Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 63(10): 4758-4769, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38408314

RESUMEN

The efficiency of nitrogen mustards (NMs), among the first chemotherapeutic agents against cancer, is limited by their monotonous mechanism of action (MoA). And tumor hypoxia is a significant obstacle in the attenuation of the chemotherapeutic efficacy. To repurpose the drug and combat hypoxia, herein, we constructed an organo-Ir(III) prodrug, IrCpNM, with the composition of a reactive oxygen species (ROS)-inducing moiety (Ir-arene fragment)-a hypoxic responsive moiety (azo linker)-a DNA-alkylating moiety (nitrogen mustard), and realized DNA damage response (DDR)-mediated autophagy for hypoxic lung cancer therapy for the first time. Prodrug IrCpNM could upregulate the level of catalase (CAT) to catalyze the decomposition of excessive H2O2 to O2 and downregulate the expression of the hypoxia-inducible factor (HIF-1α) to relieve hypoxia. Subsequently, IrCpNM initiates the quadruple synergetic actions under hypoxia, as simultaneous ROS promotion and glutathione (GSH) depletion to enhance the redox disbalance and severe oxidative and cross-linking DNA damages to trigger the occurrence of DDR-mediated autophagy via the ATM/Chk2 cascade and the PIK3CA/PI3K-AKT1-mTOR-RPS6KB1 signaling pathway. In vitro and in vivo experiments have confirmed the greatly antiproliferative capacity of IrCpNM against the hypoxic solid tumor. This work demonstrated the effectiveness of the DNA damage-responsive organometallic prodrug strategy with the microenvironment targeting system and the rebirth of traditional chemotherapeutic agents with a new anticancer mechanism.


Asunto(s)
Neoplasias Pulmonares , Profármacos , Humanos , Especies Reactivas de Oxígeno/metabolismo , Profármacos/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Peróxido de Hidrógeno , Hipoxia , Autofagia , Daño del ADN , ADN , Línea Celular Tumoral , Microambiente Tumoral
2.
Inorg Chem ; 63(11): 5235-5245, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38452249

RESUMEN

Cancer treatment has faced severe obstacles due to the smart biological system of cancer cells. Herein, we report a three-in-one agent Ir-CA via attenuation of cancer cell stemness with the down-regulated biomarker CD133 expression from the mitochondria-directed chemotherapy. Over 80% of Ir-CA could accumulate in mitochondria, result in severe mitochondrial dysfunctions, and subsequently initiate mitophagy and cell cycle arrest to kill cisplatin-resistant A549R cells. In vitro and in vivo antimetastatic experiments demonstrated that Ir-CA can effectively inhibit metastasis with down-regulated MMP-2/MMP-9. RNA seq analysis and Western blotting indicated that Ir-CA also suppresses the GSTP1 expression to decrease the intracellular Pt-GS adducts, resulting in the detoxification and resensitization to cisplatin of A549R cells. In vivo evaluation indicated that Ir-CA restrains the tumor growth and has minimal side effects and superior biocompatibility. This work not only provides the first three-in-one agent to attenuate cancer cell stemness and simultaneously realize anticancer, antimetastasis, and conquer metallodrug resistance but also demonstrates the effectiveness of the mitochondria-directed strategy in cancer treatment.


Asunto(s)
Antineoplásicos , Neoplasias , Cisplatino/farmacología , Línea Celular Tumoral , Ciclo Celular , Mitocondrias , Apoptosis , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Neoplasias/metabolismo
3.
ChemMedChem ; 17(16): e202200273, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35726053

RESUMEN

The resistance of cancer cells to cisplatin has dramatically blocked the further application of this drug in practical treatment settings. The generation of cisplatin resistance is a complex physiological process, and several mechanisms have been reported for this. New metal-based agents with distinct anticancer mechanisms are still highly desired. In this concept article, we describe Ir(III)-based anticancer agents and their underlying anticancer mechanisms, which could inhibit the proliferation of cisplatin-resistant tumors. This work could be beneficial in developing more effective Ir(III)-based agents to combat cisplatin resistance.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Cisplatino/farmacología , Resistencia a Antineoplásicos , Humanos , Neoplasias/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA