REST/NRSF-SWI/SNF chromatin remodelling complex, significantly contributes to the neural phenotypic changes that characterize DS.


Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Síndrome de Down/genética , Síndrome de Down/fisiopatología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Células Cultivadas , Dendritas/fisiología , Ratones , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Transfección , Quinasas DyrK
12.
Mol Cell Biochem ; 347(1-2): 63-70, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20938722

RESUMEN

Hyperhomocysteinemia, characterized by an elevated plasma homocysteine concentration, leads to several clinical manifestations and particularly cardiovascular diseases. Experimental models of hyperhomocysteinemia revealed several tissue injuries including heart fibrosis and ventricular hypertrophy. In order to analyze the molecular mechanisms link to these morphological alterations, a mild hyperhomocysteinemia was induced in rats via a chronic methionine administration. Effects of methionine administration were examined by histological analysis with Sirius red staining, histomorphometric analysis, zymography, and immunoblotting. Hyperhomocysteinemia due to methionine administration produces an interstitial myocardial fibrosis and a ventricular cardiomyocyte hypertrophy, which were associated with increased expression of transforming growth factor-beta1 (TGFß1), tissue inhibitors of metalloproteinase (TIMP) 2, and JNK activation. However, the matrix metalloproteinase 2 activity was decreased in the hearts of hyperhomocysteinemic rats. Moreover, the TIMP1 protein expression was decreased, and the TIMP1-MMP1 balance was shifted. Remodeling in cardiac tissue observed in rat model of mild hyperhomocysteinemia is associated with a dysregulation in extracellular matrix degradation which results, at least in part, from enhancement of TGFß1 level.


Asunto(s)
Hiperhomocisteinemia/metabolismo , Hiperhomocisteinemia/patología , Miocardio/metabolismo , Miocardio/patología , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Colágeno/metabolismo , Activación Enzimática/efectos de los fármacos , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Fibrosis , Homocisteína/sangre , Homocisteína/farmacología , Hiperhomocisteinemia/sangre , Hiperhomocisteinemia/enzimología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Metaloproteinasa 1 de la Matriz/metabolismo , Metaloproteinasa 3 de la Matriz/metabolismo , Miocardio/enzimología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas , Ratas Wistar , Factores de Tiempo , Inhibidor Tisular de Metaloproteinasa-1/metabolismo
13.
Mol Syndromol ; 12(4): 202-218, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34421499

RESUMEN

Research focused on Down syndrome has increased in the last several years to advance understanding of the consequences of trisomy 21 (T21) on molecular and cellular processes and, ultimately, on individuals with Down syndrome. The Trisomy 21 Research Society (T21RS) is the premier scientific organization for researchers and clinicians studying Down syndrome. The Third International Conference of T21RS, held June 6-9, 2019, in Barcelona, Spain, brought together 429 scientists, families, and industry representatives to share the latest discoveries on underlying cellular and molecular mechanisms of T21, define cognitive and behavioral challenges and better understand comorbidities associated with Down syndrome, including Alzheimer's disease and leukemia. Presentation of cutting-edge results in neuroscience, neurology, model systems, psychology, cancer, biomarkers and molecular and phar-ma-cological therapeutic approaches demonstrate the compelling interest and continuing advancement in all aspects of understanding and ameliorating conditions associated with T21.

14.
Med Sci (Paris) ; 26(4): 371-6, 2010 Apr.
Artículo en Francés | MEDLINE | ID: mdl-20412741

RESUMEN

Trisomy 21 was first described as a syndrome in the middle of the nineteenth century and associated to a chromosomic anomaly one hundred years later: the most salient feature of this syndrome is a mental retardation of variable intensity. Molecular mapping and DNA sequencing have allowed identifying the gene content of chromosome 21. Molecular quantitative analyses indicated that trisomy is inducing an overexpression for a large part of the triplicated genes and deregulates also pathways involving non HSA21 genes. Together with the physiological description of murine models overexpressing orthologous genes, these data have allowed to elaborate hypotheses on the cause of cognitive impairment. From these hypotheses and using murine models it is now possible to assess the efficiency of various therapeutic strategies. This paper reviews these new perspectives starting from the strategies targeting the level of HSA21 RNAs or HSA21 proteins; then it describes methods targeting activities either of proteins involved in cell cycle pathways or of proteins controlling the synaptic plasticity. It is promising that strategies targeting specific genes or specific pathways are already giving positive results.


Asunto(s)
Síndrome de Down/terapia , Terapia Genética , Animales , Catequina/análogos & derivados , Catequina/farmacología , Catequina/uso terapéutico , Cromosomas Humanos Par 21/genética , Modelos Animales de Enfermedad , Síndrome de Down/tratamiento farmacológico , Droxidopa/farmacología , Droxidopa/uso terapéutico , Sistemas de Liberación de Medicamentos , Fluoxetina/farmacología , Fluoxetina/uso terapéutico , Predicción , Regulación de la Expresión Génica/efectos de los fármacos , Estudios de Asociación Genética , Proteínas Hedgehog/fisiología , Humanos , Memantina/farmacología , Memantina/uso terapéutico , Ratones , Ratones Transgénicos , Modelos Genéticos , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/genética , Neurotransmisores/fisiología , Pentilenotetrazol/farmacología , Pentilenotetrazol/uso terapéutico , Fenotipo , Transducción de Señal/efectos de los fármacos
15.
Biochem Biophys Res Commun ; 378(3): 673-7, 2009 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-19059382

RESUMEN

Hyperhomocysteinemia due to cystathionine beta synthase (CBS)-deficiency confers diverse clinical manifestations, notably liver diseases. Even if hyperhomocysteinemia in liver of CBS-deficient mice, a murine model of hyperhomocysteinemia, promotes mitochondrial oxidative stress and pro-apoptotic signals, protective signals may counteract these pro-apoptotic signals, leading to chronic inflammation. As DYRK1A, a serine/threonine kinase, has been described as a candidate antiapoptotic factor, we have analyzed the expression of DYRK1A in liver of CBS-deficient mice. We found that DYRK1A protein level was reduced in liver of CBS-deficient mice, which was not observed at the gene expression level. Moreover, the use of primary hepatocytes/Kupffer cells co-culture showed that degradation of DYRK1A induced by hyperhomocysteinemia requires calpain activation. Our results demonstrate a deleterious effect of hyperhomocysteinemia on DYRK1A protein expression, and emphasize the role of hyperhomocysteinemia on calpain activation.


Asunto(s)
Hiperhomocisteinemia/enzimología , Hígado/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Animales , Calpaína/metabolismo , Técnicas de Cocultivo , Cistationina betasintasa/genética , Modelos Animales de Enfermedad , Activación Enzimática , Glicoproteínas/farmacología , Hepatocitos/enzimología , Hiperhomocisteinemia/genética , Macrófagos del Hígado/enzimología , Hígado/efectos de los fármacos , Ratones , Ratones Noqueados , Quinasas DyrK
16.
Genet Med ; 11(9): 611-6, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19636252

RESUMEN

Trisomy 21 or Down syndrome is a chromosomal disorder resulting from the presence of all or part of an extra Chromosome 21. It is a common birth defect, the most frequent and most recognizable form of mental retardation, appearing in about 1 of every 700 newborns. Although the syndrome had been described thousands of years before, it was named after John Langdon Down who reported its clinical description in 1866. The suspected association of Down syndrome with a chromosomal abnormality was confirmed by Lejeune et al. in 1959. Fifty years after the discovery of the origin of Down syndrome, the term "mongolism" is still inappropriately used; persons with Down syndrome are still institutionalized. Health problems associated with that syndrome often receive no or little medical care, and many patients still die prematurely in infancy or early adulthood. Nevertheless, working against this negative reality, community-based associations have lobbied for medical care and research to support persons with Down syndrome. Different Trisomy 21 research groups have already identified candidate genes that are potentially involved in the formation of specific Down syndrome features. These advances in turn may help to develop targeted medical treatments for persons with Trisomy 21. A review on those achievements is discussed.


Asunto(s)
Cromosomas Humanos Par 21/genética , Síndrome de Down/tratamiento farmacológico , Síndrome de Down/genética , Trisomía/genética , Animales , Ensayos Clínicos como Asunto , Modelos Animales de Enfermedad , Síndrome de Down/historia , Dosificación de Gen , Genotipo , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Ratones , Fenotipo
17.
Mol Genet Metab ; 97(2): 114-20, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19299176

RESUMEN

Hepatic steatosis is a clinical feature observed in severe hyperhomocysteinemic patients. In mice, cystathionine beta synthase (CBS) deficiency, the most common cause of severe hyperhomocysteinemia, is also associated with steatosis, fibrosis and inflammation. Proinflammatory cytokines usually induce apoptosis. However, hyperhomocysteinemia does not increase apoptosis in liver of CBS-deficient mice compared to wild type mice. The aim of the study was to analyze the activation state of the NF-kappaB pathway in liver of CBS-deficient mice and to investigate its possible involvement in anti-apoptotic signals. We analyzed the level of I kappaB alpha in liver of CBS-deficient mice. A co-culture of primary hepatocytes and Kupffer cells was also used in order to investigate how I kappaB alpha degradation occurs in response to homocysteine. We found lower I kappaB alpha level not only in liver of CBS-deficient mice but also in hepatocyte/Kupffer cell co-culture. The homocysteine-mediated I kappaB alpha enhanced proteolysis occurred via calcium-dependent calpains, which was supported by an increased level of calpain activity and a reduced expression of calpastatin in liver of CBS-deficient mice. Intraperitoneal administration of the inhibitor PDTC normalized the expression of two genes induced by NF-kappaB activation, heme oxygenase-1 and cellular inhibitor of apoptosis 2. Moreover, PDTC administration induced an increase of caspase-3 activity in liver of CBS-deficient mice. Our results suggest that hyperhomocysteinemia induces calpain-mediated I kappaB alpha degradation which is responsible for anti-apoptotic signals in liver.


Asunto(s)
Calpaína/biosíntesis , Hígado Graso/enzimología , Hígado Graso/etiología , Hiperhomocisteinemia/complicaciones , Proteínas I-kappa B/metabolismo , Animales , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/genética , Cistationina betasintasa/deficiencia , Cistationina betasintasa/genética , Hígado Graso/patología , Expresión Génica , Hepatocitos/enzimología , Hepatocitos/patología , Homocisteína/metabolismo , Hiperhomocisteinemia/enzimología , Hiperhomocisteinemia/genética , Macrófagos del Hígado/metabolismo , Hígado/enzimología , Hígado/patología , Ratones , Ratones Mutantes , Inhibidor NF-kappaB alfa , Fosforilación
18.
Sci Rep ; 9(1): 3914, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30850713

RESUMEN

Down syndrome is a common genetic disorder caused by trisomy of chromosome 21. Brain development in affected foetuses might be improved through prenatal treatment. One potential target is DYRK1A, a multifunctional kinase encoded by chromosome 21 that, when overexpressed, alters neuronal excitation-inhibition balance and increases GAD67 interneuron density. We used a green tea extract enriched in EGCG to inhibit DYRK1A function only during gestation of transgenic mice overexpressing Dyrk1a (mBACtgDyrk1a). Adult mice treated prenatally displayed reduced levels of inhibitory markers, restored VGAT1/VGLUT1 balance, and rescued density of GAD67 interneurons. Similar results for gabaergic and glutamatergic markers and interneuron density were obtained in Dp(16)1Yey mice, trisomic for 140 chromosome 21 orthologs; thus, prenatal EGCG exhibits efficacy in a more complex DS model. Finally, cognitive and behaviour testing showed that adult Dp(16)1Yey mice treated prenatally had improved novel object recognition memory but do not show improvement with Y maze paradigm. These findings provide empirical support for a prenatal intervention that targets specific neural circuitries.


Asunto(s)
Catequina/análogos & derivados , Síndrome de Down/dietoterapia , Glutamato Descarboxilasa/fisiología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , , Animales , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Encéfalo/fisiopatología , Catequina/administración & dosificación , Cognición , Modelos Animales de Enfermedad , Síndrome de Down/fisiopatología , Síndrome de Down/psicología , Femenino , Interneuronas/patología , Intercambio Materno-Fetal , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Embarazo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Quinasas DyrK
19.
Mol Neurobiol ; 56(2): 963-975, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29850989

RESUMEN

Down syndrome is characterized by premature aging and dementia with neurological features that mimic those found in Alzheimer's disease. This pathology in Down syndrome could be related to inflammation, which plays a role in other neurodegenerative diseases. We previously found a link between the NFkB pathway, long considered a prototypical proinflammatory signaling pathway, and the dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A). DYRK1A is associated with early onset of Alzheimer's disease in Down syndrome patients. Here, we sought to determine the role of DYRK1A on regulation of the NFkB pathway in the mouse brain. We found that over-expression of Dyrk1A (on a C57BL/6J background) stabilizes IκBα protein levels by inhibition of calpain activity and increases cytoplasmic p65 sequestration in the mouse brain. In contrast, Dyrk1A-deficient mice (on a CD1 background) have decreased IκBα protein levels with an increased calpain activity and decreased cytoplasmic p65 sequestration in the brain. Taken together, our results demonstrate a role of DYRK1A in regulation of the NFkB pathway. However, decreased IκBα and DYRK1A protein levels associated with an increased calpain activity were found in the brains of mice over-expressing Dyrk1A after lipopolysaccharide treatment. Although inflammation induced by lipopolysaccharide treatment has a positive effect on calpastatin and a negative effect on DYRK1A protein level, a positive effect on microglial activation is maintained in the brains of mice over-expressing Dyrk1A.


Asunto(s)
Encéfalo/efectos de los fármacos , Inflamación/inducido químicamente , Lipopolisacáridos/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Enfermedad de Alzheimer/patología , Animales , Encéfalo/metabolismo , Calpaína/metabolismo , Síndrome de Down/metabolismo , Inflamación/metabolismo , Ratones , Fosforilación/efectos de los fármacos , Proteínas tau/metabolismo , Quinasas DyrK
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA