Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(50): e2214396119, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36472957

RESUMEN

Osteoporosis is a major public health problem. Currently, there are no orally available therapies that increase bone formation. Intermittent parathyroid hormone (PTH) stimulates bone formation through a signal transduction pathway that involves inhibition of salt-inducible kinase isoforms 2 and 3 (SIK2 and SIK3). Here, we further validate SIK2/SIK3 as osteoporosis drug targets by demonstrating that ubiquitous deletion of these genes in adult mice increases bone formation without extraskeletal toxicities. Previous efforts to target these kinases to stimulate bone formation have been limited by lack of pharmacologically acceptable, specific, orally available SIK2/SIK3 inhibitors. Here, we used structure-based drug design followed by iterative medicinal chemistry to identify SK-124 as a lead compound that potently inhibits SIK2 and SIK3. SK-124 inhibits SIK2 and SIK3 with single-digit nanomolar potency in vitro and in cell-based target engagement assays and shows acceptable kinome selectivity and oral bioavailability. SK-124 reduces SIK2/SIK3 substrate phosphorylation levels in human and mouse cultured bone cells and regulates gene expression patterns in a PTH-like manner. Once-daily oral SK-124 treatment for 3 wk in mice led to PTH-like effects on mineral metabolism including increased blood levels of calcium and 1,25-vitamin D and suppressed endogenous PTH levels. Furthermore, SK-124 treatment increased bone formation by osteoblasts and boosted trabecular bone mass without evidence of short-term toxicity. Taken together, these findings demonstrate PTH-like effects in bone and mineral metabolism upon in vivo treatment with orally available SIK2/SIK3 inhibitor SK-124.


Asunto(s)
Inhibición Psicológica , Osteogénesis , Humanos , Ratones , Animales , Plomo , Proteínas Serina-Treonina Quinasas/genética
2.
Development ; 145(15)2018 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-30002128

RESUMEN

The bone tendon attachment site known as the enthesis comprises a transitional zone between bone and tendon, and plays an important role in enabling movement at this site. X-linked hypophosphatemia (XLH) is characterized by impaired activation of vitamin D, elevated serum FGF23 levels and low serum phosphate levels, which impair bone mineralization. Paradoxically, an important complication of XLH is mineralization of the enthesis (enthesopathy). Studies were undertaken to identify the cellular and molecular pathways important for normal post-natal enthesis maturation and to examine their role during the development of enthesopathy in mice with XLH (Hyp). The Achilles tendon entheses of Hyp mice demonstrate an expansion of hypertrophic-appearing chondrogenic cells by P14. Post-natally, cells in wild-type and Hyp entheses similarly descend from scleraxis- and Sox9-expressing progenitors; however, Hyp entheses exhibit an expansion of Sox9-expressing cells, and enhanced BMP and IHH signaling. These results support a role for enhanced BMP and IHH signaling in the development of enthesopathy in XLH.


Asunto(s)
Entesopatía/complicaciones , Entesopatía/genética , Raquitismo Hipofosfatémico/complicaciones , Raquitismo Hipofosfatémico/genética , Fosfatasa Alcalina/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Proliferación Celular/efectos de los fármacos , Condrogénesis/efectos de los fármacos , Modelos Animales de Enfermedad , Entesopatía/tratamiento farmacológico , Entesopatía/patología , Femenino , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/farmacología , Factores de Crecimiento de Fibroblastos/uso terapéutico , Proteínas Hedgehog/metabolismo , Masculino , Ratones Endogámicos C57BL , Raquitismo Hipofosfatémico/tratamiento farmacológico , Raquitismo Hipofosfatémico/patología , Factor de Transcripción SOX9/metabolismo , Transducción de Señal/efectos de los fármacos , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Vitamina D/análogos & derivados , Vitamina D/farmacología , Vitamina D/uso terapéutico
3.
Development ; 143(2): 348-55, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26657770

RESUMEN

Extracellular phosphate plays a key role in growth plate maturation by inducing Erk1/2 (Mapk3/1) phosphorylation, leading to hypertrophic chondrocyte apoptosis. The Raf kinases induce Mek1/2 (Map2k1/2) and Erk1/2 phosphorylation; however, a role for Raf kinases in endochondral bone formation has not been identified. Ablation of both A-Raf (Araf) and B-Raf (Braf) in chondrocytes does not alter growth plate maturation. Because c-Raf (Raf1) phosphorylation is increased by extracellular phosphate and c-Raf is the predominant isoform expressed in hypertrophic chondrocytes, chondrocyte-specific c-Raf knockout mice (c-Raf(f/f);ColII-Cre(+)) were generated to define a role for c-Raf in growth plate maturation. In vivo studies demonstrated that loss of c-Raf in chondrocytes leads to expansion of the hypertrophic layer of the growth plate, with decreased phospho-Erk1/2 immunoreactivity and impaired hypertrophic chondrocyte apoptosis. However, cultured hypertrophic chondrocytes from these mice did not exhibit impairment of phosphate-induced Erk1/2 phosphorylation. Studies performed to reconcile the discrepancy between the in vitro and in vivo hypertrophic chondrocyte phenotypes revealed normal chondrocyte differentiation in c-Raf(f/f);ColII-Cre(+) mice and lack of compensatory increase in the expression of A-Raf and B-Raf. However, VEGF (Vegfa) immunoreactivity in the hypertrophic chondrocytes of c-Raf(f/f);ColII-Cre(+) mice was significantly reduced, associated with increased ubiquitylation of VEGF protein. Thus, c-Raf plays an important role in growth plate maturation by regulating vascular invasion, which is crucial for replacement of terminally differentiated hypertrophic chondrocytes by bone.


Asunto(s)
Placa de Crecimiento/citología , Placa de Crecimiento/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Células Cultivadas , Condrocitos/citología , Condrocitos/metabolismo , Femenino , Masculino , Ratones , Osteogénesis/genética , Osteogénesis/fisiología , Proteínas Proto-Oncogénicas c-raf/genética
4.
J Biol Chem ; 292(8): 3164-3171, 2017 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-28073913

RESUMEN

Hypophosphatemia causes rickets by impairing hypertrophic chondrocyte apoptosis. Phosphate induction of MEK1/2-ERK1/2 phosphorylation in hypertrophic chondrocytes is required for phosphate-mediated apoptosis and growth plate maturation. MEK1/2 can be activated by numerous molecules including Raf isoforms. A- and B-Raf ablation in chondrocytes does not alter skeletal development, whereas ablation of C-Raf decreases hypertrophic chondrocyte apoptosis and impairs vascularization of the growth plate. However, ablation of C-Raf does not impair phosphate-induced ERK1/2 phosphorylation in vitro, but leads to rickets by decreasing VEGF protein stability. To determine whether Raf isoforms are required for phosphate-induced hypertrophic chondrocyte apoptosis, mice lacking all three Raf isoforms in chondrocytes were generated. Raf deletion caused neonatal death and a significant expansion of the hypertrophic chondrocyte layer of the growth plate, accompanied by decreased cleaved caspase-9. This was associated with decreased phospho-ERK1/2 immunoreactivity in the hypertrophic chondrocyte layer and impaired vascular invasion. These data further demonstrated that Raf kinases are required for phosphate-induced ERK1/2 phosphorylation in cultured hypertrophic chondrocytes and perform essential, but partially redundant roles in growth plate maturation.


Asunto(s)
Condrocitos/metabolismo , Condrogénesis , Placa de Crecimiento/crecimiento & desarrollo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas A-raf/metabolismo , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Animales , Apoptosis , Desarrollo Óseo , Células Cultivadas , Condrocitos/citología , Condrocitos/patología , Placa de Crecimiento/metabolismo , Ratones Endogámicos C57BL , Fosfatos/metabolismo , Fosforilación , Isoformas de Proteínas/metabolismo , Quinasas raf/metabolismo
5.
FASEB J ; 31(3): 1059-1066, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27932380

RESUMEN

Vitamin D receptor (VDR) mutations in humans and mice cause alopecia. VDR-null (VDR-/-) mice exhibit lack of postmorphogenic hair cycles as a result of impaired keratinocyte stem cell (KSC) function. To identify the molecular basis for abnormal KSC function, RNA sequencing of wild-type (WT) and VDR-/- KSCs was performed. These studies demonstrated that >80% of differentially expressed genes are up-regulated in VDR-/- KSCs; thus, the VDR is a transcriptional suppressor in WT KSCs. Peroxisome proliferator-activated receptor γ (PPARγ), PPARγ coactivator 1ß (PGC1ß), and lipoprotein lipase (LPL) were among the up-regulated genes identified. Chromatin immunoprecipitation analyses demonstrated that these genes are direct VDR targets in WT keratinocytes. Notably, VDR occupancy of the PPARγ regulatory region precludes PPARγ occupancy of this site, based on the observation that PPARγ interacts with these sequences in VDR-/- but not WT keratinocytes. This contrasts with the VDR and PPARγ co-occupancy observed on PGC1ß and LPL gene regulatory regions identified. Studies in mice with keratinocyte-specific PPARγ haploinsufficiency were performed to identify the functional consequences of enhanced PPARγ expression. PPARγ haploinsufficiency normalized PPARγ mRNA levels in VDR-/- keratinocytes and restored anagen responsiveness in vivo in VDR-/- mice, resulting in hair regrowth. Thus, absence of VDR-mediated PPARγ suppression underlies alopecia in VDR-/- mice.-Saini, V., Zhao, H., Petit, E. T., Gori, F., Demay, M. B. Absence of vitamin D receptor (VDR)-mediated PPARγ suppression causes alopecia in VDR-null mice.


Asunto(s)
Alopecia/genética , PPAR gamma/metabolismo , Receptores de Calcitriol/genética , Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Alopecia/metabolismo , Animales , Células Cultivadas , Proteínas Cromosómicas no Histona , Haploinsuficiencia , Queratinocitos/citología , Queratinocitos/metabolismo , Lipoproteína Lipasa/metabolismo , Ratones , Proteínas Nucleares/metabolismo , Unión Proteica , Receptores de Calcitriol/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Regulación hacia Arriba
6.
J Surg Res ; 232: 325-331, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30463736

RESUMEN

BACKGROUND: The gut is becoming increasingly recognized as the source of various systemic diseases, and recently, it has been linked to bone metabolism via the so-called gut-bone axis. The microbiome and gut-derived mediators are thought to impact upon bone metabolism, and administration of probiotics has been shown to have beneficial effects in bone. The gut brush border enzyme intestinal alkaline phosphatase (IAP) plays an important role in controlling calcium absorption, inhibiting lipopolysaccharides, and other inflammatory mediators responsible for endotoxemia and appears to preserve the normal gut microbiota. Interestingly, IAP-deficient mice (AKP3-/-) also display a significant decrease in fecal Lactobacillus, the genus shown to be beneficial to bone. MATERIALS AND METHODS: IAP mRNA levels in mouse bone were measured using quantitative real-time polymerase chain reaction. Femurs of IAP-knockout (KO) and wild-type (WT) mice were analyzed by microcomputed tomography and histopathology. Serum levels of alkaline phosphatase, calcium, and phosphorus were measured. Target cell response upon exposure to serum from IAP-KO and WT mice was quantified using primary bone marrow macrophages. RESULTS: IAP was not significantly expressed in bones of WT or KO animals. IAP (alkaline phosphatase 3) expression in bone was vanishingly low compared to the duodenum (bone versus duodenum, 56.9 ± 17.7 versus 25,430.3 ± 10,884.5 relative expression, P = 0.01). Bone histology of younger IAP-KO and WT animals was indistinguishable, whereas older IAP-deficient mice showed a distinctly altered phenotype on histology and computed tomography scan. Younger KO mice did not display any abnormal levels in blood chemistry. Older IAP-KO animals showed an isolated increase in serum alkaline phosphatase levels reflecting an environment of active bone formation (IAP-WT versus IAP-KO, 80 ± 27.4 U/I versus 453 ± 107.5 U/I, P = 0.004). There was no significant difference in serum calcium or phosphorus levels between KO and WT mice. Serum from IAP-KO mice induced a significantly higher inflammatory target cell response. CONCLUSIONS: Through its multiple functions, IAP seems to play a crucial role in connecting the gut to the bone. IAP deficiency leads to chronic changes in bone formation, most likely through dysbiosis and systemic dissemination of proinflammatory mediators.


Asunto(s)
Fosfatasa Alcalina/deficiencia , Remodelación Ósea/fisiología , Duodeno/metabolismo , Fémur/patología , Mucosa Intestinal/metabolismo , Fosfatasa Alcalina/sangre , Fosfatasa Alcalina/genética , Animales , Células Cultivadas , Disbiosis/metabolismo , Femenino , Fémur/diagnóstico por imagen , Fémur/metabolismo , Microbioma Gastrointestinal/fisiología , Macrófagos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Cultivo Primario de Células , ARN Mensajero/aislamiento & purificación , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Organismos Libres de Patógenos Específicos , Microtomografía por Rayos X
7.
Artículo en Inglés | MEDLINE | ID: mdl-38828942

RESUMEN

CONTEXT: Low vitamin D status is common and is associated with various common medical conditions. OBJECTIVE: To support the development of the Endocrine Society's Clinical Practice Guideline on Vitamin D for the Prevention of Disease. METHODS: We searched multiple databases for studies that addressed 14 clinical questions prioritized by the guideline panel. Of the 14 questions, 10 clinical questions assessed the effect of vitamin D vs no vitamin D in the general population throughout the lifespan, during pregnancy, and in adults with prediabetes; 1 question assessed dosing; and 3 questions addressed screening with serum 25-hydroxyvitamin D (25[OH]D). The Grading of Recommendations Assessment, Development and Evaluation approach was used to assess certainty of evidence. RESULTS: Electronic searches yielded 37 007 citations, from which we included 151 studies. In children and adolescents, low-certainty evidence suggested reduction in respiratory tract infections with empiric vitamin D. There was no significant effect on select outcomes in healthy adults aged 19 to 74 years with variable certainty of evidence. There was a very small reduction in mortality among adults older than 75 years with high certainty of evidence. In pregnant women, low-certainty evidence suggested possible benefit on various maternal, fetal, and neonatal outcomes. In adults with prediabetes, moderate certainty of evidence suggested reduction in the rate of progression to diabetes. Administration of high-dose intermittent vitamin D may increase falls, compared to lower-dose daily dosing. We did not identify trials on the benefits and harms of screening with serum 25(OH)D. CONCLUSION: The evidence summarized in this systematic review addresses the benefits and harms of vitamin D for the prevention of disease. The guideline panel considered additional information about individuals' and providers' values and preferences and other important decisional and contextual factors to develop clinical recommendations.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38828960

RESUMEN

Vitamin D plays a critical role in many physiological functions, including calcium metabolism and musculoskeletal health. This commentary aims to explore the intricate relationships among skin complexion, race, and 25-hydroxyvitamin D (25[OH]D) levels, focusing on challenges the Endocrine Society encountered during clinical practice guideline development. Given that increased melanin content reduces 25(OH)D production in the skin in response to UV light, the guideline development panel addressed the potential role for 25(OH)D screening in individuals with dark skin complexion. The panel discovered that no randomized clinical trials have directly assessed vitamin D related patient-important outcomes based on participants' skin pigmentation, although race and ethnicity often served as presumed proxies for skin pigmentation in the literature. In their deliberations, guideline panel members and selected Endocrine Society leaders underscored the critical need to distinguish between skin pigmentation as a biological variable and race and ethnicity as socially determined constructs. This differentiation is vital to maximize scientific rigor and, thus, the validity of resulting recommendations. Lessons learned from the guideline development process emphasize the necessity of clarity when incorporating race and ethnicity into clinical guidelines. Such clarity is an essential step toward improving health outcomes and ensuring equitable healthcare practices.

9.
Artículo en Inglés | MEDLINE | ID: mdl-38828931

RESUMEN

BACKGROUND: Numerous studies demonstrate associations between serum concentrations of 25-hydroxyvitamin D (25[OH]D) and a variety of common disorders, including musculoskeletal, metabolic, cardiovascular, malignant, autoimmune, and infectious diseases. Although a causal link between serum 25(OH)D concentrations and many disorders has not been clearly established, these associations have led to widespread supplementation with vitamin D and increased laboratory testing for 25(OH)D in the general population. The benefit-risk ratio of this increase in vitamin D use is not clear, and the optimal vitamin D intake and the role of testing for 25(OH)D for disease prevention remain uncertain. OBJECTIVE: To develop clinical guidelines for the use of vitamin D (cholecalciferol [vitamin D3] or ergocalciferol [vitamin D2]) to lower the risk of disease in individuals without established indications for vitamin D treatment or 25(OH)D testing. METHODS: A multidisciplinary panel of clinical experts, along with experts in guideline methodology and systematic literature review, identified and prioritized 14 clinically relevant questions related to the use of vitamin D and 25(OH)D testing to lower the risk of disease. The panel prioritized randomized placebo-controlled trials in general populations (without an established indication for vitamin D treatment or 25[OH]D testing), evaluating the effects of empiric vitamin D administration throughout the lifespan, as well as in select conditions (pregnancy and prediabetes). The panel defined "empiric supplementation" as vitamin D intake that (a) exceeds the Dietary Reference Intakes (DRI) and (b) is implemented without testing for 25(OH)D. Systematic reviews queried electronic databases for publications related to these 14 clinical questions. The Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) methodology was used to assess the certainty of evidence and guide recommendations. The approach incorporated perspectives from a patient representative and considered patient values, costs and resources required, acceptability and feasibility, and impact on health equity of the proposed recommendations. The process to develop this clinical guideline did not use a risk assessment framework and was not designed to replace current DRI for vitamin D. RESULTS: The panel suggests empiric vitamin D supplementation for children and adolescents aged 1 to 18 years to prevent nutritional rickets and because of its potential to lower the risk of respiratory tract infections; for those aged 75 years and older because of its potential to lower the risk of mortality; for those who are pregnant because of its potential to lower the risk of preeclampsia, intra-uterine mortality, preterm birth, small-for-gestational-age birth, and neonatal mortality; and for those with high-risk prediabetes because of its potential to reduce progression to diabetes. Because the vitamin D doses in the included clinical trials varied considerably and many trial participants were allowed to continue their own vitamin D-containing supplements, the optimal doses for empiric vitamin D supplementation remain unclear for the populations considered. For nonpregnant people older than 50 years for whom vitamin D is indicated, the panel suggests supplementation via daily administration of vitamin D, rather than intermittent use of high doses. The panel suggests against empiric vitamin D supplementation above the current DRI to lower the risk of disease in healthy adults younger than 75 years. No clinical trial evidence was found to support routine screening for 25(OH)D in the general population, nor in those with obesity or dark complexion, and there was no clear evidence defining the optimal target level of 25(OH)D required for disease prevention in the populations considered; thus, the panel suggests against routine 25(OH)D testing in all populations considered. The panel judged that, in most situations, empiric vitamin D supplementation is inexpensive, feasible, acceptable to both healthy individuals and health care professionals, and has no negative effect on health equity. CONCLUSION: The panel suggests empiric vitamin D for those aged 1 to 18 years and adults over 75 years of age, those who are pregnant, and those with high-risk prediabetes. Due to the scarcity of natural food sources rich in vitamin D, empiric supplementation can be achieved through a combination of fortified foods and supplements that contain vitamin D. Based on the absence of supportive clinical trial evidence, the panel suggests against routine 25(OH)D testing in the absence of established indications. These recommendations are not meant to replace the current DRIs for vitamin D, nor do they apply to people with established indications for vitamin D treatment or 25(OH)D testing. Further research is needed to determine optimal 25(OH)D levels for specific health benefits.

10.
Calcif Tissue Int ; 92(2): 99-105, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22903507

RESUMEN

Identification of vitamin D as a potent antirachitic factor almost a century ago prompted investigations aimed at addressing its mechanism of action and key target tissues. Studies in vitamin D deficiency models and in kindreds with impaired hormone activation and function were critical in identifying key steps in the vitamin D signaling pathway. Studies in humans with vitamin D receptor (VDR) mutations provided a tremendous amount of information regarding the role of this receptor in calcium and skeletal homeostasis. The availability of mouse models of VDR ablation provided an important tool for detailed molecular analyses of the pathophysiologic basis for the skeletal, parathyroid and cutaneous phenotypes observed in mice and humans with impaired VDR function. These investigations revealed that a critical action of the liganded receptor is the promotion of intestinal calcium absorption. Bypassing this defect by dietary or transgenic rescue prevents the severe skeletal phenotype of the VDR ablated mice, as well as the development of hyperparathyroidism. In contrast, intestine specific ablation of the receptor results in marked skeletal pathology. Like their human counterparts, VDR knockout mice develop alopecia. Studies in these mice demonstrated that the actions of the VDR required for cyclical regeneration of the hair follicle and prevention of alopecia were shown independent of 1,25-dihydroxyvitamin D demonstrating that the unliganded receptor has an important role in the cutaneous homeostasis.


Asunto(s)
Receptores de Calcitriol/fisiología , Deficiencia de Vitamina D , Animales , Humanos , Ratones , Ratones Noqueados
11.
iScience ; 26(9): 107548, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37636062

RESUMEN

Low circulating phosphate (Pi) leads to rickets, characterized by expansion of the hypertrophic chondrocytes (HCs) in the growth plate due to impaired HC apoptosis. Studies in HCs demonstrate that Pi activates the Raf/MEK/ERK1/2 and mitochondrial apoptotic pathways. To determine how Pi activates these pathways, a small-molecule screen was undertaken to identify inhibitors of Pi-induced ERK1/2 phosphorylation in HCs. Vascular endothelial growth factor receptor 2 (VEGFR2) was identified as a target. In vitro studies in HCs demonstrate that VEGFR2 inhibitors block Pi-induced pERK1/2 and caspase-9 cleavage. Like Pi, rhVEGF activates ERK1/2 and caspase-9 in HCs and induces phosphorylation of VEGFR2, confirming that Pi activates this signaling pathway in HCs. Chondrocyte-specific depletion of VEGFR2 leads to an increase in HCs, impaired vascular invasion, and a decrease in HC apoptosis. Thus, these studies define a role for VEGFR2 in transducing Pi signals and mediating its effects on growth plate maturation.

12.
Endocrinology ; 165(1)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38066669

RESUMEN

X-linked hypophosphatemia (XLH) is the most common form of hereditary hypophosphatemic rickets. The genetic basis for XLH is loss of function mutations in the phosphate-regulating endopeptidase X-linked (PHEX), which leads to increased circulating fibroblast growth factor 23 (FGF23). This increase in FGF23 impairs activation of vitamin D and attenuates renal phosphate reabsorption, leading to rickets. Previous studies have demonstrated that ablating FGF23 in the Hyp mouse model of XLH leads to hyperphosphatemia, high levels of 1,25-dihydroxyvitamin D, and is not associated with the development of rickets. Studies were undertaken to define a role for the increase in 1,25-dihydroxyvitamin D levels in the prevention of rickets in Hyp mice lacking FGF23. These mice were mated to mice lacking Cyp27b1, the enzyme responsible for activating vitamin D metabolites, to generate Hyp mice lacking both FGF23 and 1,25-dihydroxyvitamin D (FCH mice). Mice were fed a special diet to maintain normal mineral ion homeostasis. Despite normal mineral ions, Hyp mice lacking both FGF23 and Cyp27b1 developed rickets, characterized by an interrupted, expanded hypertrophic chondrocyte layer and impaired hypertrophic chondrocyte apoptosis. This phenotype was prevented when mice were treated with 1,25-dihydroxyvitamin D from day 2 until sacrifice on day 30. Interestingly, mice lacking FGF23 and Cyp27b1 without the PHEX mutation did not exhibit rickets. These findings define an essential PHEX-dependent, FGF23-independent role for 1,25-dihydroxyvitamin D in XLH and have important therapeutic implications for the treatment of this genetic disorder.


Asunto(s)
Raquitismo Hipofosfatémico Familiar , Animales , Ratones , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/genética , Raquitismo Hipofosfatémico Familiar/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Placa de Crecimiento/metabolismo , Minerales/uso terapéutico , Fosfatos , Vitamina D/metabolismo
13.
J Biol Chem ; 286(21): 18444-51, 2011 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-21471213

RESUMEN

Ligand-independent actions of the vitamin D receptor (VDR) are required for normal post-morphogenic hair cycles; however, the molecular mechanisms by which the VDR exerts these actions are not clear. Previous studies demonstrated impaired regulation of the canonical Wnt signaling pathway in primary keratinocytes lacking the VDR. To identify the key effector of canonical Wnt signaling that interacts with the VDR, GST pulldown studies were performed. A novel interaction between the VDR and LEF1 (lymphoid enhancer-binding factor-1) that is independent of ß-catenin was identified. This interaction is dependent upon sequences within the N-terminal region of the VDR, a domain required for VDR-DNA interactions and normal hair cycling in mice. Mutation of specific residues within the N-terminal region of the VDR not only abrogated interactions between the VDR and LEF1 but also impaired the ability of the VDR to enhance Wnt signaling in vdr(-/-) primary keratinocytes. Thus, this study demonstrates a novel interaction between the VDR and LEF1 that is mediated by the DNA-binding domain of the VDR and that is required for normal canonical Wnt signaling in keratinocytes.


Asunto(s)
Queratinocitos/metabolismo , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Receptores de Calcitriol/metabolismo , Transducción de Señal/fisiología , Animales , Células COS , Chlorocebus aethiops , ADN/genética , ADN/metabolismo , Cabello/metabolismo , Humanos , Queratinocitos/citología , Factor de Unión 1 al Potenciador Linfoide/genética , Ratones , Ratones Noqueados , Mutación , Estructura Terciaria de Proteína , Receptores de Calcitriol/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
14.
Arch Biochem Biophys ; 523(1): 19-21, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22008469

RESUMEN

The Vitamin D receptor (VDR) plays a critical role in epidermal homeostasis. The ligand-dependent actions of the VDR attenuate epidermal keratinocyte proliferation and promote keratinocyte differentiation. Calcium can compensate for the absence of the VDR in maintaining a normal program of epidermal keratinocyte differentiation both in vitro and in vivo. In contrast, the effects of VDR ablation on the hair follicle cannot be prevented by maintaining normal calcium levels and are independent of 1,25-dihydroxyvitamin D. These actions of the VDR are critical in the keratinocyte stem cell population that resides in the bulge region of the hair follicle. Absence of a functional VDR leads to a self-renewal and lineage progression defect in this population of stem cells, resulting in the absence of post-morphogenic hair cycles. The molecular partners and downstream target genes of the VDR in this unique population of cells have not yet been identified.


Asunto(s)
Folículo Piloso/crecimiento & desarrollo , Folículo Piloso/metabolismo , Receptores de Calcitriol/metabolismo , Animales , Folículo Piloso/citología , Humanos
15.
Endocrinology ; 163(2)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34878523

RESUMEN

Risk factors for nonalcoholic hepatic steatosis include obesity and vitamin D deficiency which commonly coexist. Thus, the role of vitamin D signaling in the prevention of hepatic steatosis in the absence of obesity or a "Western" high-fat diet is unclear. These studies were performed to address the role of the adipocyte vitamin D receptor (VDR) in the prevention of hepatic steatosis in mice fed a chow diet containing 5% fat by weight. Female mice with adipocyte VDR ablation (Adipoq-Cre; VDRflox/flox) exhibited a mild increase in weight gain at age 70 days, accompanied by an increase in visceral white adipose tissue (VAT) weight. While they did not exhibit evidence of hepatic inflammation or fibrosis, an increase in hepatic lipid content was observed. This was accompanied by an increase in the hepatic expression of genes involved in fatty acid transport and synthesis, as well as fatty acid oxidation. Markers of hepatic inflammation and fibrosis were unaffected by adipocyte VDR ablation. Consistent with the increase in VAT weight in the Adipoq-Cre; VDRflox/flox mice, higher levels of transcripts encoding adipogenesis-related genes were observed in VAT. In contrast to other models of impaired vitamin D signaling studied in the setting of a high-fat or "Western" diet, the Adipoq-Cre; VDRflox/flox mice do not exhibit hepatic inflammation or fibrosis. These findings suggest that the adipocyte VDR regulates hepatic lipid accumulation, but in the absence of obesity or a high-fat diet, is not required to prevent hepatic inflammation or fibrosis.


Asunto(s)
Dieta con Restricción de Grasas , Grasa Intraabdominal/metabolismo , Enfermedad del Hígado Graso no Alcohólico/fisiopatología , Receptores de Calcitriol/fisiología , Adipocitos/química , Animales , Femenino , Metabolismo de los Lípidos/fisiología , Hígado/metabolismo , Ratones , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Receptores de Calcitriol/deficiencia , Receptores de Calcitriol/genética , Transducción de Señal/fisiología , Vitamina D/metabolismo
16.
Front Endocrinol (Lausanne) ; 13: 901265, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35733772

RESUMEN

Intact mineralization of the auditory ossicles - the smallest bones in the body - is essential for sound transmission in the middle ear, while ossicular hypomineralization is associated with conductive hearing loss. Here, we performed a high-resolution analysis of the ossicles in vitamin D receptor deficient mice (Vdr-/- ), which are characterized by hypocalcemia and skeletal mineralization defects, and investigated whether local hypomineralization can be prevented by feeding a calcium-rich rescue diet (Vdr-/- res ). In Vdr-/- mice fed a regular diet (Vdr-/- reg ), quantitative backscattered electron imaging (qBEI) revealed an increased void volume (porosity, p<0.0001) along with lower mean calcium content (CaMean, p=0.0008) and higher heterogeneity of mineralization (CaWidth, p=0.003) compared to WT mice. Furthermore, a higher osteoid volume per bone volume (OV/BV; p=0.0002) and a higher osteocyte lacunar area (Lc.Ar; p=0.01) were found in histomorphometric analysis in Vdr-/- reg mice. In Vdr-/- res mice, full rescue of OV/BV and Lc.Ar (both p>0.05 vs. WT) and partial rescue of porosity and CaWidth (p=0.02 and p=0.04 vs. WT) were observed. Compared with Hyp mice, a model of X-linked hypophosphatemic rickets, Vdr-/- reg mice showed a lower osteoid volume in the ossicles (p=0.0002), but similar values in the lumbar spine. These results are consistent with later postnatal impairment of mineral homeostasis in Vdr-/- mice than in Hyp mice, underscoring the importance of intact mineral homeostasis for ossicle mineralization during development. In conclusion, we revealed a distinct phenotype of hypomineralization in the auditory ossicles of Vdr-/- mice that can be partially prevented by a rescue diet. Since a positive effect of a calcium-rich diet on ossicular mineralization was demonstrated, our results open new treatment strategies for conductive hearing loss. Future studies should investigate the impact of improved ossicular mineralization on hearing function.


Asunto(s)
Calcio , Receptores de Calcitriol , Animales , Osículos del Oído , Pérdida Auditiva Conductiva , Ratones , Ratones Noqueados , Minerales , Receptores de Calcitriol/genética
17.
J Biol Chem ; 285(24): 18270-5, 2010 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-20404333

RESUMEN

Growth plate abnormalities, associated with impaired hypertrophic chondrocyte apoptosis, are observed in humans and animals with abnormalities of vitamin D action and renal phosphate reabsorption. Low circulating phosphate levels impair hypertrophic chondrocyte apoptosis, whereas treatment of these cells with phosphate activates the mitochondrial apoptotic pathway. Because phosphate-mediated apoptosis of chondrocytes is differentiation-dependent, studies were performed to identify factors that contribute to hypertrophic chondrocyte apoptosis. An increase in the percentage of cells with low mitochondrial membrane potential, evaluated by JC-1 fluorescence, was observed during hypertrophic differentiation of primary murine chondrocytes in culture. This percentage was further increased by treatment of hypertrophic, but not proliferative, chondrocytes with phosphate. Phosphate-mediated apoptosis was observed as early as 30 min post-treatment and was dependent upon Erk1/2 phosphorylation. Inhibition of Erk1/2 phosphorylation in vivo confirmed an important role for this signaling pathway in regulating hypertrophic chondrocyte apoptosis in growing mice. Murine embryonic metatarsals cultured under phosphate-restricted conditions demonstrated a 2.5-fold increase in parathyroid hormone-related protein mRNA expression accompanied by a marked attenuation in phospho-Erk immunoreactivity in hypertrophic chondrocytes. Thus, these investigations point to an important role for phosphate in regulating mitochondrial membrane potential in hypertrophic chondrocytes and growth plate maturation by the parathyroid hormone-related protein signaling pathway.


Asunto(s)
Apoptosis , Condrocitos/metabolismo , Potenciales de la Membrana , Mitocondrias/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosfatos/química , Animales , Proliferación Celular , Células Cultivadas , Citometría de Flujo/métodos , Hipertrofia/patología , Ratones , Ratones Endogámicos C57BL , Fosforilación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
Proc Natl Acad Sci U S A ; 105(47): 18402-7, 2008 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-19020086

RESUMEN

We have previously shown that the retinoblastoma protein (pRb) can activate expression of Runx2-dependent, bone-specific genes in cultured cells. We now show that pRb also plays a role early in osteogenesis, and that in primary RB1(-/-) calvarial cells there is an increased osteoprogenitor pool. To understand pRb's function in vivo, we generated a conditional RB1-KO mouse in which pRb expression is efficiently extinguished in osteoblasts. These animals display an apparent developmental defect in bones, most strikingly in the calvaria. Cultured RB1(-/-) calvarial osteoblasts fail to cease proliferation upon reaching confluence or following differentiation. Re-plating assays of primary RB1(-/-) calvarial cells after differentiation showed a clear adipogenic ability with increased multipotency. RB1(-/-) osteoblasts display a severe reduction in levels of mRNAs expressed late in differentiation. In this study, we present strong evidence that pRb has multiple regulatory roles in osteogenesis. Furthermore, in the absence of RB1(-/-) there is a larger pool of multipotent cells compared with the WT counterpart. This increased pool of osteoprogenitor cells may be susceptible to additional transforming events leading to osteosarcoma, and is therefore key to understanding RB1 as a target in malignancy.


Asunto(s)
Desarrollo Óseo , Células Madre Mesenquimatosas/citología , Proteína de Retinoblastoma/fisiología , Cráneo/citología , Animales , Proliferación Celular , Ratones , Ratones Noqueados , Osteoblastos/citología , Proteína de Retinoblastoma/genética
19.
J Bone Miner Res ; 36(8): 1510-1520, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33900666

RESUMEN

Bone marrow stromal cells (BMSCs) are multipotent cells that differentiate into cells of the osteogenic and adipogenic lineage. A striking inverse relationship between bone marrow adipose tissue (BMAT) and bone volume is seen in several conditions, suggesting that differentiation of BMSCs into bone marrow adipocytes diverts cells from the osteogenic lineage, thereby compromising the structural and mechanical properties of bone. Phosphate restriction of growing mice acutely decreases bone formation, blocks osteoblast differentiation and increases BMAT. Studies performed to evaluate the cellular and molecular basis for the effects of acute phosphate restriction demonstrate that it acutely increases 5' adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and inhibits mammalian target of rapamycin complex 1 (mTORC1) signaling in osteoblasts. This is accompanied by decreased expression of Wnt10b in BMSCs. Phosphate restriction also promotes expression of the key adipogenic transcription factors, peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer binding protein α (CEBPα), in CXCL12 abundant reticular (CAR) cells, which represent undifferentiated BMSCs and are the main source of BMAT and osteoblasts in the adult murine skeleton. Consistent with this, lineage tracing studies reveal that the BMAT observed in phosphate-restricted mice is of CAR cell origin. To determine whether circumventing the decrease in mTORC1 signaling in maturing osteoblasts attenuates the osteoblast and BMAT phenotype, phosphate-restricted mice with OSX-CreERT2 -mediated haploinsufficiency of the mTORC1 inhibitor, TSC2, were generated. TSC2 haploinsufficiency in preosteoblasts/osteoblasts normalized bone volume and osteoblast number in phosphate-restricted mice and attenuated the increase in BMAT observed. Thus, acute phosphate restriction leads to decreased bone and increases BMAT by impairing mTORC1 signaling in osterix-expressing cells. © 2021 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Médula Ósea , Fosfatos , Tejido Adiposo , Animales , Células de la Médula Ósea , Diferenciación Celular , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Osteoblastos , Osteogénesis
20.
J Bone Miner Res ; 36(12): 2317-2328, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34523743

RESUMEN

X-linked hypophosphatemia (XLH) is a hereditary musculoskeletal disorder caused by loss-of-function mutations in the PHEX gene. In XLH, increased circulating fibroblast growth factor 23 (FGF23) levels cause renal phosphate wasting and low concentrations of 1,25-dihydroxyvitamin D, leading to an early clinical manifestation of rickets. Importantly, hearing loss is commonly observed in XLH patients. We present here data from two XLH patients with marked conductive hearing loss. To decipher the underlying pathophysiology of hearing loss in XLH, we utilized the Hyp mouse model of XLH and measured auditory brain stem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs) to functionally assess hearing. As evidenced by the increased ABR/DPOAE threshold shifts in the mid-frequency range, these measurements indicated a predominantly conductive hearing loss in Hyp mice compared to wild-type (WT) mice. Therefore, we carried out an in-depth histomorphometric and scanning electron microscopic analysis of the auditory ossicles. Quantitative backscattered electron imaging (qBEI) indicated a severe hypomineralization of the ossicles in Hyp mice, evidenced by lower calcium content (CaMean) and higher void volume (ie, porosity) compared to WT mice. Histologically, voids correlated with unmineralized bone (ie, osteoid), and the osteoid volume per bone volume (OV/BV) was markedly higher in Hyp mice than WT mice. The density of osteocyte lacunae was lower in Hyp mice than in WT mice, whereas osteocyte lacunae were enlarged. Taken together, our findings highlight the importance of ossicular mineralization for hearing conduction and point toward the potential benefit of improving mineralization to prevent hearing loss in XLH. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Osículos del Oído/patología , Raquitismo Hipofosfatémico Familiar , Pérdida Auditiva Conductiva , Animales , Modelos Animales de Enfermedad , Raquitismo Hipofosfatémico Familiar/complicaciones , Raquitismo Hipofosfatémico Familiar/diagnóstico por imagen , Raquitismo Hipofosfatémico Familiar/genética , Factor-23 de Crecimiento de Fibroblastos , Humanos , Ratones , Endopeptidasa Neutra Reguladora de Fosfato PHEX
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA