Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nature ; 595(7865): 130-134, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34040256

RESUMEN

Folates (also known as vitamin B9) have a critical role in cellular metabolism as the starting point in the synthesis of nucleic acids, amino acids and the universal methylating agent S-adenylsmethionine1,2. Folate deficiency is associated with a number of developmental, immune and neurological disorders3-5. Mammals cannot synthesize folates de novo; several systems have therefore evolved to take up folates from the diet and distribute them within the body3,6. The proton-coupled folate transporter (PCFT) (also known as SLC46A1) mediates folate uptake across the intestinal brush border membrane and the choroid plexus4,7, and is an important route for the delivery of antifolate drugs in cancer chemotherapy8-10. How PCFT recognizes folates or antifolate agents is currently unclear. Here we present cryo-electron microscopy structures of PCFT in a substrate-free state and in complex with a new-generation antifolate drug (pemetrexed). Our results provide a structural basis for understanding antifolate recognition and provide insights into the pH-regulated mechanism of folate transport mediated by PCFT.


Asunto(s)
Microscopía por Crioelectrón , Antagonistas del Ácido Fólico/química , Antagonistas del Ácido Fólico/metabolismo , Pemetrexed/química , Pemetrexed/metabolismo , Transportador de Folato Acoplado a Protón/química , Transportador de Folato Acoplado a Protón/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestructura , Transporte Biológico , Humanos , Modelos Moleculares , Transportador de Folato Acoplado a Protón/ultraestructura , Protones
2.
Nucleic Acids Res ; 51(18): 9952-9960, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37534568

RESUMEN

RNA conformational heterogeneity often hampers its high-resolution structure determination, especially for large and flexible RNAs devoid of stabilizing proteins or ligands. The adenosylcobalamin riboswitch exhibits heterogeneous conformations under 1 mM Mg2+ concentration and ligand binding reduces conformational flexibility. Among all conformers, we determined one apo (5.3 Å) and four holo cryo-electron microscopy structures (overall 3.0-3.5 Å, binding pocket 2.9-3.2 Å). The holo dimers exhibit global motions of helical twisting and bending around the dimer interface. A backbone comparison of the apo and holo states reveals a large structural difference in the P6 extension position. The central strand of the binding pocket, junction 6/3, changes from an 'S'- to a 'U'-shaped conformation to accommodate ligand. Furthermore, the binding pocket can partially form under 1 mM Mg2+ and fully form under 10 mM Mg2+ within the bound-like structure in the absence of ligand. Our results not only demonstrate the stabilizing ligand-induced conformational changes in and around the binding pocket but may also provide further insight into the role of the P6 extension in ligand binding and selectivity.

3.
Nature ; 564(7734): 77-82, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30405243

RESUMEN

The type 9 secretion system (T9SS) is the protein export pathway of bacteria of the Gram-negative Fibrobacteres-Chlorobi-Bacteroidetes superphylum and is an essential determinant of pathogenicity in severe periodontal disease. The central element of the T9SS is a so-far uncharacterized protein-conducting translocon located in the bacterial outer membrane. Here, using cryo-electron microscopy, we provide structural evidence that the translocon is the T9SS protein SprA. SprA forms an extremely large (36-strand) single polypeptide transmembrane ß-barrel. The barrel pore is capped on the extracellular end, but has a lateral opening to the external membrane surface. Structures of SprA bound to different components of the T9SS show that partner proteins control access to the lateral opening and to the periplasmic end of the pore. Our results identify a protein transporter with a distinctive architecture that uses an alternating access mechanism in which the two ends of the protein-conducting channel are open at different times.


Asunto(s)
Sistemas de Secreción Bacterianos/metabolismo , Sistemas de Secreción Bacterianos/ultraestructura , Microscopía por Crioelectrón , Flavobacterium , Sistemas de Secreción Bacterianos/química , Sistemas de Secreción Bacterianos/genética , Flavobacterium/química , Flavobacterium/genética , Flavobacterium/metabolismo , Flavobacterium/ultraestructura , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Transporte de Proteínas
4.
Proc Natl Acad Sci U S A ; 117(1): 362-370, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31871188

RESUMEN

The complement system is a crucial part of innate immune defenses against invading pathogens. The blood-meal of the tick Rhipicephalus pulchellus lasts for days, and the tick must therefore rely on inhibitors to counter complement activation. We have identified a class of inhibitors from tick saliva, the CirpT family, and generated detailed structural data revealing their mechanism of action. We show direct binding of a CirpT to complement C5 and have determined the structure of the C5-CirpT complex by cryoelectron microscopy. This reveals an interaction with the peripheral macro globulin domain 4 (C5_MG4) of C5. To achieve higher resolution detail, the structure of the C5_MG4-CirpT complex was solved by X-ray crystallography (at 2.7 Å). We thus present the fold of the CirpT protein family, and provide detailed mechanistic insights into its inhibitory function. Analysis of the binding interface reveals a mechanism of C5 inhibition, and provides information to expand our biological understanding of the activation of C5, and thus the terminal complement pathway.


Asunto(s)
Proteínas de Artrópodos/inmunología , Activación de Complemento/inmunología , Complemento C5/antagonistas & inhibidores , Inmunidad Innata , Rhipicephalus/inmunología , Animales , Proteínas de Artrópodos/metabolismo , Proteínas de Artrópodos/ultraestructura , Complemento C5/inmunología , Complemento C5/ultraestructura , Microscopía por Crioelectrón , Cristalografía por Rayos X , Eritrocitos/inmunología , Conducta Alimentaria , Femenino , Cobayas , Hemólisis/inmunología , Humanos , Masculino , Unión Proteica/inmunología , Dominios Proteicos/inmunología , Conejos , Ratas , Rhipicephalus/metabolismo , Saliva/inmunología , Saliva/metabolismo , Ovinos
5.
Proc Natl Acad Sci U S A ; 114(10): E1958-E1967, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28223511

RESUMEN

The twin-arginine protein translocation (Tat) system mediates transport of folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of chloroplasts. The Tat system of Escherichia coli is made up of TatA, TatB, and TatC components. TatBC comprise the substrate receptor complex, and active Tat translocases are formed by the substrate-induced association of TatA oligomers with this receptor. Proteins are targeted to TatBC by signal peptides containing an essential pair of arginine residues. We isolated substitutions, locating to the transmembrane helix of TatB that restored transport activity to Tat signal peptides with inactivating twin arginine substitutions. A subset of these variants also suppressed inactivating substitutions in the signal peptide binding site on TatC. The suppressors did not function by restoring detectable signal peptide binding to the TatBC complex. Instead, site-specific cross-linking experiments indicate that the suppressor substitutions induce conformational change in the complex and movement of the TatB subunit. The TatB F13Y substitution was associated with the strongest suppressing activity, even allowing transport of a Tat substrate lacking a signal peptide. In vivo analysis using a TatA-YFP fusion showed that the TatB F13Y substitution resulted in signal peptide-independent assembly of the Tat translocase. We conclude that Tat signal peptides play roles in substrate targeting and in triggering assembly of the active translocase.


Asunto(s)
Arginina/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Proteínas de Transporte de Membrana/química , Señales de Clasificación de Proteína , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Arginina/metabolismo , Sitios de Unión , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica en Hélice alfa , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Especificidad por Sustrato
6.
J Bacteriol ; 197(11): 1873-85, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25802296

RESUMEN

UNLABELLED: Iron acquisition at the outer membrane (OM) of Gram-negative bacteria is powered by the proton motive force (PMF) of the cytoplasmic membrane (CM), harnessed by the CM-embedded complex of ExbB, ExbD, and TonB. Its stoichiometry, ensemble structural features, and mechanism of action are unknown. By panning combinatorial phage libraries, periplasmic regions of dimerization between ExbD and TonB were predicted. Using overexpression of full-length His6-tagged exbB-exbD and S-tagged tonB, we purified detergent-solubilized complexes of ExbB-ExbD-TonB from Escherichia coli. Protein-detergent complexes of ∼230 kDa with a hydrodynamic radius of ∼6.0 nm were similar to previously purified ExbB4-ExbD2 complexes. Significantly, they differed in electronegativity by native agarose gel electrophoresis. The stoichiometry was determined to be ExbB4-ExbD1-TonB1. Single-particle electron microscopy agrees with this stoichiometry. Two-dimensional averaging supported the phage display predictions, showing two forms of ExbD-TonB periplasmic heterodimerization: extensive and distal. Three-dimensional (3D) particle classification showed three representative conformations of ExbB4-ExbD1-TonB1. Based on our structural data, we propose a model in which ExbD shuttles a proton across the CM via an ExbB interprotein rearrangement. Proton translocation would be coupled to ExbD-mediated collapse of extended TonB in complex with ligand-loaded receptors in the OM, followed by repositioning of TonB through extensive dimerization with ExbD. Here we present the first report for purification of the ExbB-ExbD-TonB complex, molar ratios within the complex (4:1:1), and structural biology that provides insights into 3D organization. IMPORTANCE: Receptors in the OM of Gram-negative bacteria allow entry of iron-bound siderophores that are necessary for pathogenicity. Numerous iron-acquisition strategies rely upon a ubiquitous and unique protein for energization: TonB. Complexed with ExbB and ExbD, the Ton system links the PMF to OM transport. Blocking iron uptake by targeting a vital nanomachine holds promise in therapeutics. Despite much research, the stoichiometry, structural arrangement, and molecular mechanism of the CM-embedded ExbB-ExbD-TonB complex remain unreported. Here we demonstrate in vitro evidence of ExbB4-ExbD1-TonB1 complexes. Using 3D EM, we reconstructed the complex in three conformational states that show variable ExbD-TonB heterodimerization. Our structural observations form the basis of a model for TonB-mediated iron acquisition.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Membrana Celular/química , Membrana Celular/genética , Cristalografía por Rayos X , Dimerización , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de la Membrana/genética , Periplasma/química , Periplasma/genética , Periplasma/metabolismo , Unión Proteica
8.
Mol Membr Biol ; 31(7-8): 250-61, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25535791

RESUMEN

Mutations in human LMBRD1 and ABCD4 prevent lysosomal export of vitamin B(12) to the cytoplasm, impairing the vitamin B(12)-dependent enzymes methionine synthase and methylmalonyl-CoA mutase. The gene products of LMBRD1 and ABCD4 are implicated in vitamin B(12) transport at the lysosomal membrane and are proposed to act in complex. To address the mechanism for lysosomal vitamin B(12) transport, we report the novel recombinant production of LMBD1 and ABCD4 for detailed biophysical analyses. Using blue native PAGE, chemical crosslinking, and size exclusion chromatography coupled to multi-angle light scattering (SEC-MALS), we show that both detergent-solubilized LMBD1 and detergent-solubilized ABCD4 form homodimers. To examine the functional binding properties of these proteins, label-free surface plasmon resonance (SPR) provides direct in vitro evidence that: (i) LMBD1 and ABCD4 interact with low nanomolar affinity; and (ii) the cytoplasmic vitamin B(12)-processing protein MMACHC also interacts with LMBD1 and ABCD4 with low nanomolar affinity. Accordingly, we propose a model whereby membrane-bound LMBD1 and ABCD4 facilitate the vectorial delivery of lysosomal vitamin B(12) to cytoplasmic MMACHC, thus preventing cofactor dilution to the cytoplasmic milieu and protecting against inactivating side reactions.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Sitios de Unión , Cromatografía en Gel , Humanos , Lisosomas/metabolismo , Modelos Moleculares , Oxidorreductasas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solubilidad , Resonancia por Plasmón de Superficie , Vitamina B 12/metabolismo
9.
Nat Microbiol ; 9(5): 1282-1292, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38459206

RESUMEN

The bacterial flagellum is a macromolecular protein complex that harvests energy from uni-directional ion flow across the inner membrane to power bacterial swimming via rotation of the flagellar filament. Rotation is bi-directional, with binding of a cytoplasmic chemotactic response regulator controlling reversal, though the structural and mechanistic bases for rotational switching are not well understood. Here we present cryoelectron microscopy structures of intact Salmonella flagellar basal bodies (3.2-5.5 Å), including the cytoplasmic C-ring complexes required for power transmission, in both counter-clockwise and clockwise rotational conformations. These reveal 180° movements of both the N- and C-terminal domains of the FliG protein, which, when combined with a high-resolution cryoelectron microscopy structure of the MotA5B2 stator, show that the stator shifts from the outside to the inside of the C-ring. This enables rotational switching and reveals how uni-directional ion flow across the inner membrane is used to accomplish bi-directional rotation of the flagellum.


Asunto(s)
Proteínas Bacterianas , Microscopía por Crioelectrón , Flagelos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Flagelos/metabolismo , Flagelos/química , Flagelos/ultraestructura , Cuerpos Basales/metabolismo , Cuerpos Basales/química , Modelos Moleculares , Rotación , Conformación Proteica , Salmonella/metabolismo , Salmonella/química , Salmonella typhimurium/metabolismo , Salmonella typhimurium/química
10.
Nat Microbiol ; 9(4): 1089-1102, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538833

RESUMEN

Secretion systems are protein export machines that enable bacteria to exploit their environment through the release of protein effectors. The Type 9 Secretion System (T9SS) is responsible for protein export across the outer membrane (OM) of bacteria of the phylum Bacteroidota. Here we trap the T9SS of Flavobacterium johnsoniae in the process of substrate transport by disrupting the T9SS motor complex. Cryo-EM analysis of purified substrate-bound T9SS translocons reveals an extended translocon structure in which the previously described translocon core is augmented by a periplasmic structure incorporating the proteins SprE, PorD and a homologue of the canonical periplasmic chaperone Skp. Substrate proteins bind to the extracellular loops of a carrier protein within the translocon pore. As transport intermediates accumulate on the translocon when energetic input is removed, we deduce that release of the substrate-carrier protein complex from the translocon is the energy-requiring step in T9SS transport.


Asunto(s)
Proteínas Bacterianas , Sistemas de Secreción Bacterianos , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/química , Transporte de Proteínas , Proteínas Portadoras/metabolismo
11.
Mol Genet Metab ; 108(2): 112-8, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23270877

RESUMEN

MMACHC and MMADHC are the genes responsible for cblC and cblD defects of vitamin B(12) metabolism, respectively. Patients with cblC and cblD defects present with various combinations of methylmalonic aciduria (MMA) and homocystinuria (HC). Those with cblC mutations have both MMA and HC whereas cblD patients can present with one of three distinct biochemical phenotypes: isolated MMA, isolated HC, or combined MMA and HC. Based on the subcellular localization of these enzymatic pathways it is thought that MMACHC functions in the cytoplasm while MMADHC functions downstream of MMACHC in both the cytoplasm and the mitochondrion. In this study we determined the subcellular location of MMACHC and MMADHC by immunofluorescence and subcellular fractionation. We show that MMACHC is cytoplasmic while MMADHC is both mitochondrial and cytoplasmic, consistent with the proposal that MMADHC acts as a branch point for vitamin B(12) delivery to the cytoplasm and mitochondria. The factors that determine the distribution of MMADHC between the cytoplasm and mitochondria remain unknown. Functional complementation experiments showed that retroviral expression of the GFP tagged constructs rescued all biochemical defects in cblC and cblD fibroblasts except propionate incorporation in cblD-MMA cells, suggesting that the endogenous mutant protein interferes with the function of the transduced wild type construct.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Vitamina B 12/metabolismo , Proteínas Portadoras/genética , Línea Celular , Humanos , Péptidos y Proteínas de Señalización Intracelular , Espacio Intracelular/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Oxidorreductasas , Unión Proteica , Isoformas de Proteínas , Transporte de Proteínas
12.
Commun Biol ; 6(1): 739, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37460791

RESUMEN

NOT1, NOT10, and NOT11 form a conserved module in the CCR4-NOT complex, critical for post-transcriptional regulation in eukaryotes, but how this module contributes to the functions of the CCR4-NOT remains poorly understood. Here, we present cryo-EM structures of human and chicken NOT1:NOT10:NOT11 ternary complexes to sub-3 Å resolution, revealing an evolutionarily conserved, flexible structure. Through biochemical dissection studies, which include the Drosophila orthologs, we show that the module assembly is hierarchical, with NOT11 binding to NOT10, which then organizes it for binding to NOT1. A short proline-rich motif in NOT11 stabilizes the entire module assembly.


Asunto(s)
Ribonucleasas , Factores de Transcripción , Humanos , Unión Proteica , Receptores CCR4/metabolismo , Ribonucleasas/química , Factores de Transcripción/metabolismo
13.
Structure ; 31(9): 1121-1131.e6, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37390814

RESUMEN

The huntingtin (HTT) protein plays critical roles in numerous cellular pathways by functioning as a scaffold for its many interaction partners and HTT knock out is embryonic lethal. Interrogation of HTT function is complicated by the large size of this protein so we studied a suite of structure-rationalized subdomains to investigate the structure-function relationships within the HTT-HAP40 complex. Protein samples derived from the subdomain constructs were validated using biophysical methods and cryo-electron microscopy, revealing they are natively folded and can complex with validated binding partner, HAP40. Derivatized versions of these constructs enable protein-protein interaction assays in vitro, with biotin tags, and in cells, with luciferase two-hybrid assay-based tags, which we use in proof-of-principle analyses to further interrogate the HTT-HAP40 interaction. These open-source biochemical tools enable studies of fundamental HTT biochemistry and biology, will aid the discovery of macromolecular or small-molecule binding partners and help map interaction sites across this large protein.


Asunto(s)
Proteína Huntingtina , Proteínas Nucleares , Microscopía por Crioelectrón , Proteína Huntingtina/química , Proteínas Nucleares/química , Humanos
14.
Mol Genet Metab ; 107(3): 352-62, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22832074

RESUMEN

The genes MMACHC and MMADHC encode critical proteins involved in the intracellular metabolism of cobalamin. Two clinical features, homocystinuria and methylmalonic aciduria, define inborn errors of these genes. Based on disease phenotypes, MMADHC acts at a branch point for cobalamin delivery, apparently exerting its function through interaction with MMACHC that demonstrates dealkylase and decyanase activities. Here we present biophysical analyses of MMADHC to identify structural features and to further characterize its interaction with MMACHC. Two recombinant tag-less isoforms of MMADHC (MMADHCΔ1-12 and MMADHCΔ1-61) were expressed and purified. Full length MMACHC and full length MMADHC were detected in whole cell lysates of human cells; by Western blotting, their molecular masses corresponded to purified recombinant proteins. By clear-native PAGE and by dynamic light scattering, recombinant MMADHCs were stable and monodisperse. Both species were monomeric, adopting extended conformations in solution. Circular dichroism and secondary structure predictions correlated with significant regions of disorder within the N-terminal domain of MMADHC. We found no evidence that MMADHC binds cobalamin. Phage panning against MMADHC predicted four binding regions on MMACHC, two of which overlap with predicted sites on MMACHC at which it may self-associate. Specific, concentration-dependent responses were observed for MMACHC binding to itself and to both MMADHC constructs. As estimated in the sub-micromolar range, the binding of MMACHC to itself was weaker compared to its interaction with either of the MMADHC isoforms. We propose that the function of MMADHC is exerted through its structured C-terminal domain via interactions with MMACHC.


Asunto(s)
Proteínas Portadoras/química , Proteínas de Transporte de Membrana Mitocondrial/química , Vitamina B 12/química , Secuencia de Aminoácidos , Sitios de Unión , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular , Técnicas de Visualización de Superficie Celular , Dicroismo Circular , Escherichia coli/genética , Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Electroforesis en Gel de Poliacrilamida Nativa , Oxidorreductasas , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vitamina B 12/metabolismo
15.
mBio ; 13(3): e0026722, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35446127

RESUMEN

Gliding motility using cell surface adhesins, and export of proteins by the type IX secretion system (T9SS) are two phylum-specific features of the Bacteroidetes. Both of these processes are energized by the GldLM motor complex, which transduces the proton motive force at the inner membrane into mechanical work at the outer membrane. We previously used cryo-electron microscopy to solve the structure of the GldLM motor core from Flavobacterium johnsoniae at 3.9-Å resolution (R. Hennell James, J. C. Deme, A. Kjaer, F. Alcock, et al., Nat Microbiol 6:221-233, 2021, https://dx.doi.org/10.1038/s41564-020-00823-6). Here, we present structures of homologous complexes from a range of pathogenic and environmental Bacteroidetes species at up to 3.0-Å resolution. These structures show that the architecture of the GldLM motor core is conserved across the Bacteroidetes phylum, although there are species-specific differences at the N terminus of GldL. The resolution improvements reveal a cage-like structure that ties together the membrane-proximal cytoplasmic region of GldL and influences gliding function. These findings add detail to our structural understanding of bacterial ion-driven motors that drive the T9SS and gliding motility. IMPORTANCE Many bacteria in the Bacteroidetes phylum use the type IX secretion system to secrete proteins across their outer membrane. Most of these bacteria can also glide across surfaces using adhesin proteins that are propelled across the cell surface. Both secretion and gliding motility are driven by the GldLM protein complex, which forms a nanoscale electrochemical motor. We used cryo-electron microscopy to study the structure of the GldLM protein complex from different species, including the human pathogens Porphyromonas gingivalis and Capnocytophaga canimorsus. The organization of the motor is conserved across species, but we find species-specific structural differences and resolve motor features at higher resolution. This work improves our understanding of the type IX secretion system, which is a virulence determinant in human and animal diseases.


Asunto(s)
Proteínas Bacterianas , Sistemas de Secreción Bacterianos , Bacteroidetes , Adhesinas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/metabolismo , Bacteroidetes/metabolismo , Microscopía por Crioelectrón
16.
PLoS One ; 16(6): e0252800, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34143799

RESUMEN

Type three secretion is the mechanism of protein secretion found in bacterial flagella and injectisomes. At its centre is the export apparatus (EA), a complex of five membrane proteins through which secretion substrates pass the inner membrane. While the complex formed by four of the EA proteins has been well characterised structurally, little is known about the structure of the membrane domain of the largest subunit, FlhA in flagella, SctV in injectisomes. Furthermore, the biologically relevant nonameric assembly of FlhA/SctV has been infrequently observed and differences in conformation of the cytoplasmic portion of FlhA/SctV between open and closed states have been suggested to reflect secretion system specific differences. FlhA has been shown to bind to chaperone-substrate complexes in an open state, but in previous assembled ring structures, SctV is in a closed state. Here, we identify FlhA and SctV homologues that can be recombinantly produced in the oligomeric state and study them using cryo-electron microscopy. The structures of the cytoplasmic domains from both FlhA and SctV are in the open state and we observe a conserved interaction between a short stretch of residues at the N-terminus of the cytoplasmic domain, known as FlhAL/SctVL, with a groove on the adjacent protomer's cytoplasmic domain, which stabilises the nonameric ring assembly.


Asunto(s)
Proteínas Bacterianas/metabolismo , Flagelos/metabolismo , Proteínas de la Membrana/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Microscopía por Crioelectrón/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Microscopía Fluorescente/métodos , Modelos Moleculares , Conformación Proteica , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/ultraestructura , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo , Yersinia enterocolitica/genética , Yersinia enterocolitica/metabolismo
17.
Nat Commun ; 12(1): 5892, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34625558

RESUMEN

Lipid droplets (LDs) are universal lipid storage organelles with a core of neutral lipids, such as triacylglycerols, surrounded by a phospholipid monolayer. This unique architecture is generated during LD biogenesis at endoplasmic reticulum (ER) sites marked by Seipin, a conserved membrane protein mutated in lipodystrophy. Here structural, biochemical and molecular dynamics simulation approaches reveal the mechanism of LD formation by the yeast Seipin Sei1 and its membrane partner Ldb16. We show that Sei1 luminal domain assembles a homooligomeric ring, which, in contrast to other Seipins, is unable to concentrate triacylglycerol. Instead, Sei1 positions Ldb16, which concentrates triacylglycerol within the Sei1 ring through critical hydroxyl residues. Triacylglycerol recruitment to the complex is further promoted by Sei1 transmembrane segments, which also control Ldb16 stability. Thus, we propose that LD assembly by the Sei1/Ldb16 complex, and likely other Seipins, requires sequential triacylglycerol-concentrating steps via distinct elements in the ER membrane and lumen.


Asunto(s)
Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Gotas Lipídicas/química , Gotas Lipídicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Retículo Endoplásmico/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/química , Subunidades gamma de la Proteína de Unión al GTP/genética , Lípidos de la Membrana , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales , Modelos Moleculares , Simulación de Dinámica Molecular , Fosfolípidos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Triglicéridos/metabolismo
18.
mBio ; 12(2)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33758081

RESUMEN

Complement, contact activation, coagulation, and fibrinolysis are serum protein cascades that need strict regulation to maintain human health. Serum glycoprotein, a C1 inhibitor (C1-INH), is a key regulator (inhibitor) of serine proteases of all the above-mentioned pathways. Recently, an autotransporter protein, virulence-associated gene 8 (Vag8), produced by the whooping cough pathogen, Bordetella pertussis, was shown to bind to C1-INH and interfere with its function. Here, we present the structure of the Vag8-C1-INH complex determined using cryo-electron microscopy at a 3.6-Å resolution. The structure shows a unique mechanism of C1-INH inhibition not employed by other pathogens, where Vag8 sequesters the reactive center loop of C1-INH, preventing its interaction with the target proteases.IMPORTANCE The structure of a 10-kDa protein complex is one of the smallest to be determined using cryo-electron microscopy at high resolution. The structure reveals that C1-INH is sequestered in an inactivated state by burial of the reactive center loop in Vag8. By so doing, the bacterium is able to simultaneously perturb the many pathways regulated by C1-INH. Virulence mechanisms such as the one described here assume more importance given the emerging evidence about dysregulation of contact activation, coagulation, and fibrinolysis leading to COVID-19 pneumonia.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bordetella pertussis/patogenicidad , Proteína Inhibidora del Complemento C1/metabolismo , Evasión Inmune , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Coagulación Sanguínea , Bordetella pertussis/química , Bordetella pertussis/metabolismo , Proteína Inhibidora del Complemento C1/química , Proteínas del Sistema Complemento/metabolismo , Microscopía por Crioelectrón , Fibrinólisis , Modelos Moleculares , Mutación , Unión Proteica , Dominios Proteicos , Sistemas de Secreción Tipo V/genética , Sistemas de Secreción Tipo V/metabolismo , Virulencia , Factores de Virulencia de Bordetella
19.
Structure ; 29(10): 1182-1191.e4, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34242558

RESUMEN

Tuberculosis (TB) is the leading cause of death from a single infectious agent and in 2019 an estimated 10 million people worldwide contracted the disease. Although treatments for TB exist, continual emergence of drug-resistant variants necessitates urgent development of novel antituberculars. An important new target is the lipid transporter MmpL3, which is required for construction of the unique cell envelope that shields Mycobacterium tuberculosis (Mtb) from the immune system. However, a structural understanding of the mutations in Mtb MmpL3 that confer resistance to the many preclinical leads is lacking, hampering efforts to circumvent resistance mechanisms. Here, we present the cryoelectron microscopy structure of Mtb MmpL3 and use it to comprehensively analyze the mutational landscape of drug resistance. Our data provide a rational explanation for resistance variants local to the central drug binding site, and also highlight a potential alternative route to resistance operating within the periplasmic domain.


Asunto(s)
Proteínas Bacterianas/química , Farmacorresistencia Bacteriana , Proteínas de Transporte de Membrana/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Microscopía por Crioelectrón , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutación
20.
Nat Commun ; 12(1): 7147, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34880232

RESUMEN

Cysteine plays an essential role in cellular redox homoeostasis as a key constituent of the tripeptide glutathione (GSH). A rate limiting step in cellular GSH synthesis is the availability of cysteine. However, circulating cysteine exists in the blood as the oxidised di-peptide cystine, requiring specialised transport systems for its import into the cell. System xc- is a dedicated cystine transporter, importing cystine in exchange for intracellular glutamate. To counteract elevated levels of reactive oxygen species in cancerous cells system xc- is frequently upregulated, making it an attractive target for anticancer therapies. However, the molecular basis for ligand recognition remains elusive, hampering efforts to specifically target this transport system. Here we present the cryo-EM structure of system xc- in both the apo and glutamate bound states. Structural comparisons reveal an allosteric mechanism for ligand discrimination, supported by molecular dynamics and cell-based assays, establishing a mechanism for cystine transport in human cells.


Asunto(s)
Antiportadores/química , Antiportadores/metabolismo , Cistina/metabolismo , Ácido Glutámico/metabolismo , Glutatión/biosíntesis , Sistema de Transporte de Aminoácidos y+/química , Sistema de Transporte de Aminoácidos y+/metabolismo , Antiportadores/genética , Bioquímica , Microscopía por Crioelectrón , Cisteína/metabolismo , Cadena Pesada de la Proteína-1 Reguladora de Fusión/química , Cadena Pesada de la Proteína-1 Reguladora de Fusión/metabolismo , Células HEK293 , Humanos , Neoplasias , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA