Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 134(7): e34-e51, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38375634

RESUMEN

BACKGROUND: Many cardiovascular pathologies are induced by signaling through G-protein-coupled receptors via Gsα (G protein stimulatory α subunit) proteins. However, the specific cellular mechanisms that are driven by Gsα and contribute to the development of atherosclerosis remain unclear. METHODS: High-throughput screening involving data from single-cell and bulk sequencing were used to explore the expression of Gsα in atherosclerosis. The differentially expression and activity of Gsα were analyzed by immunofluorescence and cAMP measurements. Macrophage-specific Gsα knockout (Mac-GsαKO) mice were generated to study the effect on atherosclerosis. The role of Gsα was determined by transplanting bone marrow and performing assays for foam cell formation, Dil-ox-LDL (oxidized low-density lipoprotein) uptake, chromatin immunoprecipitation, and luciferase reporter assays. RESULTS: ScRNA-seq showed elevated Gnas in atherosclerotic mouse aorta's cholesterol metabolism macrophage cluster, while bulk sequencing confirmed increased GNAS expression in human plaque macrophage content. A significant upregulation of Gsα and active Gsα occurred in macrophages from human and mouse plaques. Ox-LDL could translocate Gsα from macrophage lipid rafts in short-term and promote Gnas transcription through ERK1/2 activation and C/EBPß phosphorylation via oxidative stress in long-term. Atherosclerotic lesions from Mac-GsαKO mice displayed decreased lipid deposition compared with those from control mice. Additionally, Gsα deficiency alleviated lipid uptake and foam cell formation. Mechanistically, Gsα increased the levels of cAMP and transcriptional activity of the cAMP response element binding protein, which resulted in increased expression of CD36 and SR-A1. In the translational experiments, inhibiting Gsα activation with suramin or cpGN13 reduced lipid uptake, foam cell formation, and the progression of atherosclerotic plaques in mice in vivo. CONCLUSIONS: Gsα activation is enhanced during atherosclerotic progression and increases lipid uptake and foam cell formation. The genetic or chemical inactivation of Gsα inhibit the development of atherosclerosis in mice, suggesting that drugs targeting Gsα may be useful in the treatment of atherosclerosis.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Humanos , Ratones , Aterosclerosis/metabolismo , Células Espumosas/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Placa Aterosclerótica/patología , Transducción de Señal
2.
Artículo en Inglés | MEDLINE | ID: mdl-39236291

RESUMEN

Pulmonary hypertension (PH) is a life-threatening syndrome associated with hyperproliferation of pulmonary artery smooth muscle cells (PASMCs), which exhibit similar features to cancer cells. Currently, there is no curative treatment for PH. LKB1 is known as a tumor suppressor gene with an anti-proliferative effect on cancer cells. However, its role and mechanism in the development of PH remain unclear. Gain-and loss-of-function strategies were used to elucidate the mechanisms of LKB1 in regulating the occurrence and progression of PH. Sugen5416/Hypoxia (SuHx) PH model was utilized for in vivo study. We observed not only a decreased expression of LKB1 in the lung vessels of the SuHx mouse model, but also in human pulmonary artery smooth muscle cells (HPASMCs) exposed to hypoxia. Smooth muscle-specific LKB1 knockout significantly aggravated SuHx-induced PH in mice. RNA sequencing analysis revealed a substantial increase in bone morphogenetic protein-4 (BMP4) in the aortas of LKB1SMKO mice compared with controls, identifying BMP4 as a novel target of LKB1. LKB1 knockdown in HPASMCs cultured under hypoxic conditions increased BMP4 protein level and HPASMC proliferation and migration. The co-immunoprecipitation analysis revealed that LKB1 directly modulates BMP4 protein degradation through phosphorylation. Therapeutically, suppressing BMP4 expression in SMCs alleviates PH in LKB1SMKO mice. Our findings demonstrate that LKB1 attenuates PH by enhancing the lysosomal degradation of BMP4, thus suppressing the proliferation and migration of HPASMCs. Modulating LKB1-BMP4 axis in SMC could be a promising therapeutic strategy of PH.

3.
Plant J ; 116(6): 1766-1783, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37699038

RESUMEN

Brassinosteroids (BRs) are a class of steroid phytohormones that control various aspects of plant growth and development. Several transcriptional factors (TFs) have been suggested to play roles in BR signaling. However, their possible relationship remains largely unknown. Here, we identified a rice mutant dwarf and low-tillering 2 (dlt2) with altered plant architecture, increased grain width, and reduced BR sensitivity. DLT2 encodes a GIBBERELLIN INSENSITIVE (GAI)-REPRESSOR OF GAI (RGA)-SCARECROW (GRAS) TF that is mainly localized in the nucleus and has weak transcriptional activity. Our further genetic and biochemical analyses indicate that DLT2 interacts with two BR-signaling-related TFs, DLT and BRASSINAZOLE-RESISTANT 1, and probably modulates their transcriptional activity. These findings imply that DLT2 is implicated in a potentially transcriptional complex that mediates BR signaling and rice development and suggests that DLT2 could be a potential target for improving rice architecture and grain morphology. This work also sheds light on the role of rice GRAS members in regulating numerous developmental processes.


Asunto(s)
Brasinoesteroides , Oryza , Proteínas de Plantas/metabolismo , Transducción de Señal/genética , Grano Comestible/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Curr Issues Mol Biol ; 46(10): 10762-10778, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39451519

RESUMEN

The utilization of heavy-panicle hybrid rice exemplifies the successful integration of architectural enhancement and heterosis, which has been widely adopted in the southwest rice-producing area of China. Iterative improvement in disease resistance and grain quality of heavy-panicle hybrid rice varieties is crucial to promote their sustainable utilization. Here, we performed a molecular design breeding strategy to introgress beneficial alleles of broad-spectrum disease resistance and grain quality into a heavy-panicle hybrid backbone restorer line Shuhui 600 (R600). We successfully developed introgression lines through marker-assisted selection to pyramid major genes (Wxb + ALKA-GC + Pigm + Xa23) derived from three parents (Huanghuazhan, I135, I488), which significantly enhance grain quality and confer resistance to rice blast and bacterial blight (BB). The improved parental R600 line (iR600) exhibited superior grain quality and elevated disease resistance while maintaining the heavy-panicle architecture and high-yield capacity of R600. Moreover, the iR600 was crossed with male sterility line 608A to obtain a new heavy-panicle hybrid rice variety with excellent eating and cooking quality (ECQ) and high yield potential. This study presents an effective breeding strategy for rice breeders to expedite the improvement of grain quality and disease resistance in heavy-panicle hybrid rice.

5.
Development ; 148(6)2021 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-33658224

RESUMEN

Starch accumulation is key for the maturity of rice pollen grains; however, the regulatory mechanism underlying this process remains unknown. Here, we have isolated a male-sterile rice mutant, abnormal pollen 1 (ap1), which produces nonviable pollen grains with defective starch accumulation. Functional analysis revealed that AP1 encodes an active L-type lectin receptor-like kinase (L-LecRLK). AP1 is localized to the plasma membrane and its transcript is highly accumulated in pollen during the starch synthesis phase. RNA-seq and phosphoproteomic analysis revealed that the expression/phosphorylation levels of numerous genes/proteins involved in starch and sucrose metabolism pathway were significantly altered in the mutant pollen, including a known rice UDP-glucose pyrophosphorylase (OsUGP2). We further found that AP1 physically interacts with OsUGP2 to elevate its enzymatic activity, likely through targeted phosphorylation. These findings revealed a novel role of L-LecRLK in controlling pollen maturity via modulating sucrose and starch metabolism.


Asunto(s)
Oryza/genética , Proteínas de Plantas/genética , Polen/genética , Almidón/genética , Regulación de la Expresión Génica de las Plantas/genética , Lectinas/genética , Proteínas Mutantes/genética , Oryza/crecimiento & desarrollo , Fosfotransferasas/genética , Proteínas de Plantas/aislamiento & purificación , Polen/crecimiento & desarrollo , Receptores Mitogénicos/genética , Almidón/metabolismo
6.
Plant Biotechnol J ; 22(2): 512-526, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37862261

RESUMEN

Grain size and weight determine rice yield. Although numerous genes and pathways involved in regulating grain size have been identified, our knowledge of post-transcriptional control of grain size remains elusive. In this study, we characterize a rice mutant, decreased grain width and weight 1 (dgw1), which produces small grains. We show that DGW1 encodes a member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family protein and preferentially expresses in developing panicles, positively regulating grain size by promoting cell expansion in spikelet hulls. Overexpression of DGW1 increases grain weight and grain numbers, leading to a significant rise in rice grain yield. We further demonstrate that DGW1 functions in grain size regulation by directly binding to the mRNA of Grain Width 6 (GW6), a critical grain size regulator in rice. Overexpression of GW6 restored the grain size phenotype of DGW1-knockout plants. DGW1 interacts with two oligouridylate binding proteins (OsUBP1a and OsUBP1b), which also bind the GW6 mRNA. In addition, the second RRM domain of DGW1 is indispensable for its mediated protein-RNA and protein-protein interactions. In summary, our findings identify a new regulatory module of DGW1-GW6 that regulates rice grain size and weight, providing important insights into the function of hnRNP-like proteins in the regulation of grain size.


Asunto(s)
Oryza , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , Regulación de la Expresión Génica de las Plantas/genética , Grano Comestible/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Oryza/genética , Oryza/metabolismo
7.
Int J Mol Sci ; 25(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39000408

RESUMEN

Nucleotide-binding and leucine-rich repeat receptors (NLRs) are the most important and largest class of immune receptors in plants. The Pi36 gene encodes a canonical CC-NBS-LRR protein that confers resistance to rice blast fungal infections. Here, we show that the CC domain of Pi36 plays a role in cell death induction. Furthermore, self-association is required for the CC domain-mediated cell death, and the self-association ability is correlated with the cell death level. In addition, the NB-ARC domain may suppress the activity of the CC domain through intramolecular interaction. The mutations D440G next to the RNBS-D motif and D503V in the MHD motif autoactivated Pi36, but the mutation K212 in the P-loop motif inhibited this autoactivation, indicating that nucleotide binding of the NB-ARC domain is essential for Pi36 activation. We also found that the LRR domain is required for D503V- and D440G-mediated Pi36 autoactivation. Interestingly, several mutations in the CC domain compromised the CC domain-mediated cell death without affecting the D440G- or D503V-mediated Pi36 autoactivation. The autoactivate Pi36 variants exhibited stronger self-associations than the inactive variants. Taken together, we speculated that the CC domain of Pi36 executes cell death activities, whereas the NB-ARC domain suppressed CC-mediated cell death via intermolecular interaction. The NB-ARC domain releases its suppression of the CC domain and strengthens the self-association of Pi36 to support the CC domain, possibly through nucleotide exchange.


Asunto(s)
Proteínas NLR , Oryza , Proteínas de Plantas , Oryza/metabolismo , Oryza/genética , Oryza/inmunología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Proteínas NLR/metabolismo , Proteínas NLR/genética , Proteínas NLR/química , Muerte Celular , Mutación , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Dominios Proteicos , Resistencia a la Enfermedad/genética , Inmunidad de la Planta/genética
8.
Plant J ; 111(6): 1509-1526, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35883135

RESUMEN

Pollen development includes a series of biological events that require precise gene regulation. Although several transcription factors (TFs) have been shown to play roles in maintaining pollen fertility, the major regulatory networks underlying tapetum development and pollen wall formation are largely unknown. Herein, we report that ABERRANT MICROSPORE DEVELOPMENT1 (AMD1), a protein annotated previously as unknown protein, is required for tapetum development and pollen exine patterning in rice (Oryza sativa L.). AMD1 encodes a grass-specific protein exhibiting transactivation activity in the nucleus and is spatiotemporally expressed in the tapetum and microspores during pollen development. Further biochemical assays indicate that AMD1 directly activates the transcription of DEFECTIVE POLLEN WALL (DPW) and POLYKETIDE SYNTHASE2 (OsPKS2), which are both implicated in sporopollenin biosynthesis during exine formation. Additionally, AMD1 directly interacts with TAPETUM DEGENERATION RETARDATION (TDR), a key TF involved in the regulation of tapetum degradation and exine formation. Taken together, we demonstrate that AMD1 is an important regulatory component involved in the TDR-mediated regulatory pathway to regulate sporopollenin biosynthesis, tapetum degradation, and exine formation for pollen development. Our work provides insights into the regulatory network of rice sexual reproduction and a useful target for genetic engineering of new male-sterile lines for hybrid rice breeding.


Asunto(s)
Oryza , Policétidos , Biopolímeros , Carotenoides , Fertilidad , Regulación de la Expresión Génica de las Plantas , Oryza/metabolismo , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poaceae/metabolismo , Polen/metabolismo , Policétidos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Plant Physiol ; 190(1): 352-370, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-35748750

RESUMEN

The pollen wall is important for protecting the male gametophyte and for fertilization. The lipid components of the pollen wall are mainly synthesized and transported from the sporophytic tapetum. Although several factors related to lipid biosynthesis have been characterized, the molecular mechanisms underlying lipid biosynthesis during pollen development in rice (Oryza sativa L.) remain elusive. Here, we showed that mutation in the SWOLLEN TAPETUM AND STERILITY 1 (STS1) gene causes delayed tapetum degradation and aborted pollen wall formation in rice. STS1 encodes an endoplasmic reticulum (ER)-localized protein that contains domain of unknown function (DUF) 726 and exhibits lipase activity. Lipidomic and transcriptomic analyses showed that STS1 is involved in anther lipid homeostasis. Moreover, STS1 interacts with Polyketide Synthase 2 (OsPKS2) and Acyl-CoA Synthetase 12 (OsACOS12), two enzymes crucial in lipidic sporopollenin biosynthesis in pollen wall formation, suggesting a potentially lipidic metabolon for sporopollenin biosynthesis in rice. Collectively, our results indicate that STS1 is an important factor for lipid biosynthesis in reproduction, providing a target for the artificial control of male fertility in hybrid rice breeding and insight into the function of DUF726-containing protein in plants.


Asunto(s)
Infertilidad , Oryza , Flores , Regulación de la Expresión Génica de las Plantas , Infertilidad/metabolismo , Lípidos , Oryza/metabolismo , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen
10.
Plant Cell Environ ; 46(4): 1312-1326, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36624579

RESUMEN

Ubiquitin-specific proteases (UBPs) process deubiquitination in eukaryotic organisms and are widely involved in plant development and responses to environmental stress. However, their role in cell death and plant immunity remains largely unknown. Here, we identified a rice lesion mimic mutant (LMM) and cloned its causative gene, LMM22. Both dysfunction and overexpression of LMM22 gave rise to the hypersensitive response-like cell death, reactive oxygen species bursts, and activated defence responses. LMM22 encodes an active UBP that is localised to the endoplasmic reticulum (ER) and displays a constitutive expression pattern in rice. LMM22 interacts with SPOTTED LEAF 35 (SPL35), a coupling of ubiquitin conjugation to ER degradation domain-containing protein that is known to participate in ubiquitination and the regulation of cell death and disease response in rice. Additional analyses suggest that LMM22 can positively regulate and stabilise the abundance of SPL35 protein likely through its deubiquitination activity. These data therefore improve our understanding of the function of UBP in rice innate immune responses by demonstrating that LMM22 functions as a critical regulator of SPL35 in cell death and disease resistance.


Asunto(s)
Oryza , Proteasas Ubiquitina-Específicas , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Oryza/genética , Proteínas de Plantas/metabolismo , Muerte Celular , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas
11.
Plant J ; 108(2): 358-377, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34314535

RESUMEN

The plant pollen wall protects the male gametophyte from various biotic and abiotic stresses. The formation of a unique pollen wall structure and elaborate exine pattern is a well-organized process, which needs coordination between reproductive cells and the neighboring somatic cells. However, molecular mechanisms underlying this process remain largely unknown. Here, we report a rice male-sterile mutant (l94) that exhibits defective pollen exine patterning and abnormal tapetal cell development. MutMap and knockout analyses demonstrated that the causal gene encodes a type-G non-specific lipid transfer protein (OsLTPL94). Histological and cellular analyses established that OsLTPL94 is strongly expressed in the developing microspores and tapetal cells, and its protein is secreted to the plasma membrane. The l94 mutation impeded the secretory ability of OsLTPL94 protein. Further in vivo and in vitro investigations supported the hypothesis that ETERNAL TAPETUM 1 (EAT1), a basic helix-loop-helix transcription factor (bHLH TF), activated OsLTPL94 expression through direct binding to the E-box motif of the OsLTPL94 promoter, which was supported by the positive correlation between the expression of EAT1 and OsLTPL94 in two independent eat1 mutants. Our findings suggest that the secretory OsLTPL94 plays a key role in the coordinated development of tapetum and microspores with the regulation of EAT1.


Asunto(s)
Proteínas Portadoras/metabolismo , Oryza/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Polen/crecimiento & desarrollo , Proteínas Portadoras/genética , Elementos E-Box , Regulación de la Expresión Génica de las Plantas , Mutación , Oryza/genética , Oryza/metabolismo , Infertilidad Vegetal/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas
12.
Genomics ; 113(3): 1396-1406, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33711454

RESUMEN

Rice is one of the most important cereal crops, providing the daily dietary intake for approximately 50% of the global human population. Here, we re-sequenced 259 rice accessions, generating 1371.65 Gb of raw data. Furthermore, we performed genome-wide association studies (GWAS) on 13 agronomic traits using 2.8 million single nucleotide polymorphisms (SNPs) characterized in 259 rice accessions. Phenotypic data and best linear unbiased prediction (BLUP) values of each of the 13 traits over two years of each trait were used for the GWAS. The results showed that 816 SNP signals were significantly associated with the 13 agronomic traits. Then we detected candidate genes related to target traits within 200 kb upstream and downstream of the associated SNP loci, based on linkage disequilibrium (LD) blocks in the whole rice genome. These candidate genes were further identified through haplotype block constructions. This comprehensive study provides a timely and important genomic resource for breeding high yielding rice cultivars.


Asunto(s)
Estudio de Asociación del Genoma Completo , Oryza , Genoma de Planta , Humanos , Desequilibrio de Ligamiento , Oryza/genética , Fenotipo , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
13.
J Integr Plant Biol ; 64(7): 1430-1447, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35485235

RESUMEN

Arabinogalactan proteins (AGPs) are widely distributed in plant cells. Fasciclin-like AGPs (FLAs) belong to a subclass of AGPs that play important roles in plant growth and development. However, little is known about the biological functions of rice FLA. Herein, we report the identification of a male-sterile mutant of DEFECTIVE EXINE AND APERTURE PATTERNING1 (DEAP1) in rice. The deap1 mutant anthers produced aberrant pollen grains with defective exine formation and a flattened aperture annulus and exhibited slightly delayed tapetum degradation. DEAP1 encodes a plasma membrane-associated member of group III plant FLAs and is specifically and temporally expressed in reproductive cells and the tapetum layer during male development. Gene expression studies revealed reduced transcript accumulation of genes related to exine formation, aperture patterning, and tapetum development in deap1 mutants. Moreover, DEAP1 may interact with two rice D6 PROTEIN KINASE-LIKE3s (OsD6PKL3s), homologs of a known Arabidopsis aperture protein, to affect rice pollen aperture development. Our findings suggested that DEAP1 is involved in male reproductive development and may affect exine formation and aperture patterning, thereby providing new insights into the molecular functions of plant FLAs in male fertility.


Asunto(s)
Arabidopsis , Oryza , Arabidopsis/metabolismo , Fertilidad , Regulación de la Expresión Génica de las Plantas/genética , Mucoproteínas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
BMC Plant Biol ; 21(1): 255, 2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34082694

RESUMEN

BACKGROUND: Rice (Oryza sativa) bacterial leaf blight (BLB), caused by the hemibiotrophic Xanthomonas oryzae pv. oryzae (Xoo), is one of the most devastating diseases affecting the production of rice worldwide. The development and use of resistant rice varieties or genes is currently the most effective strategy to control BLB. RESULTS: Here, we used 259 rice accessions, which are genotyped with 2 888 332 high-confidence single nucleotide polymorphisms (SNPs). Combining resistance variation data of 259 rice lines for two Xoo races observed in 2 years, we conducted a genome-wide association study (GWAS) to identify quantitative trait loci (QTL) conferring plant resistance against BLB. The expression levels of genes, which contains in GWAS results were also identified between the resistant and susceptible rice lines by transcriptome analysis at four time points after pathogen inoculation. From that 109 candidate resistance genes showing significant differential expression between resistant and susceptible rice lines were uncovered. Furthermore, the haplotype block structure analysis predicted 58 candidate genes for BLB resistance based on Chr. 7_707158 with a minimum P-value (-log 10 P = 9.72). Among them, two NLR protein-encoding genes, LOC_Os07g02560 and LOC_Os07g02570, exhibited significantly high expression in the resistant line, but had low expression in the susceptible line of rice. CONCLUSIONS: Together, our results reveal novel BLB resistance gene resources, and provide important genetic basis for BLB resistance breeding of rice crops.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Oryza/genética , Enfermedades de las Plantas/microbiología , Transcriptoma , Regulación de la Expresión Génica de las Plantas/inmunología , Genotipo , Haplotipos , Enfermedades de las Plantas/genética , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
15.
Plant Biotechnol J ; 19(8): 1553-1566, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33600077

RESUMEN

Rice sheath blight (RSB) is an economically significant disease affecting rice yield worldwide. Genetic resistance to RSB is associated with multiple minor genes, with each providing a minor phenotypic effect, but the underlying dominant resistance genes remain unknown. A genome-wide association study (GWAS) of 259 diverse rice varieties, with genotypes based on a single nucleotide polymorphism (SNP) and haplotype, was conducted to assess their sheath blight reactions at three developmental stages (seedlings, tillering and booting). A total of 653 genes were correlated with sheath blight resistance, of which the disease resistance protein RPM1 (OsRSR1) and protein kinase domain-containing protein (OsRLCK5) were validated by overexpression and knockdown assays. We further found that the coiled-coil (CC) domain of OsRSR1 (OsRSR1-CC) and full-length OsRLCK5 interacted with serine hydroxymethyltransferase 1 (OsSHM1) and glutaredoxin (OsGRX20), respectively. It was found that OsSHM1, which has a role in the reactive oxygen species (ROS) burst, and OsGRX20 enhanced the antioxidation ability of plants. A regulation model of the new RSB resistance though the glutathione (GSH)-ascorbic acid (AsA) antioxidant system was therefore revealed. These results enhance our understanding of RSB resistance mechanisms and provide better gene resources for the breeding of disease resistance in rice.


Asunto(s)
Resistencia a la Enfermedad/genética , Oryza , Enfermedades de las Plantas/genética , Estudios de Asociación Genética , Oryza/genética , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Rhizoctonia/patogenicidad
16.
Plant J ; 98(2): 315-328, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30589140

RESUMEN

Meiosis is essential for eukaryotic sexual reproduction and plant fertility, and crossovers (COs) are essential for meiosis and the formation of new allelic combinations in gametes. In this study, we report the isolation of a meiotic gene, OsSHOC1, and the identification of its partner, OsPTD1. Osshoc1 was sterile both in male and female gametophytes, and it showed a striking reduction in the number of meiotic COs, indicating that OsSHOC1 was required for normal CO formation. Further investigations showed that OsSHOC1 physically interacted with OsPTD1 and that the latter was also required for normal CO formation and plant fertility. Additionally, the expression profiles of both genes were consistent with their functions. Our results suggest that OsSHOC1 and OsPTD1 are essential for rice fertility and CO formation, possibly by stabilizing the recombinant intermediates during meiosis.


Asunto(s)
Intercambio Genético , Endonucleasas/genética , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Arabidopsis , Fertilidad , Regulación de la Expresión Génica de las Plantas , Meiosis , Fenotipo
17.
Plant J ; 99(3): 556-570, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31004552

RESUMEN

Meiosis is critical for sexual reproduction and the generation of new allelic variations in most eukaryotes. In this study, we report the isolation of a meiotic gene, DLC1, using a map-based cloning strategy. The dlc1 mutant is sterile in both male and female gametophytes due to an earlier defect in the leptotene chromosome and subsequent abnormalities at later stages. DLC1 is strongly expressed in the pollen mother cells (PMCs) and tapetum and encodes a nucleus-located rice type-B response regulator (RR) with transcriptional activity. Further investigations showed that DLC1 interacts with all five putative rice histidine phosphotransfer proteins (HPs) in yeast and planta cells, suggesting a possible participation of the two-component signalling systems (TCS) in rice meiosis. Our results demonstrated that DLC1 is required for rice meiosis and fertility, providing useful information for the role of TCS in rice meiosis.


Asunto(s)
Meiosis/genética , Profase Meiótica I/genética , Oryza/genética , Proteínas de Plantas/genética , Polen/metabolismo , Clonación Molecular , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Mutación , Oryza/crecimiento & desarrollo , Infertilidad Vegetal/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Polen/citología , Polen/crecimiento & desarrollo
18.
Plant Biotechnol J ; 18(2): 429-442, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31389120

RESUMEN

The rice root system is important for growth. The crosstalk between auxin and cytokinin mediates root initiation and elongation. However, it remains unclear how the transcriptional network upstream of the auxin and cytokinin signalling pathways determines root development. Here, we observed that the knockdown of OsNAC2, which encodes a NAC transcription factor, increased the primary root length and the number of crown roots. OsNAC2 predominantly expressed in primary root tips, crown roots and lateral root primordia, implying it influences root development. Molecular analyses revealed that the expressions of auxin- and cytokinin-responsive genes were affected in OsNAC2-overexpressing (OsNAC2-OX; ON7 and ON11), RNA interference (OsNAC2-RNAi; RNAi25 and RNAi31) and CRISPR/Cas9 plants. Additionally, OsNAC2 can directly bind to the promoters of IAA inactivation-related genes (GH3.6 and GH3.8), an IAA signalling-related gene (OsARF25), and a cytokinin oxidase gene (OsCKX4). Furthermore, genetic analysis of ON11/osgh3.6 and RNAi31/osckx4 homozygote confirmed that OsCKX4 and OsGH3.6 functioned downstream of OsNAC2. The mRNA levels of CROWN ROOTLESS (CRL) genes and cyclin-dependent protein kinase (CDK) genes increased in OsNAC2-RNAi and OsNAC2-cas9 lines while reduced in OsNAC2-OX lines. Thus, we describe that OsNAC2 functions as an upstream integrator of auxin and cytokinin signals that affect CRL and CDK production to regulate cell division during root development. This novel auxin-OsNAC2-cytokinin model should provide a new insight into the understanding of NAC TFs and crosstalk of auxin and cytokinin pathway, and can be potentially applied in agriculture to enhance rice yields by genetic approaches.


Asunto(s)
Citocininas , Ácidos Indolacéticos , Oryza , Raíces de Plantas , Proteínas Represoras , Citocininas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Técnicas de Silenciamiento del Gen , Ácidos Indolacéticos/metabolismo , Oryza/genética , Oryza/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
19.
Int J Mol Sci ; 21(6)2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-32188023

RESUMEN

Pollen development plays crucial roles in the life cycle of higher plants. Here we characterized a rice mutant with complete male-sterile phenotype, pollen-less 1 (pl1). pl1 exhibited smaller anthers with arrested pollen development, absent Ubisch bodies, necrosis-like tapetal hypertrophy, and smooth anther cuticular surface. Molecular mapping revealed a synonymous mutation in the fourth exon of PL1 co-segregated with the mutant phenotype. This mutation disrupts the exon-intron splice junction in PL1, generating aberrant mRNA species and truncated proteins. PL1 is highly expressed in the tapetal cells of developing anther, and its protein is co-localized with plasma membrane (PM) and endoplasmic reticulum (ER) signal. PL1 encodes an integrin-α FG-GAP repeat-containing protein, which has seven ß-sheets and putative Ca2+-binding motifs and is broadly conserved in terrestrial plants. Our findings therefore provide insights into both the role of integrin-α FG-GAP repeat-containing protein in rice male fertility and the influence of exonic mutation on intronic splice donor site selection.


Asunto(s)
Exones , Infertilidad/genética , Integrinas/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Empalme del ARN , ARN Mensajero/metabolismo , Mutación Silenciosa , Flores/citología , Regulación de la Expresión Génica de las Plantas , Mutación , Fenotipo , Proteínas de Plantas/metabolismo , Polen/genética , Polen/crecimiento & desarrollo , Polen/metabolismo , Análisis de Secuencia
20.
BMC Plant Biol ; 19(1): 360, 2019 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-31419944

RESUMEN

BACKGROUND: Tilletia horrida is a basidiomycete fungus that causes rice kernel smut, one of the most important rice diseases in hybrid rice growing areas worldwide. However, little is known about its mechanisms of pathogenicity. We previously reported the genome of T. horrida, and 597 genes that encoded secreted proteins were annotated. Among these were some important effector genes related to pathogenicity. RESULTS: A secretome analysis suggested that five Tilletia fungi shared more gene families than were found in other smuts, and there was high conservation between them. Furthermore, we screened 597 secreted proteins from the T. horrida genome, some of which induced expression in host-pathogen interaction processes. Through transient expression, we demonstrated that two putative effectors could induce necrosis phenotypes in Nicotiana benthamiana. These two encoded genes were up-regulated during early infection, and the encoded proteins were confirmed to be secreted using a yeast secretion system. For the putative effector gene smut_5844, a signal peptide was required to induce non-host cell death, whereas ribonuclease catalytic active sites were required for smut_2965. Moreover, both putative effectors could induce an immune response in N. benthamiana leaves. Interestingly, one of the identified potential host interactors of smut_5844 was laccase-10 protein (OsLAC10), which has been predicted to be involved in plant lignification and iron metabolism. CONCLUSIONS: Overall, this study identified two secreted proteins in T. horrida that induce cell death or are involved in defense machinery in non-host plants. This research provides a useful foundation for understanding the interaction between rice and T. horrida.


Asunto(s)
Basidiomycota/crecimiento & desarrollo , Muerte Celular , Proteínas Fúngicas/genética , Interacciones Huésped-Patógeno/genética , Nicotiana/microbiología , Basidiomycota/metabolismo , Proteínas Fúngicas/metabolismo , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Nicotiana/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA