RESUMEN
CD4+ T cells are central mediators of protective immunity to blood-stage malaria, particularly for their capacity in orchestrating germinal center reaction and generating parasite-specific high-affinity antibodies. T follicular helper (Tfh) cells are predominant CD4+ effector T cell subset implicated in these processes, yet the factors and detailed mechanisms that assist Tfh cell development and function during Plasmodium infection are largely undefined. Here we provide evidence that receptor for activated C kinase 1 (RACK1), an adaptor protein of various intracellular signals, is not only important for CD4+ T cell expansion as previously implied but also plays a prominent role in Tfh cell differentiation and function during blood-stage Plasmodium yoelii 17XNL infection. Consequently, RACK1 in CD4+ T cells contributes significantly to germinal center formation, parasite-specific IgG production, and host resistance to the infection. Mechanistic exploration detects specific interaction of RACK1 with STAT3 in P. yoelii 17XNL-responsive CD4+ T cells, ablation of RACK1 leads to defective STAT3 phosphorylation, accompanied by substantially lower amount of STAT3 protein in CD4+ T cells, whereas retroviral overexpression of RACK1 or STAT3 in RACK1-deficient CD4+ T cells greatly restores STAT3 activity and Bcl-6 expression under the Tfh polarization condition. Further analyses suggest RACK1 positively regulates STAT3 stability by inhibiting the ubiquitin-proteasomal degradation process, thus promoting optimal STAT3 activity and Bcl-6 induction during Tfh cell differentiation. These findings uncover a novel mechanism by which RACK1 participates in posttranslational regulation of STAT3, Tfh cell differentiation, and subsequent development of anti-Plasmodium humoral immunity.
Asunto(s)
Diferenciación Celular , Malaria , Plasmodium yoelii , Receptores de Cinasa C Activada , Factor de Transcripción STAT3 , Células T Auxiliares Foliculares , Animales , Receptores de Cinasa C Activada/metabolismo , Factor de Transcripción STAT3/metabolismo , Malaria/inmunología , Malaria/parasitología , Ratones , Plasmodium yoelii/inmunología , Células T Auxiliares Foliculares/inmunología , Células T Auxiliares Foliculares/metabolismo , Ratones Endogámicos C57BL , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , Ratones Noqueados , Centro Germinal/inmunologíaRESUMEN
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent progressive liver disease. Currently, there is only one drug for NAFLD treatment, and the options are limited. Phosphodiesterase-4 (PDE-4) inhibitors have potential in treating NAFLD. Therefore, this study aims to investigate the effect of roflumilast on NAFLD. Here, we fed ob/ob mice to induce the NAFLD model by GAN diet. Roflumilast (1 mg/kg) was administered orally once daily. Semaglutide (20 nmol/kg), used as a positive control, was injected subcutaneously once daily. Our findings showed that roflumilast has beneficial effects on NAFLD. Roflumilast prevented body weight gain and improved lipid metabolism in ob/ob-GAN NAFLD mice. In addition, roflumilast decreased hepatic steatosis by down-regulating the expression of hepatic fatty acid synthesis genes (SREBP1c, FASN, and CD36) and improving oxidative stress. Roflumilast not only reduced liver injury by decreasing serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, but also ameliorated hepatic inflammation by reducing the gene expression of proinflammatory cytokines (TNF-α, IL-1ß, and IL-6). Roflumilast lessened liver fibrosis by inhibiting the expression of fibrosis mRNA (TGFß1, α-SMA, COL1a1, and TIMP-1). Collectively, roflumilast could ameliorate NAFLD, especially in reducing hepatic steatosis and fibrosis. Our findings suggested a PDE-4 inhibitor roflumilast could be a potential drug for NAFLD.
Asunto(s)
Aminopiridinas , Benzamidas , Ciclopropanos , Cirrosis Hepática , Enfermedad del Hígado Graso no Alcohólico , Inhibidores de Fosfodiesterasa 4 , Animales , Ciclopropanos/farmacología , Ciclopropanos/uso terapéutico , Aminopiridinas/farmacología , Aminopiridinas/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/etiología , Benzamidas/farmacología , Benzamidas/uso terapéutico , Masculino , Ratones , Inhibidores de Fosfodiesterasa 4/farmacología , Inhibidores de Fosfodiesterasa 4/uso terapéutico , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/prevención & control , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Ratones Endogámicos C57BL , Metabolismo de los Lípidos/efectos de los fármacos , Ratones Obesos , Estrés Oxidativo/efectos de los fármacos , DietaRESUMEN
Vasoactive intestinal peptide (VIP), a small neuropeptide composing of 28 amino acids, functions as a neuromodulator with insulinotropic effect on pancreatic ß cells, in which it is of vital importance in regulating the levels of blood glucose. VIP potently agonizes VPAC2 receptor (VPAC2-R). Agonists of VPAC2-R stimulate glucose-dependent insulin secretion. The purpose of this study was to further investigate the possible ion channel mechanisms in VPAC2-R-mediated VIP-potentiated insulin secretion. The results of insulin secretion experiments showed that VIP augmented insulin secretion in a glucose-dependent manner. The insulinotropic effect was mediated by VPAC2-R rather than VPAC1 receptor (VPAC1-R), through the adenylyl cyclase (AC)/protein kinase A (PKA) signalling pathway. The calcium imaging analysis demonstrated that VIP increased intracellular Ca2+ concentration ([Ca2+]i). In addition, in the whole-cell voltage-clamp mode, we found that VIP blocked the voltage-dependent potassium (Kv) channel currents, while this effect was reversed by inhibiting the VPAC2-R, AC or PKA respectively. Taken together, these findings suggest that VIP stimulates insulin secretion by inhibiting the Kv channels, activating the Ca2+ channels, and increasing [Ca2+]i through the VPAC2-R and AC/PKA signalling pathway. These findings provide theoretical basis for the research of VPAC2-R as a novel therapeutic target.
Asunto(s)
Células Secretoras de Insulina , Péptido Intestinal Vasoactivo , Ratas , Animales , Péptido Intestinal Vasoactivo/farmacología , Receptores de Tipo II del Péptido Intestinal Vasoactivo/agonistas , Receptores de Tipo II del Péptido Intestinal Vasoactivo/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Canales Iónicos/metabolismo , Glucosa/farmacologíaRESUMEN
Neddylation, an important type of post-translational modification, has been implicated in innate and adapted immunity. But the role of neddylation in innate immune response against RNA viruses remains elusive. Here we report that neddylation promotes RNA virus-induced type I IFN production, especially IFN-α. More importantly, myeloid deficiency of UBA3 or NEDD8 renders mice less resistant to RNA virus infection. Neddylation is essential for RNA virus-triggered activation of Ifna gene promoters. Further exploration has revealed that mammalian IRF7undergoes neddylation, which is enhanced after RNA virus infection. Even though neddylation blockade does not hinder RNA virus-triggered IRF7 expression, IRF7 mutant defective in neddylation exhibits reduced ability to activate Ifna gene promoters. Neddylation blockade impedes RNA virus-induced IRF7 nuclear translocation without hindering its phosphorylation and dimerization with IRF3. By contrast, IRF7 mutant defective in neddylation shows enhanced dimerization with IRF5, an Ifna repressor when interacting with IRF7. In conclusion, our data demonstrate that myeloid neddylation contributes to host anti-viral innate immunity through targeting IRF7 and promoting its transcriptional activity.
Asunto(s)
Inmunidad Innata/inmunología , Factor 7 Regulador del Interferón/inmunología , Células Mieloides/inmunología , Infecciones por Virus ARN/inmunología , Virus ARN/inmunología , Animales , Factor 7 Regulador del Interferón/biosíntesis , Ratones , Células Mieloides/metabolismo , Proteína NEDD8/deficiencia , Procesamiento Proteico-Postraduccional , Ubiquitinas/deficienciaRESUMEN
GLP-1 receptor agonists (GLP-1RAs) are an innovative class of drugs with significant therapeutic value for type 2 diabetes mellitus (T2DM). The GLP-1RAs currently available on the market are biologic macromolecular peptide agents that are expensive to treat and not easy to take orally. Therefore, the development of small molecule GLP-1RAs is becoming one of the most sought-after research targets for hypoglycemic drugs. In this study, we sought to find a potential oral small molecule GLP-1RA and to evaluate its effect on insulin secretion in rat pancreatic ß cells and on blood glucose in mice. We downloaded the mRNA expression profiles of GSE102194 and GSE37936 from the Gene Expression Omnibus database. Subsequently, the small molecule compound idebenone was screened through the connectivity map database. The results of molecular docking, biolayer interferometry, and cellular thermal shift assay indicated that idebenone could bind potently with GLP-1R. Furthermore, ibebenone elevated intracellular cAMP levels. The radioimmunoassay data showed that idebenone enhanced glucose-stimulated insulin secretion via agonism of GLP-1R. Moreover, the results of oral glucose tolerance tests in C57BL/6, Glp-1r-/-, and hGlp-1r mice demonstrated that the glucose-lowering effects of idebenone were mediated by GLP-1R and that there were no species differences in the agonistic effect of idebenone on GLP-1R. In summary, idebenone reduces blood glucose in mice by promoting insulin release through agonism of GLP-1R, suggesting that idebenone is probably a potential GLP-1RA, which is expected to provide a new therapeutic strategy for the prevention and treatment of metabolic diseases such as T2DM.
Asunto(s)
Glucemia , Receptor del Péptido 1 Similar al Glucagón , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Ubiquinona , Animales , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/genética , Masculino , Ratones , Ratas , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Hipoglucemiantes/farmacología , Insulina/metabolismo , Insulina/sangre , Prueba de Tolerancia a la Glucosa , Secreción de Insulina/efectos de los fármacos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/sangre , AMP Cíclico/metabolismoRESUMEN
The meninges, consisting of the pia, arachnoid, and dura layers, provide immunosurveillance of the central nervous system with both innate and adaptive immune cells. Here we present an optimized protocol for isolating dura leukocytes from neonatal and adult mice. We describe steps for harvesting the skull cap, extracting the dura mater, mechanical isolation of dura leukocytes, and flow cytometry analysis. Unlike the time-consuming enzymatic digestion isolation which makes dura hematopoietic stem cells (HSCs) undetectable, this rapid and simplified technique permits dura HSC identification. For complete details on the use and execution of this protocol, please refer to Niu et al. (2022).1.
RESUMEN
Purpose: The glucagon-like peptide-1 receptor (GLP-1R) is an effective therapeutic target for type 2 diabetes mellitus (T2DM) and non-alcoholic steatohepatitis (NASH). Research has focused on small-molecule GLP-1R agonists because of their ease of use in oral formulations and improved patient compliance. However, no small-molecule GLP-1R agonists are currently available in the market. We aimed to screen for a potential oral small-molecule GLP-1R agonist and evaluated its effect on blood glucose and NASH. Methods: The Connectivity map database was used to screen for candidate small-molecule compounds. Molecular docking was performed using SYBYL software. Rat pancreatic islets were incubated in different concentrations glucose solutions, with cinchonine or Exendin (9-39) added to determine insulin secretion levels. C57BL/6 mice, GLP-1R-/- mice and hGLP-1R mice were used to conduct oral glucose tolerance test. In addition, we fed ob/ob mice with the GAN diet to induce the NASH model. Cinchonine (50 mg/kg or 100 mg/kg) was administered orally twice daily to the mice. Serum liver enzymes were measured using biochemical analysis. Liver tissues were examined using Hematoxylin-eosin staining, Oil Red O staining and Sirius Red staining. Results: Based on the small intestinal transcriptome of geniposide, a recognized small-molecule GLP-1R agonist, we identified that cinchonine exerted GLP-1R agonist-like effects. Cinchonine had a good binding affinity for GLP-1R. Cinchonine promoted glucose-dependent insulin secretion, which could be attenuated significantly by Exendin (9-39), a specific GLP-1R antagonist. Moreover, cinchonine could reduce blood glucose in C57BL/6 and hGLP-1R mice, an effect that could be inhibited with GLP-1R knockout. In addition, cinchonine reduced body weight gain and food intake in ob/ob-GAN NASH mice dose-dependently. 100 mg/kg cinchonine significantly improved liver function by reducing the ALT, ALP and LDH levels. Importantly, 100 mg/kg cinchonine ameliorated hepatic steatosis and fibrosis in NASH mice. Conclusion: Cinchonine, a potential oral small-molecule GLP-1R agonist, could reduce blood glucose and ameliorate NASH, providing a strategy for developing small-molecule GLP-1R agonists.
Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Ratones , Ratas , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Glucemia , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Simulación del Acoplamiento Molecular , Receptores de Glucagón/agonistas , Receptores de Glucagón/metabolismo , Receptores de Glucagón/uso terapéutico , Ratones Endogámicos C57BLRESUMEN
Ascorbic acid (AA), a critical cellular metabolite involved in many biochemical pathways, is an important antioxidant in human body. Therefore, it is of great significance to monitor AA in living cells. Nowadays, there are various technologies developed for the detection of AA, but few methods could sensitively and selectively detect the intracellular AA. Here, we reported a highly efficient biosensor (g-C3N4-CoOOH nanocomposite) based on ultrathin graphitic carbon nitride (g-C3N4) nanosheets and CoOOH nanoflakes, for sensitive detection and fluorescence imaging of AA in living cell. The g-C3N4 used here as fluorescence donor is a promising bioimaging nanomaterial because of their high fluorescence quantum yield, good biocompatibility and low toxicity. In addition, the CoOOH was used to be perfect fluorescence quencher. Herein, we enabled the CoOOH in situ to form a layer on the surface of g-C3N4, resulting in fluorescence quench of the g-C3N4. Upon the addition of AA, the CoOOH nanoflakes were reduced to Co2+, and the system gave a "turn on" fluorescence signal. It developed as an efficient sensing platform for AA, and the linear range was from 5 to 50 µM with a 1.6 µM detection limit. This novel biosensor, g-C3N4-CoOOH nanocomposite exhibited highly selective response toward AA relative to other biomolecules. Furthermore, this biosensor was used successfully to visualize and monitor AA in living cells. Hopefully, we believe that this biosensor would provide a low-cost and highly sensitive platform for AA detection and bioimaging. Schematic illustration of the sensing strategy based on the g-C3N4-CoOOH nanocomposite for AA detection.
Asunto(s)
Ácido Ascórbico , Nanocompuestos , Humanos , Ácido Ascórbico/química , Antioxidantes , Imagen ÓpticaRESUMEN
Major depressive disorder (MDD) is a highly prevalent psychiatric disorder. But the treatment of depression remains challenging. Anti-inflammatory treatments frequently produce antidepressant effects. EPO-derived helix-B peptide ARA290 has been reported to retain the anti-inflammatory and tissue-protective functions of EPO without erythropoiesis-stimulating effects. The effects of ARA290 on MDD remain elusive. This study established chronic unpredictable mild stress and chronic social defeat stress mouse models. Daily administration of ARA290 during chronic stress induction in two mouse models ameliorated depression-like behavior, similar to fluoxetine. With marginal effects on peripheral blood hemoglobin and red cells, ARA290 and fluoxetine reversed chronic stress-induced increased frequencies and/or numbers of CD11b+Ly6Ghi neutrophils and CD11b+Ly6Chi monocytes in the bone marrow and meninges. Furthermore, both drugs reversed chronic stress-induced microglia activation. Thus, ARA290 ameliorated chronic stress-induced depression-like behavior in mice through, at least partially, its anti-inflammatory effects.
RESUMEN
Ferroptosis is a form of non-apoptotic and iron-dependent cell death originally identified in cancer cells. Recently, emerging evidence showed that ferroptosis-targeting therapy could be a novel promising anti-tumour treatment. However, systematic analyses of ferroptosis-related genes for the prognosis of non-small cell lung cancer (NSCLC) and the development of antitumor drugs exploiting the ferroptosis process remain rare. This study aimed to identify genes related to ferroptosis and NSCLC and to initially screen lead compounds that induce ferroptosis in tumor cells. We downloaded mRNA expression profiles and NSCLC clinical data from The Cancer Genome Atlas database to explore the prognostic role of ferroptosis-related genes. Four prognosis-associated ferroptosis-related genes were screened using univariate Cox regression analysis and the lasso Cox regression analysis, which could divide patients with NSCLC into high- and low-risk groups. Then, based on differentially expressed risk- and ferroptosis-related genes, the negatively correlated lead compound flufenamic acid (FFA) was screened through the Connective Map database. This project confirmed that FFA induced ferroptosis in A549 cells and inhibited growth and migration in a dose-dependent manner through CCK-8, scratch, and immunofluorescence assays. In conclusion, targeting ferroptosis might be a therapeutic alternative for NSCLC.
RESUMEN
Fulminant hepatitis (FH) is a life-threatening disease with partially understood pathogenesis. It has been demonstrated that myeloid-derived suppressor cells (MDSCs) are recruited into the liver during this process, and their augmented accumulation by various strategies protects against liver injury. However, the underlying mechanism(s) remain elusive. Receptor for activated C kinase 1 (RACK1), a multi-functional scaffold protein, is highly expressed in normal liver and has been implicated in liver physiology and diseases, but the in vivo role of hepatic RACK1 in FH remains unknown. Methods: Survival curves and liver damage were monitored to investigate the in vivo role of hepatic RACK1 in FH. The liver microenvironment was explored by microarray-based transcriptome analysis, flow cytometry, immunoblotting, and immunohistochemistry. MDSCs were identified with phenotypic and functional characteristics. Functional antibodies were used to target MDSCs. Co-culture techniques were used to study the underlying mechanism(s) of protection. The interaction of RACK1 with histone deacetylase 1 (HDAC1) and the consequent effects on HDAC1 ubiquitination were analyzed. Ectopic expression of HDAC1 with recombinant adeno-associated virus serotype 8 was conducted to confirm the role of HDAC1 in the protective effects of hepatic RACK1 deficiency against FH. Post-translational modifications of RACK1 were also investigated during the induction of FH. Results: Liver-specific RACK1 deficiency rendered mice resistant to FH. RACK1-deficient livers exhibited high basal levels of chemokine (C-X-C motif) ligand 1 (CXCL1) and S100 calcium-binding protein A9 (S100A9), associated with MDSC accumulation under steady-state conditions. Targeting MDSCs with an antibody against either Gr1 or DR5 abrogated the protective effects of liver-specific RACK1 deficiency. Accumulated MDSCs inhibited inflammatory cytokine production from macrophages and enhanced IκB kinase (IKK)/NF-κB pathway activation in hepatocytes. Further investigation revealed that RACK1 maintained HDAC1 protein level in hepatocytes by direct binding, thereby controlling histone H3K9 and H3K27 acetylation at the Cxcl1 and S100a9 promoters. Ectopic expression of HDAC1 in livers with RACK1 deficiency partially reversed the augmented Cxcl1/S100a9 â MDSCs â IKK/NF-κB axis. During FH induction, RACK1 was phosphorylated at serine 110, enhancing its binding to ubiquitin-conjugating enzyme E2T and promoting its ubiquitination and degradation. Conclusion: Liver-specific RACK1 deficiency protects against FH through accelerated HDAC1 degradation and the consequent CXCL1/S100A9 upregulation and MDSC accumulation.
Asunto(s)
Necrosis Hepática Masiva , Células Supresoras de Origen Mieloide , Animales , Calgranulina B/metabolismo , Hepatocitos/metabolismo , Necrosis Hepática Masiva/metabolismo , Ratones , Células Supresoras de Origen Mieloide/metabolismo , FN-kappa B/metabolismo , Receptores de Cinasa C Activada/metabolismoRESUMEN
Steady-state extramedullary hematopoiesis during adulthood is an emerging field of great interest. The meninges contain both innate and adaptive immune cells, which provide immunosurveillance of the central nervous system (CNS). Hematopoietic progenitors that give rise to meningeal immune cells remain elusive. Here, we report that steady-state meninges of adult mice host hematopoietic stem cells (HSCs), as defined by long-term, efficient, multi-lineage reconstitution and self-renewal capacity in the meninges, blood, spleen, and bone marrow of sublethally irradiated adult recipients. HSCs lodge in the meninges after birth with local expression of pro-hematopoietic niche factors. Meningeal HSCs are locally maintained in homeostasis and get replenished from the blood only when the resident pool is reduced. With a tissue-specific expression profile, meningeal HSCs can provide the CNS with a constant supply of leukocytes more adapted to local microenvironment.