Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
EMBO J ; 40(6): e107165, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33619770

RESUMEN

Mitochondria contain an autonomous and spatially segregated genome. The organizational unit of their genome is the nucleoid, which consists of mitochondrial DNA (mtDNA) and associated architectural proteins. Here, we show that phase separation is the primary physical mechanism for assembly and size control of the mitochondrial nucleoid (mt-nucleoid). The major mtDNA-binding protein TFAM spontaneously phase separates in vitro via weak, multivalent interactions into droplets with slow internal dynamics. TFAM and mtDNA form heterogenous, viscoelastic structures in vitro, which recapitulate the dynamics and behavior of mt-nucleoids in vivo. Mt-nucleoids coalesce into larger droplets in response to various forms of cellular stress, as evidenced by the enlarged and transcriptionally active nucleoids in mitochondria from patients with the premature aging disorder Hutchinson-Gilford Progeria Syndrome (HGPS). Our results point to phase separation as an evolutionarily conserved mechanism of genome organization.


Asunto(s)
ADN Mitocondrial/genética , Genoma Mitocondrial/genética , Mitocondrias/genética , Progeria/patología , Línea Celular , Niño , Preescolar , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Humanos , Proteínas Mitocondriales/metabolismo , Progeria/genética , Factores de Transcripción/metabolismo
2.
EMBO J ; 39(21): e103420, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32935380

RESUMEN

Short telomeres are a principal defining feature of telomere biology disorders, such as dyskeratosis congenita (DC), for which there are no effective treatments. Here, we report that primary fibroblasts from DC patients and late generation telomerase knockout mice display lower nicotinamide adenine dinucleotide (NAD) levels, and an imbalance in the NAD metabolome that includes elevated CD38 NADase and reduced poly(ADP-ribose) polymerase and SIRT1 activities, respectively, affecting many associated biological pathways. Supplementation with the NAD precursor, nicotinamide riboside, and CD38 inhibition improved NAD homeostasis, thereby alleviating telomere damage, defective mitochondrial biosynthesis and clearance, cell growth retardation, and cellular senescence of DC fibroblasts. These findings reveal a direct, underlying role of NAD dysregulation when telomeres are short and underscore its relevance to the pathophysiology and interventions of human telomere-driven diseases.


Asunto(s)
Disqueratosis Congénita/genética , Disqueratosis Congénita/metabolismo , Fibroblastos/metabolismo , NAD/metabolismo , Telomerasa/genética , Telómero/metabolismo , ADP-Ribosil Ciclasa 1/genética , Animales , Encéfalo/patología , Línea Celular , Senescencia Celular , Disqueratosis Congénita/patología , Femenino , Homeostasis , Humanos , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Niacinamida/análogos & derivados , Niacinamida/metabolismo , Fenotipo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Compuestos de Piridinio/metabolismo , Telomerasa/metabolismo
3.
Nucleic Acids Res ; 48(5): 2473-2485, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-31970402

RESUMEN

Cockayne Syndrome (CS) is a rare neurodegenerative disease characterized by short stature, accelerated aging and short lifespan. Mutations in two human genes, ERCC8/CSA and ERCC6/CSB, are causative for CS and their protein products, CSA and CSB, while structurally unrelated, play roles in DNA repair and other aspects of DNA metabolism in human cells. Many clinical and molecular features of CS remain poorly understood, and it was observed that CSA and CSB regulate transcription of ribosomal DNA (rDNA) genes and ribosome biogenesis. Here, we investigate the dysregulation of rRNA synthesis in CS. We report that Nucleolin (Ncl), a nucleolar protein that regulates rRNA synthesis and ribosome biogenesis, interacts with CSA and CSB. In addition, CSA induces ubiquitination of Ncl, enhances binding of CSB to Ncl, and CSA and CSB both stimulate the binding of Ncl to rDNA and subsequent rRNA synthesis. CSB and CSA also increase RNA Polymerase I loading to the coding region of the rDNA and this is Ncl dependent. These findings suggest that CSA and CSB are positive regulators of rRNA synthesis via Ncl regulation. Most CS patients carry mutations in CSA and CSB and present with similar clinical features, thus our findings provide novel insights into disease mechanism.


Asunto(s)
Síndrome de Cockayne/genética , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Regulación de la Expresión Génica , Fosfoproteínas/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Ribosómico/genética , Proteínas de Unión al ARN/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Línea Celular , ADN Ribosómico/genética , Humanos , Modelos Biológicos , Fosfoproteínas/metabolismo , Unión Proteica , Proteínas de Unión al ARN/metabolismo , Nucleolina
4.
Nucleic Acids Res ; 47(16): 8548-8562, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31276581

RESUMEN

Cockayne syndrome is an accelerated aging disorder, caused by mutations in the CSA or CSB genes. In CSB-deficient cells, poly (ADP ribose) polymerase (PARP) is persistently activated by unrepaired DNA damage and consumes and depletes cellular nicotinamide adenine dinucleotide, which leads to mitochondrial dysfunction. Here, the distribution of poly (ADP ribose) (PAR) was determined in CSB-deficient cells using ADPr-ChAP (ADP ribose-chromatin affinity purification), and the results show striking enrichment of PAR at transcription start sites, depletion of heterochromatin and downregulation of H3K9me3-specific methyltransferases SUV39H1 and SETDB1. Induced-expression of SETDB1 in CSB-deficient cells downregulated PAR and normalized mitochondrial function. The results suggest that defects in CSB are strongly associated with loss of heterochromatin, downregulation of SETDB1, increased PAR in highly-transcribed regions, and mitochondrial dysfunction.


Asunto(s)
Senescencia Celular/genética , Síndrome de Cockayne/genética , ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , Histonas/genética , Mitocondrias/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteína Metiltransferasas/genética , Factores de Transcripción/genética , Línea Celular Transformada , Cromatina/química , Cromatina/metabolismo , Síndrome de Cockayne/metabolismo , Síndrome de Cockayne/patología , ADN/genética , ADN/metabolismo , Daño del ADN , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Regulación de la Expresión Génica , N-Metiltransferasa de Histona-Lisina , Histonas/metabolismo , Humanos , Metiltransferasas/genética , Metiltransferasas/metabolismo , Mitocondrias/patología , Mutación , NAD/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteína Metiltransferasas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Sitio de Iniciación de la Transcripción , Transcripción Genética
5.
Acta Neuropathol ; 140(1): 25-47, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32333098

RESUMEN

Alzheimer's disease (AD) is an incurable neurodegenerative disease that is more prevalent in women. The increased risk of AD in women is not well understood. It is well established that there are sex differences in metabolism and that metabolic alterations are an early component of AD. We utilized a cross-species approach to evaluate conserved metabolic alterations in the serum and brain of human AD subjects, two AD mouse models, a human cell line, and two Caenorhabditis elegans AD strains. We found a mitochondrial complex I-specific impairment in cortical synaptic brain mitochondria in female, but not male, AD mice. In the hippocampus, Polß haploinsufficiency caused synaptic complex I impairment in male and female mice, demonstrating the critical role of DNA repair in mitochondrial function. In non-synaptic, glial-enriched, mitochondria from the cortex and hippocampus, complex II-dependent respiration increased in female, but not male, AD mice. These results suggested a glial upregulation of fatty acid metabolism to compensate for neuronal glucose hypometabolism in AD. Using an unbiased metabolomics approach, we consistently observed evidence of systemic and brain metabolic remodeling with a shift from glucose to lipid metabolism in humans with AD, and in AD mice. We determined that this metabolic shift is necessary for cellular and organismal survival in C. elegans, and human cell culture AD models. We observed sex-specific, systemic, and brain metabolic alterations in humans with AD, and that these metabolite changes significantly correlate with amyloid and tau pathology. Among the most significant metabolite changes was the accumulation of glucose-6-phosphate in AD, an inhibitor of hexokinase and rate-limiting metabolite for the pentose phosphate pathway (PPP). Overall, we identified novel mechanisms of glycolysis inhibition, PPP, and tricarboxylic acid cycle impairment, and a neuroprotective augmentation of lipid metabolism in AD. These findings support a sex-targeted metabolism-modifying strategy to prevent and treat AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Trastornos por Deficiencias en la Reparación del ADN/metabolismo , Mitocondrias/metabolismo , Caracteres Sexuales , Enfermedad de Alzheimer/patología , Animales , Encéfalo/patología , Caenorhabditis elegans , Trastornos por Deficiencias en la Reparación del ADN/patología , Metabolismo Energético/fisiología , Femenino , Glucosa/metabolismo , Humanos , Metabolismo de los Lípidos/fisiología , Masculino , Ratones , Mitocondrias/patología
6.
Anal Biochem ; 572: 1-8, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30822397

RESUMEN

The reduction-oxidation state of NAD+/NADH is critical for cellular health with NAD+ and its metabolites playing critical roles in aging and pathologies. Given the inherent autooxidation of reduced dinucleotides (i.e. NADH/NADPH), and the well-established differential stability, the accurate measurement of NAD+ and its metabolites is technically challenging. Moreover, sample processing, normalization and measurement strategies can profoundly alter results. Here we developed a rapid and sensitive liquid chromatography mass spectrometry-based method to quantify the NAD+ metabolome with careful consideration of these intrinsic chemical instabilities. Utilizing this method we assess NAD+ metabolite stabilities and determine the presence and concentrations of NAD+ metabolites in clinically relevant human samples including cerebrospinal fluid, erythrocytes, and primate skeletal muscle.


Asunto(s)
Eritrocitos/metabolismo , Músculo Esquelético/metabolismo , NAD/metabolismo , Espectrometría de Masas en Tándem , Acrilamidas/farmacología , Animales , Cromatografía Líquida de Alta Presión , Eritrocitos/citología , Eritrocitos/efectos de los fármacos , Células HEK293 , Humanos , Metaboloma/efectos de los fármacos , Músculo Esquelético/citología , Músculo Esquelético/efectos de los fármacos , NAD/análisis , NAD/líquido cefalorraquídeo , Niacinamida/análogos & derivados , Niacinamida/farmacología , Piperidinas/farmacología , Primates , Compuestos de Piridinio
7.
J Neurochem ; 137(5): 714-29, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27197831

RESUMEN

Increased male susceptibility to long-term cognitive deficits is well described in clinical and experimental studies of neonatal hypoxic-ischemic encephalopathy. While cell death signaling pathways are known to be sexually dimorphic, a sex-dependent pathophysiological mechanism preceding the majority of secondary cell death has yet to be described. Mitochondrial dysfunction contributes to cell death following cerebral hypoxic-ischemia (HI). Several lines of evidence suggest that there are sex differences in the mitochondrial metabolism of adult mammals. Therefore, this study tested the hypothesis that brain mitochondrial respiratory impairment and associated oxidative stress is more severe in males than females following HI. Maximal brain mitochondrial respiration during oxidative phosphorylation was two-fold more impaired in males following HI. The endogenous antioxidant glutathione was 30% higher in the brain of sham females compared to males. Females also exhibited increased glutathione peroxidase (GPx) activity following HI injury. Conversely, males displayed a reduction in mitochondrial GPx4 protein levels and mitochondrial GPx activity. Moreover, a 3-4-fold increase in oxidative protein carbonylation was observed in the cortex, perirhinal cortex, and hippocampus of injured males, but not females. These data provide the first evidence for sex-dependent mitochondrial respiratory dysfunction and oxidative damage, which may contribute to the relative male susceptibility to adverse long-term outcomes following HI. Lower basal GSH levels, lower post-hypoxic mitochondrial glutathione peroxidase (mtGPx) activity, and mitochondrial glutathione peroxidase 4 (mtGPx4) protein levels may contribute to the susceptibility of the male brain to oxidative damage and mitochondrial dysfunction following neonatal hypoxic-ischemia (HI). Treatment of male pups with acetyl-L-carnitine (ALCAR) protects against the loss of mtGPx activity, mtGPx4 protein, and increases in protein carbonylation after HI. These findings provide novel insight into the pathophysiology of sexually dimorphic outcomes following HI.


Asunto(s)
Modelos Animales de Enfermedad , Hipoxia-Isquemia Encefálica/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo/fisiología , Caracteres Sexuales , Animales , Animales Recién Nacidos , Femenino , Hipoxia-Isquemia Encefálica/patología , Masculino , Mitocondrias/patología , Consumo de Oxígeno/fisiología , Ratas , Ratas Sprague-Dawley
8.
J Bioenerg Biomembr ; 47(1-2): 173-88, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25293493

RESUMEN

Decades of research have revealed numerous differences in brain structure size, connectivity and metabolism between males and females. Sex differences in neurobehavioral and cognitive function after various forms of central nervous system (CNS) injury are observed in clinical practice and animal research studies. Sources of sex differences include early life exposure to gonadal hormones, chromosome compliment and adult hormonal modulation. It is becoming increasingly apparent that mitochondrial metabolism and cell death signaling are also sexually dimorphic. Mitochondrial metabolic dysfunction is a common feature of CNS injury. Evidence suggests males predominantly utilize proteins while females predominantly use lipids as a fuel source within mitochondria and that these differences may significantly affect cellular survival following injury. These fundamental biochemical differences have a profound impact on energy production and many cellular processes in health and disease. This review will focus on the accumulated evidence revealing sex differences in mitochondrial function and cellular signaling pathways in the context of CNS injury mechanisms and the potential implications for neuroprotective therapy development.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Sistema Nervioso Central , Metabolismo Energético , Mitocondrias , Enfermedades Mitocondriales , Caracteres Sexuales , Adulto , Sistema Nervioso Central/lesiones , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Sistema Nervioso Central/fisiopatología , Enfermedades del Sistema Nervioso Central/genética , Enfermedades del Sistema Nervioso Central/metabolismo , Enfermedades del Sistema Nervioso Central/fisiopatología , Femenino , Humanos , Masculino , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Enfermedades Mitocondriales/fisiopatología
9.
Aging Cell ; 20(4): e13329, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33734555

RESUMEN

Senescence phenotypes and mitochondrial dysfunction are implicated in aging and in premature aging diseases, including ataxia telangiectasia (A-T). Loss of mitochondrial function can drive age-related decline in the brain, but little is known about whether improving mitochondrial homeostasis alleviates senescence phenotypes. We demonstrate here that mitochondrial dysfunction and cellular senescence with a senescence-associated secretory phenotype (SASP) occur in A-T patient fibroblasts, and in ATM-deficient cells and mice. Senescence is mediated by stimulator of interferon genes (STING) and involves ectopic cytoplasmic DNA. We further show that boosting intracellular NAD+ levels with nicotinamide riboside (NR) prevents senescence and SASP by promoting mitophagy in a PINK1-dependent manner. NR treatment also prevents neurodegeneration, suppresses senescence and neuroinflammation, and improves motor function in Atm-/- mice. Our findings suggest a central role for mitochondrial dysfunction-induced senescence in A-T pathogenesis, and that enhancing mitophagy as a potential therapeutic intervention.


Asunto(s)
Ataxia Telangiectasia/dietoterapia , Ataxia Telangiectasia/metabolismo , Suplementos Dietéticos , Proteínas de la Membrana/metabolismo , Mitofagia/efectos de los fármacos , NAD/metabolismo , Niacinamida/análogos & derivados , Compuestos de Piridinio/administración & dosificación , Fenotipo Secretor Asociado a la Senescencia/genética , Transducción de Señal/efectos de los fármacos , Animales , Ataxia Telangiectasia/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Estudios de Casos y Controles , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Mitofagia/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Niacinamida/administración & dosificación , Ratas , Ratas Sprague-Dawley , Transducción de Señal/genética , Transfección , Resultado del Tratamiento
10.
Neuron ; 103(3): 432-444.e3, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31221559

RESUMEN

Subtypes of nucleus accumbens medium spiny neurons (MSNs) promote dichotomous outcomes in motivated behaviors. However, recent reports indicate enhancing activity of either nucleus accumbens (NAc) core MSN subtype augments reward, suggesting coincident MSN activity may underlie this outcome. Here, we report a collateral excitation mechanism in which high-frequency, NAc core dopamine 1 (D1)-MSN activation causes long-lasting potentiation of excitatory transmission (LLP) on dopamine receptor 2 (D2)-MSNs. Our mechanistic investigation demonstrates that this form of plasticity requires release of the excitatory peptide substance P from D1-MSNs and robust cholinergic interneuron activation through neurokinin receptor stimulation. We also reveal that D2-MSN LLP requires muscarinic 1 receptor activation, intracellular calcium signaling, and GluR2-lacking AMPAR insertion. This study uncovers a mechanism for shaping NAc core activity through the transfer of excitatory information from D1-MSNs to D2-MSNs and may provide a means for altering goal-directed behavior through coordinated MSN activity.


Asunto(s)
Neuronas Dopaminérgicas/fisiología , Potenciación a Largo Plazo/fisiología , Núcleo Accumbens/fisiología , Sustancia P/metabolismo , Potenciales de Acción/fisiología , Animales , Aprepitant/farmacología , Señalización del Calcio/fisiología , Neuronas Colinérgicas/fisiología , Neuronas Dopaminérgicas/efectos de la radiación , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Interneuronas/fisiología , Ratones , Ratones Endogámicos C57BL , Motivación , Antagonistas del Receptor de Neuroquinina-1/farmacología , Núcleo Accumbens/citología , Estimulación Luminosa , Piperidinas/farmacología , Receptor Muscarínico M1/fisiología , Receptores AMPA/fisiología , Receptores de Dopamina D1/análisis , Receptores de Dopamina D2/análisis , Receptores de Neuroquinina-1/fisiología
11.
Neurotox Res ; 36(2): 239-256, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30259418

RESUMEN

Neuroendocrine and immune signaling pathways are activated following insults such as stress, injury, and infection, in a systemic response aimed at restoring homeostasis. Mitochondrial metabolism and function have been implicated in the control of immune responses. Commonly studied along with mitochondrial function, reactive oxygen species (ROS) are closely linked to cellular inflammatory responses. It is also accepted that cells experiencing mitochondrial or endoplasmic reticulum (ER) stress induce response pathways in order to cope with protein-folding dysregulation, in homeostatic responses referred to as the unfolded protein responses (UPRs). Recent reports indicate that the UPRs may play an important role in immune responses. Notably, the homeostasis-regulating hormones oxytocin (OXT) and vasopressin (AVP) are also associated with the regulation of inflammatory responses and immune function. Intriguingly, OXT and AVP have been linked with ER unfolded protein responses (UPRER), and can impact ROS production and mitochondrial function. Here, we will review the evidence for interactions between these various factors and how these neuropeptides might influence mitochondrial processes.


Asunto(s)
Inmunidad Celular/fisiología , Mitocondrias/metabolismo , Oxitocina/metabolismo , Pliegue de Proteína , Vasopresinas/metabolismo , Animales , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Mitocondrias/inmunología , Oxitocina/inmunología , Especies Reactivas de Oxígeno/inmunología , Especies Reactivas de Oxígeno/metabolismo , Vasopresinas/inmunología
12.
FEBS J ; 286(6): 1058-1073, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30238623

RESUMEN

The biology of aging is an area of intense research, and many questions remain about how and why cell and organismal functions decline over time. In mammalian cells, genomic instability and mitochondrial dysfunction are thought to be among the primary drivers of cellular aging. This review focuses on the interrelationship between genomic instability and mitochondrial dysfunction in mammalian cells and its relevance to age-related functional decline at the molecular and cellular level. The importance of oxidative stress and key DNA damage response pathways in cellular aging is discussed, with a special focus on poly (ADP-ribose) polymerase 1, whose persistent activation depletes cellular energy reserves, leading to mitochondrial dysfunction, loss of energy homeostasis, and altered cellular metabolism. Elucidation of the relationship between genomic instability, mitochondrial dysfunction, and the signaling pathways that connect these pathways/processes are keys to the future of research on human aging. An important component of mitochondrial health preservation is mitophagy, and this and other areas that are particularly ripe for future investigation will be discussed.


Asunto(s)
Envejecimiento/patología , Inestabilidad Genómica , Homeostasis , Mitocondrias/patología , Estrés Oxidativo , Envejecimiento/metabolismo , Animales , Metabolismo Energético , Humanos , Mitocondrias/metabolismo , Mitofagia , Poli(ADP-Ribosa) Polimerasas/metabolismo
13.
Nat Commun ; 10(1): 5284, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31754102

RESUMEN

Metabolic dysfunction is a primary feature of Werner syndrome (WS), a human premature aging disease caused by mutations in the gene encoding the Werner (WRN) DNA helicase. WS patients exhibit severe metabolic phenotypes, but the underlying mechanisms are not understood, and whether the metabolic deficit can be targeted for therapeutic intervention has not been determined. Here we report impaired mitophagy and depletion of NAD+, a fundamental ubiquitous molecule, in WS patient samples and WS invertebrate models. WRN regulates transcription of a key NAD+ biosynthetic enzyme nicotinamide nucleotide adenylyltransferase 1 (NMNAT1). NAD+ repletion restores NAD+ metabolic profiles and improves mitochondrial quality through DCT-1 and ULK-1-dependent mitophagy. At the organismal level, NAD+ repletion remarkably extends lifespan and delays accelerated aging, including stem cell dysfunction, in Caenorhabditis elegans and Drosophila melanogaster models of WS. Our findings suggest that accelerated aging in WS is mediated by impaired mitochondrial function and mitophagy, and that bolstering cellular NAD+ levels counteracts WS phenotypes.


Asunto(s)
Envejecimiento Prematuro/metabolismo , Mitofagia , NAD/metabolismo , Helicasa del Síndrome de Werner/metabolismo , Síndrome de Werner/metabolismo , Envejecimiento Prematuro/genética , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mutación , Nicotinamida-Nucleótido Adenililtransferasa/genética , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Síndrome de Werner/genética , Helicasa del Síndrome de Werner/genética
15.
Trends Mol Med ; 23(10): 899-916, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28899755

RESUMEN

The coenzyme NAD+ is critical in cellular bioenergetics and adaptive stress responses. Its depletion has emerged as a fundamental feature of aging that may predispose to a wide range of chronic diseases. Maintenance of NAD+ levels is important for cells with high energy demands and for proficient neuronal function. NAD+ depletion is detected in major neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases, cardiovascular disease and muscle atrophy. Emerging evidence suggests that NAD+ decrements occur in various tissues during aging, and that physiological and pharmacological interventions bolstering cellular NAD+ levels might retard aspects of aging and forestall some age-related diseases. Here, we discuss aspects of NAD+ biosynthesis, together with putative mechanisms of NAD+ action against aging, including recent preclinical and clinical trials.


Asunto(s)
Envejecimiento/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedades Cardiovasculares/metabolismo , Metabolismo Energético , Atrofia Muscular/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/terapia , Animales , Enfermedades Cardiovasculares/patología , Enfermedades Cardiovasculares/terapia , Humanos , Atrofia Muscular/patología , Atrofia Muscular/terapia , NAD , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/terapia
16.
Ann Clin Transl Neurol ; 4(12): 844-858, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29296613

RESUMEN

Objectives: There is a critical need to develop effective treatments for diabetic neuropathy. This study determined if a selective mGluR2/3 receptor agonist prevented or treated experimental diabetic peripheral neuropathy (DPN) through glutamate recycling and improved mitochondrial function. Methods: Adult male streptozotocin treated Sprague-Dawley rats with features of type 1 diabetes mellitus (T1DM) or Low Capacity Running (LCR) rats with insulin resistance or glucose intolerance were treated with 3 or 10 mg/kg/day LY379268. Neuropathy end points included mechanical allodynia, nerve conduction velocities (NCV), and intraepidermal nerve fiber density (IENFD). Markers of oxidative stress, antioxidant response, glutamate recycling pathways, and mitochondrial oxidative phosphorylation (OXPHOS) associated proteins were measured in dorsal root ganglia (DRG). Results: In diabetic rats, NCV and IENFD were decreased. Diabetic rats treated with an mGluR2/3 agonist did not develop neuropathy despite remaining diabetic. Diabetic DRG showed increased levels of oxidized proteins, decreased levels of glutathione, decreased levels of mitochondrial DNA (mtDNA) and OXPHOS proteins. In addition, there was a 20-fold increase in levels of glial fibrillary acidic protein (GFAP) and the levels of glutamine synthetase and glutamate transporter proteins were decreased. When treated with a specific mGluR2/3 agonist, levels of glutathione, GFAP and oxidized proteins were normalized and levels of superoxide dismutase 2 (SOD2), SIRT1, PGC-1α, TFAM, glutamate transporter proteins, and glutamine synthetase were increased in DRG neurons. Interpretation: Activation of glutamate recycling pathways protects diabetic DRG and this is associated with activation of the SIRT1-PGC-1α-TFAM axis and preservation of mitochondrial OXPHOS function.

17.
Ann Clin Transl Neurol ; 1(8): 589-604, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25356430

RESUMEN

OBJECTIVES: Diabetes leads to cognitive impairment and is associated with age-related neurodegenerative diseases including Alzheimer's disease (AD). Thus, understanding diabetes-induced alterations in brain function is important for developing early interventions for neurodegeneration. Low-capacity runner (LCR) rats are obese and manifest metabolic risk factors resembling human "impaired glucose tolerance" or metabolic syndrome. We examined hippocampal function in aged LCR rats compared to their high-capacity runner (HCR) rat counterparts. METHODS: Hippocampal function was examined using proton magnetic resonance spectroscopy and imaging, unbiased stereology analysis, and a Y maze. Changes in the mitochondrial respiratory chain function and levels of hyperphosphorylated tau and mitochondrial transcriptional regulators were examined. RESULTS: The levels of glutamate, myo-inositol, taurine, and choline-containing compounds were significantly increased in the aged LCR rats. We observed a significant loss of hippocampal neurons and impaired cognitive function in aged LCR rats. Respiratory chain function and activity were significantly decreased in the aged LCR rats. Hyperphosphorylated tau was accumulated within mitochondria and peroxisome proliferator-activated receptor-gamma coactivator 1α, the NAD(+)-dependent protein deacetylase sirtuin 1, and mitochondrial transcription factor A were downregulated in the aged LCR rat hippocampus. INTERPRETATION: These data provide evidence of a neurodegenerative process in the hippocampus of aged LCR rats, consistent with those seen in aged-related dementing illnesses such as AD in humans. The metabolic and mitochondrial abnormalities observed in LCR rat hippocampus are similar to well-described mechanisms that lead to diabetic neuropathy and may provide an important link between cognitive and metabolic dysfunction.

18.
J Neurosci Methods ; 206(2): 200-4, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22425714

RESUMEN

Immuno-laser capture microdissection (immuno-LCM) enables highly selective retrieval of designated cell populations from their in situ locations in complex tissue like the brain. However, the amount of tissue acquired by immuno-LCM is extremely limited, and the RNA purification, amplification and labeling steps necessary for expression analysis by hybridization microarray are tedious and time consuming. This report therefore describes a protocol in which these RNA steps are eliminated altogether, yet allows for global gene profiling. Specifically, immuno-LCM tissue was solubilized and the extract directly subjected to reverse transcription to generate cDNA. Pre-amplification of cDNA was performed next, and then relative expression of 96 different immune-related genes simultaneously determined by quantitative real-time PCR using a microfluidic card TaqMan(®) Low Density Array (TLDA). This protocol was highly reproducible and extremely sensitive, demonstrating high correlation of raw Ct values among both technical and biological replicate samples when using only 1/32 of total pre-amplified cDNA obtained from as little as 500 LCM 'shots.' As this abridged protocol takes only approximately 7h from LCM tissue acquisition to analysis by TLDA, it can prove a very effective tool for both screening and validation purposes when investigating gene regulation in health and disease of the nervous system and other tissues.


Asunto(s)
Encéfalo/metabolismo , Células Endoteliales/metabolismo , Perfilación de la Expresión Génica/métodos , Captura por Microdisección con Láser/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Animales , Encéfalo/irrigación sanguínea , Endotelio Vascular/metabolismo , Femenino , Ratones
19.
Neurobiol Aging ; 33(5): 1004.e1-16, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22019053

RESUMEN

Given strong regional specialization of the brain, cerebral angiogenesis may be regionally modified during normal aging. To test this hypothesis, expression of a broad cadre of angiogenesis-associated genes was assayed at the neurovascular unit (NVU) in discrete brain regions of young versus aged mice by laser capture microdissection coupled to quantitative real-time polymerase chain reaction (PCR). Complementary quantitative capillary density/branching studies were performed as well. Effects of physical exercise were also assayed to determine if age-related trends could be reversed. Additionally, gene response to hypoxia was probed to highlight age-associated weaknesses in adapting to this angiogenic stress. Aging impacted resting expression of angiogenesis-associated genes at the NVU in a region-dependent manner. Physical exercise reversed some of these age-associated gene trends, as well as positively influenced cerebral capillary density/branching in a region-dependent way. Lastly, hypoxia revealed a weaker angiogenic response in aged brain. These results suggest heterogeneous changes in angiogenic capacity of the brain during normal aging, and imply a therapeutic benefit of physical exercise that acts at the level of the NVU.


Asunto(s)
Envejecimiento/fisiología , Arterias Cerebrales/crecimiento & desarrollo , Circulación Cerebrovascular/fisiología , Terapia por Ejercicio/métodos , Neovascularización Fisiológica/fisiología , Condicionamiento Físico Animal/métodos , Animales , Arterias Cerebrales/fisiología , Trastornos Cerebrovasculares/genética , Trastornos Cerebrovasculares/fisiopatología , Trastornos Cerebrovasculares/terapia , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA